MOOC as Semester-long Entrance Exam

Arto Vihavainen, Matti Luukkainen, Jaakko Kurhila
University of Helsinki

Department of Computer Science
P.O. Box 68 (Gustaf Hallstromin katu 2b)
Fi-00014 University of Helsinki
{ avihavai, mluukkai, kurhila }@cs.helsinki.fi

Originally appeared as: Arto Vihavainen, Matti Luukkainen, and Jaakko Kurhila
(2013): MOOC as semester-long entrance exam. In Proceedings of the 13th annual
ACM SIGITE conference on Information technology education (SIGITE ’13). ACM,
New York, NY, USA, 177-182.

Abstract

MOOCs (massive open online courses) became a hugely popular topic
in both academic and non-academic discussions in 2012. Many of the
offered MOOCs are somewhat “watered-down versions” of the actual
courses given by the MOOC professors at their home universities. At the
University of Helsinki, Department of Computer Science, our MOOC on
introductory programming is exactly the same course as our first program-
ming course on campus. Our MOOC uses the Extreme Apprenticeship
(XA) model for programming education, thus ensuring that students are
proceeding step-by-step in the desired direction. As an additional twist,
we have used our MOOC as an entrance exam to studies in University
of Helsinki. In this paper, we compare the student achievement after one
year of studies between two cohorts: the MOOC intake (n=38) and the
intake that started their studies during the fall (n=68). The results in-
dicate that student achievement is at least as good on the MOOC intake
when compared to the normal intake. An additional benefit is that the
students admitted via MOOC are less likely to drop out from their studies
during their first year.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information Sci-
ence Education Computer Science Education

General Terms
Experimentation

Keywords
entrance exam, admission, first-year experience,
student achievement

1 Introduction

MOOC:s or massive open online courses have been a source for an intense debate
recently in academia, both in administration and among teachers (see e.g. [5]).
MOOCs come in a variety of forms; however, most of the current high-profile
MOOC:s tend to be based on short lectures (8-12 min videos, animations and
screencasts) interspersed with quizzes that are used to keep up the students’
attention to the learning material'. A key issue in MOOCs is to facilitate and
allow massive attendance.

MOOCs have been aptly described as “textbooks on steroids” [6]. In other
words, the students that are successful in MOOCs tend to be autodidacts, to
the extent that e.g. more than 70% of the starting MOOC students already
have an undergraduate or postgraduate degree [13].

Our MOOC at the University of Helsinki Department of Computer Science
differs from typical MOOCs in two key aspects [16]:

e Students start by installing a real-world programming environment and
start to program immediately. All learning materials are built to support
hands-on programming. The emphasis is heavily on a learning process
that allows and requires the learners to produce working solutions. There
are hundreds of programming assignments that the students are expected
to construct during the course.

e By successfully completing the MOOC and participating in an interview,
a student is granted admission to the university to major in Computer
Science.

In Finland, the students choose their major before entering a university,
making the decision often based on a relatively vague idea of the area and
whether the studies suit the student. Using a traditional entrance exam as a
way to select students provides insufficient results? as some of our first-year
students fail to succeed in e.g. the very first required programming courses,
effectively forcing them to seek another study.

The most important part of MOOC as semester-long entrance exam is the
process of learning to program, during which the student sees if CS/IT is the
desired area of study for her. Successfully completing the MOOC provides us
and the student herself the evidence that shows that she has the aptitude for
CS/IT.

In practice, our MOOC is exactly the same course as the entry-level pro-
gramming course in our university. This in itself acts as a validation measure to
see whether a student is able to handle the first and often the most challenging
courses.

LA notable exception are so-called connectivist MOOCs that rely more on facilitated dis-
cussions among networked learners [14, 7, 12].

2 Attempts to pinpoint identifiable markers for aptitude to succeed in CS/IT studies have
yielded non-conclusive results (see e.g. [10, 1, 15, 8]), making it impossible to derive a set of
markers for revising the traditional entrance exam.

In the first 18 months of operation, our MOOC has had 2109 participants,
from which some 200 students have applied for a study position. The MOOC
in programming was first used as an entrance exam in spring 2012. In addition
to the new admission path via MOOC, the traditional admission procedure was
kept intact and also offered to high-school students.

In this paper, we compare the success of students admitted via a MOOC to
the traditional entrance exam-based intake. As our work on using MOOCs as
an entrance exam to university studies has been active only for a short while
and we are still adjusting the level that we require from the MOOC participants
for them being admitted, we have deliberately chosen not to include statistical
analysis to avoid drawing premature conclusions at this stage.

