Analysis of Concurrent TCP and
Streaming Traffic Over a Wireless Link

Tuomas Kulve

Master’s Thesis
Helsinki, 22nd September 2003

UNIVERSITY OF HELSINKI
Department of Computer Science

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department

Faculty of Science Department of Computer Science
Tekija — Forfattare — Author

Tuomas Kulve
Ty6n nimi — Arbetets titel — Title

Analysis of Concurrent TCP and Streaming Traffic Over a Wireless Link

Oppiaine — Laroamne — Subject

Computer Science

Tydn laji — Arbetets art — Level Aika — Datum — Month and year Sivumaérd — Sidoantal — Number of pages
M.Sc. Thesis October 2003 73 p. + Appx.

Tiivistelmd — Referat — Abstract

In this thesis we analyze the behavior of concurrent TCP connections and UDP
flows over an emulated wireless link with real end hosts. For the emulation of the
link and a last-hop router a real-time software emulator is used. With this software
we are able to model the different link and network element characteristics. We
run series of experiments and analyze the behavior of different TCP enhancements —
Duplicate Selective Acknowledgement (D-SACK), FEifel, Forward RTO-Recovery (F-
RTO), Control Block Interdependence (CBI), Random Early Drop (RED) and Ezplicit
Congestion Notification (ECN) — and compare them to each other. We describe the
main problems, which are the unfair use of the bandwidth and the additional delays
caused by the wireless link. We present a detailed analysis of the results. The CBI
option yielded good results in general and RED algorithm improved the fairness
among the TCP connections. The Eifel and the F-RTO enhancements worked well

with the presence of long delays.

Computing Reviews Classification:
C.2.2 (Network protocols)
C.4 (Performance of Systems)

Avainsanat — Nyckelord — Keywords
Wireless communication, mobile computing, performance, TCP, streaming
Sailytyspaikka — Forvaringsstélle — Where deposited

Library of the Dept. of Computer Science, Report C-2003—

Muita tietoja — Ovriga uppgifter — Additional information

Contents
1 Introduction

2 Wireless Environment
2.1 Wireless Wide Area Networks
2.2 Characteristicsof a GPRS Link

3 Internet Traffic
3.1 Transmission Control Protocol
3.2 TCP Options and Enhancements
3.3 Active Queue Management and Explicit Congestion Notification . .
3.4 Streaming Traffic o o0
3.5 Quality of Service in the Internet

4 Test Arrangement
4.1 Modeling the Target Environment
4.2 Workloads
4.3 Network Characteristics
4.4 Linux TCP Features
4.5 Testsets L
4.6 Metrics. L e

5 Results
5.1 Optimal Link 0
5.1.1 Two TCP Connections Starting at the Same Time
5.1.2 Two TCP Connections, 5 Seconds Between Starts
5.1.3 Two TCP Connections, One UDP Flow
5.2 Lossy Link with Low ARQ Persistency
5.2.1 Two TCP Connections Starting at the Same Time
5.2.2 Two TCP Connections, 5 Seconds Between Starts
5.2.3 Two TCP Connections, One UDP Flow
5.3 Lossy Link with Medium ARQ Persistency
5.4 Lossy Link with High ARQ Persistency

5.5 Summary

6 Conlusion

11
15
18
19

20
20
22
23
25
29
30

33
34
34
39
43
48
48
92
95
98
61
64

68

References 70

Appendices 73
Configuration Parameters 74
A.1 Seawind Parameters 74
A2 Kernel Configuration L oL 78
A.3 Workload Generator Parameters 80
Statistics 81
B.1 Optimal Link o 82
B.1.1 Two TCP Connections Starts at the Same Time 82
B.1.2 Two TCP connections, 5 Seconds Between Starts 90
B.1.3 Two TCP Connections, One UDP Flow 95
B.2 Low ARQ persistency 100
B.2.1 Two TCP Connections Starts at the Same Time 100
B.2.2 Two TCP connections, 5 Seconds Between Starts 107
B.2.3 Two TCP Connections, One UDP Flow 112
B.3 Medium ARQ persistency 117
B.4 High ARQ persistency 125

