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Overview

Motivation behind in-memory databases (imdb).
What makes imdb faster?
Where is it used best?
Is imdb suitable for Big Data?



© 2012 IBM Corporation4

Disk-based databases

For decades, databases have provided robust, and popular set 
of features for applications. 

Disk-based databases utilize cheap, and large storage.

They provide large volume, but long disk latency is hard to 
overcome.

Even with large page buffers, disk access causes 
unpredictable long response times.

Therefore:
➢ Shortening response time is difficult
➢ Even page cache access is relatively slow
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In services user expectation matters

Amazon reported that every 100ms delay costs 1% of sales (Greg 
Linden)

Google increased the number of search results from 10 to 30. 
Additional 500ms caused a 20% drop in traffic. Half a second 
delay killed user satisfaction. (Marissa Mayer in Web 2.0)

Stock Traders Find Speed Pays, in Milliseconds (Charles Duhiagg, 
The New York Times)

Sometimes I/O stalls, or blocking operations are not tolerated
HLR operations in TelCo
Stock trading SW
Medical devices

Making more throughput is easy, but once you have bad latency 
you're stuck with it. Stuart Cheshire, May 1996
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Data access through memory levels
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Data layout in a database server
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Why in-memory database is faster?

Seek time dominates the cost
Reading sequential disk blocks is 1000 times faster than reading 

random blocks.
Database's access pattern is mostly random.
Reading from RAM is roughly 100 times faster than sequential 

disk read.

Disk I/O involves lot overhead to 
read, and write operations

Unit of access is block.
Amount of data transferred can 

be 10-100 times more than 
what was requested.
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Why in-memory database is faster also in 
memory?

In-memory database uses dense index in contrast to disk-
resident db.

Pages in disk-resident db may or may not be found from cache.
Also index nodes may be swapped to disk.

indexindex

storagestorage
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Main challenges in in-memory databases

Maximize parallel processing in one machine

Maintain ACID but avoid storage/network bottleneck

Provide low latencies consistently

Scale out (generic requirement)
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Vertical scaling

Increase throughput in line with the # of users 
do not trade latency for throughput

Use fine-grained concurrency control where needed

Remember cache, especially false sharing

TATP Benchmark : http://tatpbenchmark.sourceforge.net/
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Example : coherency cache miss

A shared transaction counter for all clients to use

2

2 1 1 1

2 1

L1

L2

L3

2

Main Memory

CPU0 CPU1 CPU2 CPU3

These cache lines become dirty
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Example : false sharing

Independent data share a cache line

Remember spatial locality, avoid false sharing

[1, 'foo'],[2,'bar']

L1

Main Memory

CPU0 CPU1

[1, 'foo'],[2,'bar'][1, 'fo'],[2,'bar']

Update t1 set name='fo' where id=1 Select * from t1 where id=2

Cache line – unit of transfer

Whole cache line becomes dirty

[1, 'foo'],[2,'bar']

[1, 'fo'],[2,'bar']

[1, 'fo'],[2,'bar']
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Tuning log writing

Synchronized log writing (WAL) doesn't leave much to do
Buy faster hardware

With asynchronous logging, there is time window to be used
Typically at least 1-5 seconds
Clients are provided with several pre-allocated (recycled) log entry 

buckets
Every now and then, a leaving client is requested to 

allocate/recycle buckets – share the load
Client adds filled buckets to a circular buffer 
Log writer thread flushes every full buffer maintaining transaction 

sequence number ordering
Sequential file write is fast enough, problem is to prevent the 

swarm of clients from colliding with each other



© 2012 IBM Corporation15

Unobtrusive checkpoint writing

Consistent, or fuzzy
Fuzzy spreads write load evenly over time but it's not consistent
Consistent doesn't need log for restoring

Every checkpoint starts with synchronization point – freeze
Chekpoint counter is increased, and dirty data is marked

The rest is sequence of non-blocking operations
Techniques:

Shadow copying
versioning

Write only dirty pages, write fast, but don't block disk IO
Write everything, or data only

Latter is trading faster checkpoint to slower restore
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Low latencies make services possible 

Database often sits on the bottom of sw stack of the service

Service's response time includes application and transaction 
processing altogether

Assume that transaction execution shortens to 1/10th – how 
would you spend the free extra time?

Execute more transactions?

Add business logic to application layer?

Meet the deadlines?

Low latencies enable deplying more intelligent applications 
and services without violating Service-Level Agreements 
(SLA).
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Threats of latency

Unnecessarily large critical sections in code
N threads accessing M resources & one mutex protecting them all
Divide threads, and resources to, say, 10 groups which are 

protected by 10 mutexes
Avoid mutex trashing

Shared counter, for example

Disk IO
Avoid synchronous writes, remember to flush

Network IO
Avoid synchronous operations

Large memory operations
OS tries to buffer everything, and swap arbitrarily
Flush large file writes periodically
Prevent swappiness if necessary
Split operations to resonably-sized ones

Point of 

serialization
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Massive data, and parallelism

Why to scale out ?
In some cases, multiple cheap boxes provide more than a few 

bigger and more expensive servers
Adding soap boxes one by one provides flexible, low-risk solution 
If the solution meets the needs, it is better to ask, why not?

How to make tens or hundreds of servers constitute a service?
Distribute requests transparently to nodes where data is stored
Make server and network failures invisible to users
Make administrative tasks transparent to users
Relax consistency (from C) when acceptable
Make conflict resolution when data is read
Emphasis on local operations
Avoid or prevent inter-node operations

Avoid range queries in row storage
Avoid joins
Avoid select * 's in column storages
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Distributing load

7
4

11

By key : assume three server nodes, each assigned with a 
value between 0-11

Every key value is gets a position on the ring from the result of 
key mod 12

Key is stored to nearest server clockwise on the ring
Key1 gets position 2, key2 position 9, and key3 position 12
Load balancing soon becomes an issue

Move servers towards crowded areas
Create multiple virtual nodes

Partition methods
Vertical, horizontal partitioning of tables
Federated model

Partition criteria
Range, hash, list, complex rules
 

key3

key1

key2
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Miscellaneous readings
IBM solidDB RedBook http://www.redbooks.ibm.com/abstracts/sg247887.html

Google : olfit concurrency-control, cache-conscious database, cache-
conscious trie, Dynamo, Cassandra, project Voldemort

Some interesting new products:

SQLFire 
http://pubs.vmware.com/vfabric5/index.jsp?topic=/com.vmware.vfabric.sqlfire.1.0/getting_started/book_intro.html

NuoDB 
http://www.odbms.org/blog/2011/12/re-thinking-relational-database-technology-interview-with-barry-morris-founder-ceo-nuodb/

Blogs:

Daniel Abadi's blog http://dbmsmusings.blogspot.com/ 

and more about CAP http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

DBMS2 blogs http://www.dbms2.com

ODBMS http://www.odbms.org/blog/

http://www.redbooks.ibm.com/abstracts/sg247887.html
http://pubs.vmware.com/vfabric5/index.jsp?topic=/com.vmware.vfabric.sqlfire.1.0/getting_started/book_intro.html
http://www.odbms.org/blog/2011/12/re-thinking-relational-database-technology-interview-with-barry-morris-founder-ceo-nuodb/
http://dbmsmusings.blogspot.com/
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://www.dbms2.com/
http://www.odbms.org/blog/
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