2 Educational system in Finland

Before starting undergraduate higher education in Finland, students typically
have 12 years of schooling. During those 12 years, there is only one standardized
test: the matriculation exam after the 12th grade. Major subject is chosen
before starting the University studies.

Universities can use the results of the matriculation exam to grant study
rights. However, most study disciplines in the universities use the matriculation
exam results only as a small addition to university- and subject-specific entrance
exams, especially in highly desirable subjects. In STEM subjects, the admission
is typically more generous due to the lack of applicants. Admission can be
granted based on either 1) solely the entrance exam, 2) solely the matriculation
exam, or 3) a combination score from entrance exam and matriculation exam.
At the Univ. Helsinki Dept of Computer Science most of the admitted students
have taken the entrance exam (402 applicants in 2013) and received some extra
points based on their matriculation exam. Entrance exams for CS/IT — and
other subjects as well — are classic pen-and-paper tests conducted in a lecture
hall under strict surveillance so that candidates are using only their brains to
answer the exam questions.

As computer science (computing, or any IT-related topic) is not among
the mandatory study subjects in high school in Finland, it is not part of the
matriculation exam 3. Therefore, the entrance exam to CS/IT does not contain
programming per se; instead it contains logical problems and essay writing.
Many of the students who are admitted to computer science do not have an
accurate image of the subject, and many drop out soon after their studies have
started.

Another issue worth noting is that there are no tuition fees for anyone in
Finland (from elementary schools to universities). Instead, the government
supports students by a monthly allowance for living expenses, including rent

3Many schools offer computing as an elective course. However, as there is no national
curriculum for courses in computing, courses often concentrate on the use of computer ap-
plications and computer literacy. The situation in Finland as such resembles many other
countries, e.g. USA [20].

support. As CS/IT is not among the most highly sought-out study subject,
some students apply for CS/IT as a fallback position, and accept the study
right in order to get the student benefits. Instead of studying CS/IT, they use
the extra year for e.g. preparing for an entrance exams to a more preferable
study subject.

In order to alleviate the problem of having an incorrect mental image of
CS/1T studies, we wanted to allow high-school students (esp. grades 10 to 12) in
Finland to experience CS/IT studies. Therefore, we opened up our introductory
programming course (CS1) to the whole country?, targeting especially high-
school students who have no programming education in their schools, or who
seek more advanced courses than their local high school offers®.

The most significant benefit is that the MOOC participants get a more
realistic view of the studies they would be encountering if they took CS/IT as a
major subject, and can themselves evaluate if they are up to it. By completing
the MOOC in programming, the students show us at the department that they
are both competent and persevering enough to study CS/IT. Therefore, it is
only natural to grant those students full study rights for a degree.

3 MOOC as an Entrance Exam

Starting the MOOC is straightforward, as there is no need to provide any other
information than a valid email address when registering. If the student seeks
admission, she is required to enter full personal information. The option for
applying for the study right is available for the first two months.

3.1 Course Content and Pedagogy

The MOOC in programming is content-wise exactly the same as our CS1, which
is taught in Java using an objects-early approach. The course contains 12 weekly
exercise sets, and covers topics typical to any introductory programming course;
assignment, expressions, terminal input and output, basic control structures,
classes, objects, methods, arrays and strings, advanced object oriented features
such as inheritance, interfaces and polymorphism, and familiarizes students with
the most essential features of Java API, exceptions and file I/O°.

During the MOOC, the participants work on over 150 programming exer-
cises, which are further split into over 350 tasks. The students that are applying
for the study rights must correctly solve 80% or more of the weekly tasks in order
to be invited to the interview. The material is handed out online in a book-like

4As is typical for MOOCS, there are no restrictions for participation. Our MOOC is in
Finnish language, so the natural audience is mostly in Finland.

5In case a participant does not want to apply for a study right but would like to have a cer-
tificate of accomplishment, we have facilitated the schools in Finland to provide examinations.
High schools use the certificate for granting school credits.

6The course material and exercises are available at http://mooc.fi and licensed under the
Creative Commons BY-NC-SA -license.

format, with a few screencasts, and its sole purpose is to help the students work
on the exercises; the main working method for the students is programming.