1 INTRODUCTION 1

1 Introduction

Nowadays laptops and different PDA-devices with wireless network interfaces are
joining the Internet. Mobile devices can access the Internet using for example satel-
lite link, wireless LAN or cellular network, which all have different characteristics.
In this thesis we concentrate on Internet transport protocol behavior over wireless
wide area networks (W-WANs). We try to roughly mimic characteristics of 2.5G and
3G cellular network type links like General Packet Radio Service (GPRS) [BW9S|
and Universal Mobile Telecommunications System (UMTS). GPRS is an extension
to Global System for Mobile Communications (GSM) [MM92]. It uses packet based
communication while GSM is based on circuit switched connections. UMTS is a
third generation communication (3G) system, which is supposed to offer fast wire-
less connections. 3G systems offer both packet data flows and circuit switched
connections to meet the growing need of different types of quality requirements for

interactive and streaming multimedia transfer applications.

The most widely used transport protocol in the Internet, Transmission Con-
trol Protocol (TCP) [Pos81|, was designed for fixed networks and is known to have
suboptimal performance on wireless networks [BPS+96, KRL+97]. The low per-
formance is mainly due to high packet error rate or packets delayed and wrongly
interpreted as lost. TCP slows down the sending rate when a packet loss occurs
because it is normally interpreted as a sign of congestion in the network. In wire-
less networks delays are long and unpredictable and error rate is high. Therefore a
missing packet does not always indicate congestion. In traditional fixed networks

delays are small and quite steady and error rate is close to zero.

Another type of traffic has become more common as the bandwidth of the In-
ternet has grown. Video conferencing or phone calls over IP networks use streaming
traffic in which the data is sent as continuous data stream between the participants

as long as the session lasts.

There are different approaches with number of proposals to enhance the perfor-
mance of TCP in wireless environments [BPS+96]|. Some of them propose changes
to link layer and some are enhancements to TCP protocol itself. In this thesis we
will analyze the influence of concurrent TCP connections and a streaming traffic
flow to each other over a wireless link. We selected certain TCP enhancements

that we expect to improve TCP performance over wireless networks and study their

1 INTRODUCTION 2

effect on TCP performance.

The performance analysis is done by measuring data flows originating from a
fixed network and going through a last-hop router and a W-WAN link to a mobile
host. The last-hop router is the last router in the fixed network before entering the
W-WAN environment. The W-WAN link and a last-hop router are emulated but the
end hosts are real computers with their own operating system and TCP/IP stack.
We use a real-time emulator software called Seawind Network Emulator [KGM+01]
for the emulation. The analysis will focus on TCP performance over a lossy link
with GPRS-like bandwidth. With Seawind software we limit the bandwidth of
the link, drop packets using different kind of distributions for the error rate, and
emulate link layer retransmissions. With Seawind we can also use an active queue
management algorithm in the emulated last-hop router in addition to a traditional
tail-drop algorithm.

End host PCs in the analysis use the real TCP/IP stack implementation of
the Linux operating system. Linux was chosen because its TCP/IP stack supports
many of the new features that are standardized by the Internet engineering task
force (IETF) and therefore supposed to spread to other implementations as well.
Linux is also used in many servers throughout the world and it is freely available?,

which makes it ideal for research purposes.

The rest of the thesis is organized as follows. In section 2 we will introduce main
characteristics of wireless environments. In section 3 we will discuss TCP behavior in
wireless environment and what enhancements exist for improving TCP performance
with various network characteristics. We also introduce shortly streaming data
transfers. Test arrangements are described in section 4. We define what kind of
tests we run and what TCP enhancements we measure. Results of the analysis are

detailed in section 5 and finally a conclusion is given in section 6.

!Sources can be obtained from http://www.kernel.org

2 WIRELESS ENVIRONMENT 3

2 Wireless Environment

There are several different types of wireless environments. For communicating be-
tween countries or continentals there are satellite links with relatively high band-
width and very high latency because of the great distance from a source point to a
destination point through a satellite far in the orbit. For very short ranges, for ex-
ample for networks inside buildings, there are wireless LANs which nowadays have
bandwidth of over 10 Mbit/s and a latency of few milliseconds. The third type of
the wireless environments is a W-WAN in which we will focus on in this study.

