582615: Overlay and peer-to-peer Networks, Autumn 2011

Exercise 2
Example solutions

Questions
1. a) Explain onion routing. (3 points)

Onion routing is a method for anonymizing network traffic with the help of overlay technologies. In
onion routing, data packets are recursively encrypted by the sender and source-routed to the final
destination through intermediate nodes called onion routers. Each onion router along the path
removes a layer of encryption from the packet as if peeling an onion, also revealing the next-hop
destination address of the packet, and forwards the packet to the next router along the path. After
passing the last onion router along the chosen path, all the onion-related encryption has been
removed, and the final destination only sees normal TCP/IP traffic.

Onion routing can be implemented using either public key cryptography or symmetric key
cryptography. In the former case, the originator of a packet chooses a path and recursively encrypts
the packet with the public keys of the onion routers along the chosen path. In the latter case the
sender chooses a circuit along which the packets will be transmitted, and performs a symmetric key-
exchange with the onion routers along the circuit before encrypting and sending the packets.

b) Explain how Tor implements onion routing. (3 points)

Tor implements onion routing for TCP streams. A client, who wishes to use the Tor overlay, contacts
an onion proxy using SOCKS protocol. The proxy constructs a circuit on the overlay and requests
one of the onion routers on the circuit to create a normal TCP connection to the actual TCP server.
Data are then forwarded between the client and the server through the proxy and the routers on the
circuit. The details of onion routing are hidden from the client by the proxy.

Each onion router of the Tor overlay network maintains a TLS connection to every other onion
router. Circuits are multiplexed over these connections. TLS encryption is also used by onion
proxies to connect to the overlay. Data are forwarded on the connections in packets of constant size
that are called ““cells”. Onion proxies obtain the list of onion routers from a directory server.
Directory servers are well-known onion routers that track the state of the overlay. They collect
status announcements from other onion routers and generate a combined list of available routers and
their properties.

Tor circuits are constructed incrementally. In order to create a circuit, an onion proxy connects the
first onion router on the path that is has chosen by sending a “create” message. Then the proxy and
the router negotiate a symmetric key for the hop by using Diffie-Hellman key exchange. After this
the proxy adds N more hops to the circuit. The proxy achieves this by iteratively sending a “relay
extend” message to the router that is currently the last one in the circuit. The router reacts to this by
sending a “create” message to the router specified in the parameters of the “relay extend” message
that it received from the proxy.



When a client requests its onion proxy to set up a TCP connection to a TCP server, the proxy sends
a “relay begin” message through the circuit to the onion router on the circuit that the proxy has
chosen to be the exit node for this connection. This opens a stream through the circuit between the
proxy and the exit node. The exit node connects this stream using a normal TCP connection to the
TCP server that the client wanted to connect to. The stream is later used for forwarding the actual
TCP data. Multiple TCP streams can be multiplexed over one single circuit in order to save the
effort of creating new circuits .

2. a) What are the design goals of Freenet 0.7.5? (3 points)
Among the design goals of Freenet 0.7.5 are the following.

1. It should be difficult to determine whether a given node is part of the Freenet network.

2. It should be difficult to remove data.

3. It should be difficult to determine which nodes store which data.

4. The system should be able to cope well with daily churn and even malicious attacks.

5. The privacy of both publishers and readers has to be protected from outsiders and from other
participants.

b) Explain how Freenet 0.7.5 works to reach these goals? (3 points)

1. Freenet 0.7.5 introduces a Darknet mode where each node connects to trusted nodes only. The
trust relationship has to be established manually. The resulting network's topology is more or less
static. The actual IP address of a node is known to its neighbours alone. Consequently, it is difficult
for an outsider, or even non-neighbour nodes, to determine whether a Freenet node is operated at a
given IP address.

2. and 3. Data are encrypted so them cannot be recognized easily without the decryption keys. Not
even a node operator knows for certain which data are hosted at the node. In addition, data are
cached aggressively at multiple locations. Although the key for a piece of data determines locally a
preferred identifier of a node where to store the data, the actual storage location is not strictly
bounded. Besides, the node identifiers are random and hence they are decoupled from the actual IP
addresses.

4. Aggressive caching attempts to keep data available even when some of the nodes are down. The
search for a piece of data uses backtracking. When a dead-end is reached, the search attempts
another route. In the Darknet mode, the IP address of a node is known only to its neighbours. As a
result, it is hard to launch a directed attack against a particular node. The requirement of trust-
relationships between nodes makes it hard for an attacker to infiltrate the network through multiple
identities.

5. The origin of data insertions and retrievals become concealed once the messages are forwarded
through multiple hops. Any reply messages are forwarded by using the reverse path. The originating
node is not contacted directly. In addition, publishers are protected by the fact that the network
stores the data. Data caching helps to protect readers since it limits the span of requests of popular
items. However, the neighbours of a node are able to see the messages that the node sends and
receives.