The learning-by-doing orientation comes from using the Extreme Appren-
ticeship (XA) [17] method in the course implementation. XA is based on cog-
nitive apprenticeship [3, 2] and approaches programming as a craft that needs
to be honed continuously. T'wo core values in XA are “practice as long as nec-
essary” and “continuous feedback”. In our earlier XA-based courses [11], the
feedback has been provided by human advisors (teachers). In the MOOC, the
participants program in an industry-standard programming environment that
contains a plugin, which provides help for the students (for additional details,
see [18]).

3.2 Interview and Programming Task

Once the students have worked through the required number of programming
tasks, they are invited to an interview. The interview is a two-part process:
first, the students work on a programming task in a live setting, and after that
are interviewed by two members of the faculty. The programming task is done
in a lab, where a supervisor can help participants with e.g. operating system or
programming environment-related issues, and correct potential misunderstand-
ings regarding the task. The students are free to use any available material
which can be found on the internet, e.g. the course material. However, asking
for help in solving the programming task is not allowed.

The participants had a total of 2 hours for the task, which was as follows
for the interview held during spring 2012.

Programming task: a text analyzer

Create an application that can be used to analyze text file contents. The appli-
cation should contain at least the following features:

e calculating the number of words in a file
e finding and printing the most common word(s) in a file

e finding and printing the longest word in a file

If you wish, you can also create additional features.

The program should be able to analyze several files during a single execution,
and it should also be able to handle large files. You can test your application
for example with Kalevala, which is available at
http://www.gutenberg.org/cache/epub/7000/pg7000.txt

You can decide what sort of a user interface the application provides, how-
ever, we suggest that you build a text-based user interface. Below is an example
of how the application could work:

Enter filename, empty input exits the program
> kalevala. tzt

commands: longest, words, most—common, help
command > words

67443

command > longest

longest word is: kautokengdn-kannoillansa
command > most-common

most common word is: on

>

finished processing kalevala.txt

Enter filename, empty input exits the program
> test.tzxt

commands: longest, words, most-common, help
command > help

commands: longest, words, most-common, help
command > words

7

command >

finished processing test.txt

Enter filename, empty input exits the program
>

Thank you!

After the programming task, the students are interviewed for up to 30 min-
utes by two faculty members. The faculty members discuss the students’ pro-
gram design choices and possible issues with e.g. performance with the student.
During the interview, the faculty also attempts to form an understanding of the
student’s background, and reasons for applying to the department of computer
science. Things that are of interest are e.g. existing programming background,
the student’s vision regarding her life after five years from now, and existing
educational background.

3.3 Selection of Students

During spring 2012, most of the students that did over 80% of the exercises in the
MOOC in programming and applied for study rights also fared well in the actual
interview. Most of the participants were able to complete the programming task
fully, and only a handful of the participants had issues with e.g. program design

or did not have a working program at all. Out of the 52 students that applied
for a study position during spring 2012, 49 study rights were granted. Out of
the 49, 38 students started their studies during fall 2012, and the remaining
11 had varying reasons not to start their studies: they are still in high school,
they postponed the start due to the mandatory military service, or they took
another, preferred study position.

The number of applicants via the traditional path has been in hundreds for
years. Therefore, we are not expecting an uncontrollable need to scale up the
interview process. Currently, the interviews involved with the MOOC entrance
have been conducted by two faculty members without extra resources.

4 Data

Our data contains study records from students that have started their studies
at the Department of Computer Science at the University of Helsinki in August
2012. As some of the students postpone their start due to the military service,
focus on other studies than Computer Science, or have transferred courses from
earlier studies (e.g. open university), we include only students that have ei-
ther attempted or completed the introductory programming course during the
academic year 2012-2013.

The study records cover the period from August 1, 2012 to May 24, 2013.
We examine two separate groups. The first group (MOOC, n=38) contains stu-
dents that have been admitted via the programming MOOC that was organized
during spring 2012. The second group (NORM, n=68) contains students that
were admitted via the traditional path, namely the entrance exam, matricula-
tion exam, or a combination of both. The MOOC group has the introductory
programming and advanced programming courses (a total of 9 ECTS7) included
in the data, as the courses have been added to students’ records when they were
granted study rights, i.e. 1st of August 2012. We offered the MOOC for all stu-
dents that were admitted as well. The second group (NORM) does not include
students, who took the MOOC during the summer (n=15), as their effective
study time would be 3 months longer than the other students in NORM group,
causing additional deviation in the data.