2.1 Wireless Wide Area Networks

Nowadays a typical way for a mobile client to connect to Internet is by using GSM
or GRPS. These both belong to W-WAN category in which the range in one cell is

roughly few tens of kilometers.

W-WAN

Mobile !
Client . Base
| Station

' ‘Last-hop Fixed
Client ' Station ' Router Server

Figure 1: Wireless WAN environment

The main components between a fixed server host and a mobile host in a W-
WAN environment are shown in Figure 1. A mobile host is usually used by an end
user who accesses a mail or WWW -server in the Internet by using his phone or a
laptop with GSM/GPRS capabilities. The W-WAN provides for the mobile client
a logical access link to Internet via a last-hop router. The server that the mobile
client communicates with is usually in a fixed wired network, which has much higher
bandwidth and lower delays than the wireless link. Therefore the logical wireless

link between a last-hop router and a mobile client is usually a severe bottleneck

2 WIRELESS ENVIRONMENT 4

with the current bandwidths of W-WAN connections.

2.2 Characteristics of a GPRS Link

GPRS is a mobile packet radio communication system which makes use of the same
radio architecture as GSM. GSM uses physical frequency channels, each divided into
eight time slots. In GSM one user consumes one time slot and therefore there can be
up to eight users in one channel. The bandwidth of a GPRS user can be dynamically
modified by using multiple time slots simultaneously. This multislotting capability
allows the GPRS network to give more bandwidth to a single GPRS user when there
is bandwidth available and to level the bandwidth among the users when the overall

requirement for bandwidth increases or new active GPRS users join the network.

Using the very popular GSM for data connections the available bandwidth is 9.6
kbit /s with basic GSM data service. It is sufficient only for reading email or for very
basic WWW-browsing. With high speed circuit switched data (HSCSD), which is
an enhancement to GSM data services, multiple data channels can be given to a
single user and this way higher speeds are achievable. The downside of the HSCSD
is that the data channels are reserved for one terminal even if they are not used all
the time. In GPRS networks the data channels can be reserved on demand and the
theoretical maximum bandwidth is 171.2 kbit/s, although the maximum bandwidth
in practice is around 40kbit /s nowadays and is sufficient for WWW-surfing and very
basic streaming. With third generation systems like UMTS the bandwidth grows up
to hundreds of kilobits per second or even to megabits per second allowing streaming

multimedia transfers such as video calls and conferences and network radios.

Scheme | Data rate (kbit/s)
CS-1 9.05
CS-2 134
CS-3 15.6
CS-4 214

Table 1: GPRS channel protection schemes and data rates [BW98|

GPRS data is transmitted over data channels and is protected by one of four

possible channel protection schemes described in Table 1. These schemes can be

2 WIRELESS ENVIRONMENT)

chosen according to current channel quality. The CS-1 scheme provides the best
forward error correction and the CS-4 provides the lowest forward error correction
capability. By allocating multiple data channels for one terminal, data rates are
multiplied. For example by using two CS-2 scheme channels, a data rate of 26.8
kbit/s can be achieved.

GPRS protocol layers are shown in Figure 2. The physical layer is responsi-
ble for forward error correction and detection. The radio link control / medium
access control (RLC/MAC) layer arbitrates the access to the shared medium and
performs the QoS control. The logical link control (LLC) provides a logical link for
upper levels. The subnetwork-dependent convergence (SNDC) layer maps network-
level protocol characteristics onto the underlying logical link control. Ciphering,

segmentation and compression are done at this level.

Transport & ‘ RTP/UDP/IP ‘ DATA ‘
Network Layers | |

SNDC ‘ H Information Field

LLC ‘ FH LLC Information Field FCS ‘

| |
| |
RLC/MAC RLC/MAC block k ————— + RLC/MAC block
I Tes ~
! S~
! -

Physical
Link Layer

Burst ‘ Burst ‘ Burst ‘ Burst ‘

Figure 2: GPRS data flow

A GPRS network can efficiently hide packet losses from upper protocol layers by
providing automatic repeat requests (ARQ) retransmissions. ARQ is a mechanism
to retransmit a missing data segment and there are different ways to implement it
like Stop-And-Wait ARQ and Sliding- Window ARQ [FWO02]. ARQ retransmissions
on link layer can increase the data throughput because link layer acknowledgements
over a single link can be faster compared to for example TCP acknowledgements
over longer end-to-end path and the sender detects the missing data sooner. An-
other reason is data frames used in link layer. They are often smaller than for
example upper level TCP packets and retransmitting a single frame is faster than

retransmitting all frames corresponding to a TCP segment.

