Probabilistic Models

582636
5
Algoritmit ja koneoppiminen
Syventävät opinnot
This course provides an introduction to probabilistic modeling from a computer scientist"s perspective. Many of the research issues in Artificial Intelligence, Computational Intelligence and Machine Learning/Data Mining can be viewed as topics in the "science of uncertainty," which addresses the problem of optimal processing of incomplete information, i.e., plausible inference, and this course shows how the probabilistic modeling framework forms a theoretically elegant and practically useful solution to this problem. The course focuses on the "degree-of-belief" interpretation of probability and illustrates the use of Bayes" Theorem as a general rule of belief-updating. As a concrete example of methodological tools based on this approach, we will study probabilistic graphical models focusing in particular on (discrete) Bayesian networks, and on their applications in different probabilistic modeling tasks.
Vuosi Lukukausi Päivämäärä Periodi Kieli Vastuuhenkilö
2010 kevät 19.01-25.02. 3-3 Englanti

Luennot

Aika Huone Luennoija Päivämäärä
Ti 16-18 B222 Huizhen Yu 19.01.2010-25.02.2010
To 16-18 B222 Huizhen Yu 19.01.2010-25.02.2010

Harjoitusryhmät

Group: 1
Aika Huone Ohjaaja Päivämäärä Huomioitavaa
Pe 14-16 B222 Huizhen Yu 25.01.2010—26.02.2010