For each study subject (CS/IT, Math, all), we report the number of credits,
number of courses passed, number of courses failed, and grades for each category.
The grades range from 1 (pass) to 5 (excellent), and the grade averages exclude
failed courses. Our university does not force courses to be graded on a bell
curve. On the contrary, student grades are based on the true performance of
the student using an explicit criteria.

When looking at the data, one should keep in mind that the study path
for first-year students is designed for students taking the programming courses
during the first semester. This means that the students that have been admitted
via MOOC have received no benefits from a tailored study path.

"European Credit Transfer and Accumulation System. An academic year corresponds to
60 ECTS, and one ECTS credit point equals 25-30 hours of student work.

CS/IT Courses
MOOC (n=38) NORM (n=68)

Credits
overall 1257 1629
mean 33.08 23.96
std 11.32 15.3
median 32.5 24
Courses passed
overall 346 452
mean 9.11 6.65
std 2.95 4.02
median 9 7
Courses failed
overall 66 157
mean 1.74 2.31
std 1.83 2.37
median 1 2
Grade stats
mean 4.04 3.79
std 1.15 1.2
median 4 4

Table 1: Student performance in CS/IT-related courses.

4.1 CS/IT Courses

Table 1 contains the students’ performance in CS/IT courses. When considering
the number of credits that students have gathered during the study period, the
average is almost identical when we include the knowledge that MOOC students
have taken the introductory programming courses earlier. The standard devia-
tion in the number of credits, which is higher for the NORM group, indicates
that there is more variance within the NORM group. In essence, it indicates
that there are students that end up failing their first programming courses and
do not proceed at all, as well as students, who fare well in their studies.

On average, the students admitted via a MOOC pass more CS/IT courses
than the NORM group, and end up failing less courses. On average, MOOC
students have one fail per five passed courses, while the NORM group has one
fail per three passed courses. The standard deviation in both passed and failed
courses is also smaller for the MOOC group; on average, the MOOC students
fare better than the NORM students. This is also seen in the grade statistics;
although there is not much difference, and the median grade is 4 on a scale from
1 (pass) to 5 (best) for both groups, the average grade is slightly higher for the
MOOC group.

Math Courses
MOOC (n=38) NORM (n=68)

Credits
overall 273 350
mean 7.18 5.15
std 7.49 7.63
median 5 0
Courses passed
overall 46 62
mean 1.12 0.91
std 1.19 1.25
median 1 0
Courses failed
overall 30 50
mean 0.79 0.74
std 0.74 0.66
median 1 1
Grade stats
mean 3.39 3.37
std 1.2 1.45
median 4 4

Table 2: Student performance in mathematics courses.

4.2 Mathematics Courses

In Table 2, we see the students’ performance in mathematics courses. Although
mathematics is not a mandatory minor subject, completing at least 10 ECTS
of mathematics is mandatory. Typically, students enroll in a course called In-
troduction to University Mathematics, which covers the essential mathematics
required for the course on Data Structures (CS2), where e.g. algorithm run-time
analysis is one of the focus areas.

On average, both student groups have completed at least 5 ECTS of math-
ematics during their first year of studies. The MOOC students have taken over
7 ECTS worth of mathematics, while NORM students have 5.15 ECTS. Note,
however, that the standard deviation is high for both groups, which means that
it is very likely that there are students in both groups that have either not
passed any mathematics courses, or have passed more than one mathematics
course.

When looking at the number of passed courses, the median for the MOOC
students is 1, and the median for NORM students is 0. This means that one half
or more of the NORM students have not succeeded in passing any mathematics
courses. This is problematic, as although mathematics is not a formal require-
ment for CS2, it is highly beneficial for students to understand the contents of

All Courses
MOOC (n=38) NORM (n=68)

Credits
overall 1675 2296
mean 44.08 33.76
std 17.58 21.96
median 43 32.5
Courses passed
overall 434 599
mean 11.42 8.81
std 4.24 5.27
median 11 9
Courses failed
overall 101 214
mean 2.66 3.15
std 2.16 2.73
median 2 3
Grade stats
mean 3.94 3.73
std 1.13 1.18
median 4 4

Table 3: Student performance in all courses.

the Introduction to Mathematics course as they take on Data Structures.
The grade averages for both groups are almost alike; the only difference
being the slightly higher standard deviation for the NORM group.

4.3 All Courses

Table 3 contains information on all the courses that the students have taken
during their first year of studies. It contains both the CS/IT courses and the
mathematics courses, and in addition other courses that the students may have
taken. Students are able to choose almost any course from any discipline, so
minor studies vary a lot among the students. Among the students that have
started their studies in 2012, we have students taking courses related to e.g.
politics, economics, literature, psychology, languages and law.