2 WIRELESS ENVIRONMENT 6

The number of error related packet losses on wireless link detected by upper
layers depends heavily on the ARQ persistency. ARQ persistency tells how many
times or how long the missing frame is retransmitted. With low ARQ persistency the
missing segment can be retransmitted for example once and with high persistency
several times. If the ARQ persistency is very high and the link layer provides in-
order delivery the upper layers can experience very long periods of time without
receiving any data as the link layer is retransmitting a lost packet several times and
queuing the rest of the incoming packets. This kind of phenomenon can happen
when a mobile client is momentarily totally without a network coverage or the

coverage is very poor.

3 INTERNET TRAFFIC 7

3 Internet Traffic

In this section we discuss data transfers based on TCP and the behavior and prob-
lems of those over wireless links. Streaming data transfer is also discussed shortly.
We explain what enhancements there are to improve TCP performance in general
and especially with wireless links. The behavior of active queue management and

quality of service algorithms are described.

3.1 Transmission Control Protocol

TCP [Pos81] was designed in early 80’s for wired connections. While the Internet
grew, congestion became a problem. Packet losses occurred mainly because of con-
gestion when buffers of a congested router overflowed. Because the bit error rate
is very low, packets corrupt rarely in a wired network. Therefore interpreting a
packet loss as a sign of congestion was the basis for the congestion control algo-
rithms [Jac88, APS99|, slow start and congestion avoidance, which were designed
to prevent congestion. To efficiently recover from single packet losses, two new

algorithms, fast retransmit and fast recovery, were designed also.

Initial window, the initial size of the congestion window (cwnd), was originally
one segment, but RFC 2581 [APS99| allows to use two segments. Although this
part of the RFC is now updated [AFP02], many TCP implementations still use one
or two segments. The cwnd tells how many packets can be transmitted without
being acknowledged. In the beginning of a connection a TCP sender is in slow
start phase and increases its cwnd by one segment for each new acknowledgement
(ACK), thus sending two new segments? per ACK and increasing transmission rate
rapidly. At some point the sender is sending data faster than a bottleneck router on
the path can forward and therefore the router buffer becomes full. When a router
buffer is full and a new packet arrives, it must drop the packet. When it can send
packets onward, some new packets fit again in the buffer until it is full again. This
leads to a behavior in which the router drops one packet out of every few packets.
The sender will continue overflowing the router buffer until it detects a packet loss
which is interpreted as congestion. This phenomenon is very common with TCP

connections and is called slow start overshoot.

2Three, if delayed ACKs are used.

3 INTERNET TRAFFIC 8

When the receiver receives an out-of-order packet, it immediately sends a du-
plicate acknowledgement (dupack), which is an ACK that acknowledges the same
sequence number as the previous ACK. A TCP sender assumes a segment is lost
after receiving three consecutive dupacks and interprets it as a sign of congestion.
The sender retransmits the missing segment, slows down by setting the slow-start
threshold (ssthresh) to one half of the number of packets outstanding in the net-
work and setting cwnd to ssthresh plus the three segments that left the network
according to the three received dupacks. This is called the fast retransmit. The
fast recovery algorithm is followed after the fast retransmit. In the fast recovery the
rest of possible lost segments are retransmitted. The standard variant of the fast
recovery algorithm exits when the first ACK advancing the window arrives. This,
however, is inefficient when more than one segment are lost in the same window,
which is a common case with slow start overshoot. Another fast recovery variant,
NewReno [FH99), exits only after all packets in the last window have been acknowl-
edged. Another significant improvement in NewReno variant is that it interprets
an ACK that acknowledges some but not all of the packets transmitted before the
fast retransmit as an indication of a lost packet and retransmits the packet that

triggered this acknowledgement.

After the cwnd reaches ssthresh and also always after fast recovery, a congestion
avoidance takes place. In this phase sender increases cwnd by one segment per
each round trip time (RTT) therefore slowly increasing the transmission rate. This
continues till the end of the connection or until a segment loss is detected.

An example of slow start overshoot is shown in Figure 3. Data packets are
marked as seqlow which tells the lower sequence number of the segment. The buffer
overflows are shown as a cross over data packets. The sender detects congestion
roughly at time 10 seconds, which triggers fast retransmit and fast recovery. At
time 15 seconds the slow start overshoot is recovered and the sender continues

sending data in congestion avoidance.

A TCP sender maintains a timer which expires if an acknowledgement to a
TCP segment is not received in certain time period after the segment is sent. This
timer is called retransmission timeout (RTQO). This ensures that the TCP sender
can retransmit a packet if the three dupacks sent by the receiver are not received
by the sender for some reason or all the packets sent are lost. When RTO expires

sender assumes the packet is lost due to congestion in the network and slows down

3 INTERNET TRAFFIC 9

KB
52,0000 ¢ "10.0.0.202 seqiow

48.0000 J/ /
46.0000 f.'/i”
44,0000 :
42.0000 5 / :
40.0000 £
38.0000 y /‘ :
36,0000 ;r jl/
34.0000 ; 7 z
32.0000 =
30.0000 ¢ :
28.0000 X J°
26.0000 ! ‘
24.0000 -
22.000 a

20,0000 e
60000 80000 10.0000 120000 140000 16.0000

50.0000

Secs

Figure 3: Slow start overshoot

by setting cwnd to one segment and ssthresh to half of the number of outstanding
segments and starts sending data in slow start. Because of the smaller ssthresh the
congestion avoidance will start sooner next time and the transmission rate increases
slower than before.

To calculate an RTO timer according to RFC 2998 [PA00] a TCP sender has
to maintain two state variables, smoothed round-trip time (SRTT) and round-trip
time variation (RTTVAR). Every time a round-trip time measurement (R) is made,
the SRTT value is updated by summing the old SRTT value with a high weight
and the new measurement with a low weight. The RTT variation is calculated
similarly by summing the old RTTVAR with high weight and the new variation
with a low weight. The exact equations for the calculations are as follows and must

be calculated in the given order.

RTTV AR + (1 —beta) - RTTV AR + beta - | SRTT — R|
SRTT « (1 — alpha) - SRTT + alpha - R

1 1
8 4
updating these variables the RTO can be calculated as well. It is calculated by
summing the SRTT and the RTTVAR multiplied by 4 according to the equation

where the recommended values for alpha and beta are ; and 7, respectively. After

3 INTERNET TRAFFIC 10

RTO « SRTT + maz (G, K - RTTV AR)

where K is 4 and the G is clock granularity of the TCP sender. If the calculated

RTO value is below one second it should be set to one second.

Traditional TCP has suboptimal performance over wireless links because of the
high bit error rate and highly variable and long delays. Because of the high bit
error rate many TCP segments are lost and as the TCP sender interprets the losses
as a sign of congestion, it slows down and retransmits the lost segment. If the
sender knew that the packet was lost because of an error on the lower protocol layer
and not because of congestion, it could just retransmit the packet and continue
sending new data in congestion avoidance without slowing down. The long delays
can cause a TCP sender’s RTO to expire. In W-WAN environment long delays can
occur without any data loss seen by upper protocol layers as described in section
2. In this case the RTO is spurious, the delayed data segments will be eventually
received and acknowledged. A spurious RTO decreases the performance because of
two reasons. First, the sender will have to retransmit in slow start all data after
and including the segment that triggered the RTO. Secondly, it will lower the value
of sstresh and cwnd. In the case of real RTO these actions are required, but in the
case of spurious RTO at least the retransmissions are needless, but some slowdown

may be justified as there was a some sort of block out.

There has been a lot of research to improve the performance of TCP over wire-
less links with different approaches. These approaches can be divided roughly to
three categories [BPS+96]: split connections, link layer solutions and end-to-end

solutions.