Overall, the students in the MOOC group fare slightly better on average
than the NORM group, but the NORM group has more variation. On average,
the MOOC students have gathered 44.08 ECTS during their first year (35.08 if
programming courses are not included), while the NORM students have gath-
ered 33.76 ECTS. There is a small, but noticeable difference, and the median
is 43 for MOOC (34 if programming courses are not included), and 32.5 for

10

NORMS.

When looking at the number of courses passed, and the number of courses
failed, the MOOC students fare better on average, while the NORM students
have a larger variation. The MOOC students have one fail per four passed
courses, while the NORM students have one fail for slightly less than three
courses. Again, some students perform well, while others perform poorly. The
grade statistics are almost alike, on average the grade of MOOC students is
3.91, while the grade average for NORM students is 3.71.

In addition, when considering the amount of students that have received
less than 10 ECTS during their first two semesters, i.e. have done only the
programming course or less, only one out of the 38 MOOC students did not
complete anything outside the programming courses. When considering the
students in the NORM group, a total of 12 students (17.6%) have gathered
less than 10 ECTS. We must note that we consider only the students that
started their studies and participated in the introductory programming course;
in reality, the number is higher.

5 Discussion and Future Work

Our initial analysis of students that have been admitted via the MOOC indicates
that they are failing less courses and gaining slightly more credits than the
students admitted via the traditional path. However, lots of variance in the
student groups exist, and both of the groups have so-called high performers
and low performers. As we compared the MOOC students to students that
have attempted or succeeded in the introductory programming courses during
the academic year 2012-2013, our initial analysis excluded the admitted students
that did not study at all (e.g. entered military service or started to study another
subject at the university) or chose to start their studies early by participating
in a voluntary MOOC during summer 2012.

At the University of Helsinki, Department of Computer Science, we receive
some 500-600 study applications per year. A majority of the applicants seek
a study right via the entrance exam, while some apply directly using their
matriculation exam score. Typically less than 200 students are admitted, and
of these, on average, less than 130 students accept the study right. Thus, CS/IT
is not the number one choice for the study for many of the applicants. Moreover,
some 20-30 students do not start any CS/IT courses, even if they accept the
study right. When we compare these traditional figures to our first MOOC
intake, in which over 93% of the applicants were accepted and started their
studies accordingly, the MOOC intake is far superior in matching the students
to an appropriate and desired area of study.

81t should be noted that the student should complete 60 ECTS per academic year in order
to graduate according to the model curriculum. In practise, a slow start and advancement of
CS/IT studies (as well as large dropout rate) is a common problem in Finland. Even the most
competent students tend to start working in the IT industry while studying, thus delaying
their graduation.

11

Having the students successfully perform introductory programming courses
already before they start their studies gives the students a head start over
their fellow students. It also acts as a preliminary verification on the students’
motivation to study CS/IT. In addition, the students are not getting stuck to
the “filter” of learning to program that is a cause for challenges for many in
their early studies.

As the awareness of our MOOC as an entrance exam is increasing, we are
currently in the process of increasing the number of students admitted via the
MOOC. In spring 2013, a total of 66 students were admitted. In addition to
improving the intake, we are also working on the students’ first year experiences
so that the MOOC students have more relevant courses to work on. Even though
our MOOC has proven to be beneficial for us, we are not aiming to stack up
on online education: we want all of our students to participate in the academic
community and therefore emphasize the social support during the degree studies,
helping them in the transition from a high school to the university [19].

We see a strong indication that one of the important success factors in first-
year CS/IT studies is foundational programming skills. These skills can be
practised already before the formal start of the degree studies. Universities with
a similar admission system to ours that are facing challenges with student intake
and performance (e.g. students dropping out during first semester, students not
opting for CS/IT-studies) may benefit from a long-term programming exam,
which is administered already during the high-school studies (cf. e.g. [4, 9]).

Acknowledgements

This research is partially funded by the Technological Industries of Finland
Centennial Foundation. We gratefully acknowledge the anonymous reviewers
for their valuable feedback.

References

[1] M. E. Caspersen, K. D. Larsen, and J. Bennedsen. Mental models and
programming aptitude. In ACM SIGCSE Bulletin, volume 39, pages 206—
210. ACM, 2007.

[2] A. Collins, J. Brown, and A. Holum. Cognitive apprenticeship: Making
thinking visible. American Educator, 15(3):6-46, 1991.