Split connections hide the wireless link from the sender by terminating the TCP
connection before the wireless link. The second connection over the wireless link
can use different protocol or algorithms compared to first part of the connection to
perform well over the lossy link. This approach can however violate the idea of TCP
being a reliable end-to-end protocol. Link layer solutions try to hide link-related
losses from higher layers. This can be achieved for example by error correction algo-
rithms or link layer retransmissions and these algorithms can be tuned for specific
links to get optimal results. TCP sender is however prone to suffer from highly
variable delays because of link layer retransmits. In end-to-end approach the TCP

sender tries to handle variable delays and packet losses by using different algorithms.

3 INTERNET TRAFFIC 11

In next section we introduce several algorithms and TCP enhancements belonging

to this category.

3.2 TCP Options and Enhancements

We will introduce several TCP options and algorithms most of which we expect to
be useful in wireless environment. Many of the introduced options and their values
are proposed in RFC 3481: “TCP over Second (2.5G) and Third (3G) Generation
Wireless Networks” [IML+02].

Increased initial window can be up to four segments according to RFC 3390
|AFP02|, which specifies the following equation for the initial window

min(4 x MSS, mazx(2 x MSS,4380bytes))

where MSS is maximum segment size of the TCP packet. This equation results
to an initial window of two to four segments, which is recommended for 2.5G
and 3G networks by the RFC 3481. Size of the initial window is important
with high latency links and especially effective for short transmissions with
a few TCP segments’ worth of data. For the bulk transfers the gain is less

significant.

Control Block Interdependence (CBI) [Tou97] is a mechanism to store current
values for certain TCP variables concerning a connection to a specific host and
use these values to determine initial values for a new connection to that same
host.

After a connection has successfully closed, values for the selected variables of
the connection are saved for future connections. These variables are SRTT,
RTT variance, cwnd, ssthresh, and reordering. Reordering metric is the
maximal distance which a packet was displaced in packet stream. When a new
connection to that same host is opened these variables are used to determine

initial values for the new connection.

Because the ssthresh is saved for future connections, the slow start overshoot

can be avoided after the first connection to that same host as shown in Figure

3 INTERNET TRAFFIC

12

KB

0.0.0.207 window

18.0000

16.0000

‘ola,

14.0000

12.0000

10.0000

8.0000

6.0000

4.0000

2.0000

0.0000

-2.0000

-4.0000

90.0000

92.0000

94.0000

©~10.0.0.202 data

10.0.0.201 ack

Secs

96.0000

Figure 4: Initial window of 4 packets and absence of slow start overshoot with CBI

option

4. This leads to a better utilization of the link since slow recovery from the

overshoot is not needed.

Storing the values of SRTT and RTT variance leads to better calculation of
the RTO in the beginning of the connection. Without these values, the first
RTT sample for the RTO calculation is got from SYN - SYNACK pair and

there are not enough RTT samples to have a proper RTT variance value.

Ratehalving [MSM+99] is a different way to decrease cwnd during the fast re-
covery. With the reqular fast recovery [APS99|, the ssthresh is halved and

the cwnd should be set to ssthresh plus three segments. With ratehalving

the cwnd is not set immediately but decreased by one segment for every other

incoming ACK during the fast recovery, until the cwnd has the right value.

Limited transmit [ABFO01] allows a sender to send a new data segment for each

of the first two dupacks if the receiver’s advertised window allows and if the

amount of outstanding data would remain less than or equal to the congestion

window plus two segments. This is useful for small amounts of data to be

transmitted or with small congestion windows that are not likely to generate

the three duplicate ACKs required to trigger fast retransmit.

3 INTERNET TRAFFIC 13

Delayed ACKs [Bra89| algorithm delays sending of ACKs. An ACK packet is
delayed at most 500 ms and if another data packet arrives within that period,
they are both ACKed with a single cumulative ACK. This behavior leads to
a lower sending rate of ACK packets since in normal case only every other
data segment is acknowledged. Althought the maximum delay allowed by the
standard is 500 ms, many TCP implementations use a maximum delay of 200

ms.

If a delay between two data packets is always more than the mentioned thresh-
old, the receiver will always wait the maximum time and only after that will it
send the ACK. Therefore the maximum allowed size of a data segment should
not be too large on slow links, because otherwise the transmission delay of a
data packet is larger than the threshold and this would result in acknowledging
every data segment and increase the RTT needlessly.