[3] A. Collins, J. Brown, and S. Newman. Cognitive apprenticeship: Teach-
ing the crafts of reading, writing, and mathematics. In Knowing learning
and instruction Essays in honor of Robert Glaser, volume Knowing, 1 of
Psychology of Education and Instruction Series, pages 453—494. Lawrence
Erlbaum Associates, 1989.

[4] T. Crick and S. Sentance. Computing at school: stimulating computing
education in the UK. In Proceedings of the 11th Koli Calling International

12

Conference on Computing Education Research, Koli Calling 11, pages 122—
123, New York, NY, USA, 2011. ACM.

J. Daniel. Making sense of MOOCs: Musings in
a maze of myth, paradox and possibility. 2012.
http://www.academicpartnerships.com/docs/default-document-

library /moocs.pdf.

K. Devlin. The future of textbook publishing is wus, 2012.
http://devlinsangle.blogspot.fi/2012/08 /the-future-of-textbook-
publishing-is-us.html.

S. Downes. What is a connectivist MOOC. 2012.
http://www.connectivistmoocs.org/what-is-a-connectivist-mooc/.

G. E. Evans and M. G. Simkin. What best predicts computer proficiency?
Commun. ACM, 32(11):1322-1327, Nov. 1989.

B. Franke, J. Century, M. Lach, C. Wilson, M. Guzdial, G. Chapman,
and O. Astrachan. Expanding access to k-12 computer science education:
research on the landscape of computer science professional development.
In Proceeding of the 44th ACM technical symposium on Computer science
education, SIGCSE ’13, pages 541-542, New York, NY, USA, 2013. ACM.

P. Kinnunen, R. McCartney, L. Murphy, and L. Thomas. Through the
eyes of instructors: a phenomenographic investigation of student success.
In Proceedings of the third international workshop on Computing education
research, ICER 07, pages 61-72, New York, NY, USA, 2007. ACM.

J. Kurhila and A. Vihavainen. Management, structures and tools to scale
up personal advising in large programming courses. In Proceedings of the
2011 conference on Information technology education, SIGITE 11, pages
3-8. ACM, 2011.

A. McAuley, B. Stewart, G. Siemens, and D. Cormier. The MOOC
model for digital practice. 2010. http://davecormier.com/edblog/wp-
content/uploads/MOOC_Final.pdf.

MOOCs@Edinburgh Group. MOOCs @ Edinburgh 2013: Report nr. 1,
2013. http://hdl.handle.net/1842/6683.

G. Siemens. What is the theory that underpins our MOOCs?
2012. http://www.elearnspace.org/blog/2012/06/03 /what-is-the-theory-
that-underpins-our-moocs//.

Simon, S. Fincher, A. Robins, B. Baker, I. Box, Q. Cutts, M. de Raadt,
P. Haden, J. Hamer, M. Hamilton, R. Lister, M. Petre, K. Sutton, D. Tol-
hurst, and J. Tutty. Predictors of success in a first programming course. In
Proceedings of the 8th Australasian Conference on Computing Education
- Volume 52, ACE ’06, pages 189-196, Darlinghurst, Australia, Australia,
2006. Australian Computer Society, Inc.

13

[16]

[17]

[18]

[20]

A. Vihavainen, M. Luukkainen, and J. Kurhila. Multi-faceted support for
MOOC in programming. In Proceedings of the 13th annual conference on
Information technology education, SIGITE ’12, pages 171-176. ACM, 2012.

A. Vihavainen, M. Paksula, and M. Luukkainen. Extreme apprenticeship
method in teaching programming for beginners. In Proceedings of the 42nd
ACM technical symposium on Computer science education, SIGCSE 11,
pages 93-98. ACM, 2011.

A. Vihavainen, T. Vikberg, M. Luukkainen, and M. Pértel. Scaffolding
students’ learning using Test My Code. In Proceedings of the 18th ACM

conference on Innovation and technology in computer science education,
ITiCSE ’13, pages 117-122, New York, NY, USA, 2013. ACM.

P. Wilcox, S. Winn, and M. Fyvie-Gauld. ’It was nothing to do with the
university, it was just the people’: the role of social support in the first-year
experience of higher education. Studies in higher education, 30(6):707-722,
2005.

C. Wilson, L. A. Sudol, C. Stephenson, and M. Stehlik. Running on empty:
The failure to teach k-12 computer science in the digital age. Association
for Computing Machinery. 2010.

14