Quick acknowledgements [MDK+00] algorithm is used in the beginning of a
TCP connection to disable delayed ACKs since the delayed ACKs needlessly
slow down the slow start phase by acknowledging only every other segment.
With quick acknowledgements every packet is ACKed and therefore the sender

increases cwnd faster.

Timestamps option enables use of time stamps in TCP header. A TCP sender
puts a time stamp in the TCP header and the receiver echoes the same time
stamp back to the sender in the acknowledgement. The timestamps option can
be used to calculate RTT also from retransmissions and for detecting spurious
retransmissions. The timestamps option is recommended for 2.5G and 3G
networks by the RFC 3481 [IML+02]| although it introduces additional 12
bytes overhead per packet and current TCP header compression algorithms

do not support it.

TCP header compression [Jac90] compresses TCP /IP headers and is very useful
on low bandwidth links. It does not, however, perform well when packet losses
are encountered or different TCP options, like timestamps or SACK, are in
use. RFC 3481 [IML+02]| recommends that the header compression should be
disabled on 2.5G and 3G networks.

Selective acknowledgement (SACK) [MMF+96] was designed to compensate
the high error rate. Traditionally TCP uses cumulative ACKs and the receiver

3 INTERNET TRAFFIC 14

can therefore inform the sender only about the last segment of the continu-
ous data block. With cumulative ACKs the sender can retransmit only one
segment per RTT which is inefficient if there are several segment losses in the
same TCP window. Using the SACK option the receiver can inform in one
ACK packet up to four blocks® of data it has received properly and the sender

can send the missing parts immediately, if cwnd allows.

Duplicate SACK (D-SACK) [FMMO00| makes it possible for a receiver to inform
the sender that a duplicate packet was received. D-SACK uses the first SACK
block to inform which data segment triggered this ACK. The rest of the SACK
blocks specify in a normal manner the continuous data blocks that the receiver
has received. D-SACK can be used to detect spurious retransmissions as the

receiver informs the sender about every duplicate segment it has received
[BAO3].

Forward RTO-recovery (F-RTO) [SKR02] is an alternative algorithm for the
traditional RTO recovery. F-RTO was designed to avoid unnecessary retrans-
missions after a longer delay that causes an RTO to expire but when no
packets are lost. These spurious RTOs can be common in wireless environ-
ments, because link layer retransmissions often hide the actual errors and
higher protocol layers experience only longer delays. F-RTO efficiently avoids
unnecessary retransmissions after a spurious RTO and it performs equally to
the traditional RTO recovery when there are real packet losses. Main F-RTO
behavior is the following:

e After an RTO the sender retransmits the packet that triggered the RTO
and sets ssthresh to one half of the number of packets outstanding in

the network.

e If the first ACK after the RTO advances the window, sender sends two

new packets and sets cwnd to ssthresh.

e If also the second ACK advances the window, the RTO was most likely
spurious and the sender continues sending new data in congestion avoid-

ance.

e If either one of the ACKs was duplicate ACK, the sender continues re-

transmissions similarly to the regular RTO recovery algorithm.

3Three if timestamps option is in use

3 INTERNET TRAFFIC 15

If the retransmission is detected as spurious, the sender continues sending
data in congestion avoidance but because of the modifications to ssthresh
and cwnd it has halved the transmission rate. F-RTO does not need any TCP
options or bits in the header for distinguishing spurious retransmissions and

the support for it is required only in the sending side of the TCP connection.

The Eifel Algorithm [LKO00] is basically a quite simple algorithm to avoid spu-
rious retransmissions. It uses TCP timestamps option to distinguish whether
the first incoming ACK after a retransmission is acknowledgement to the orig-
inal packet or to the retransmitted packet. If the retransmission is detected

as spurious by Eifel, modifications to cwnd and ssthresh can be undone.

3.3 Active Queue Management and Explicit Congestion No-

tification

A router has a certain amount of buffer space where packets will be stored if they
can not be forwarded immediately. If a router is between a faster link and a slower
link these buffers will overflow from time to time as TCP senders try to increase
the sending rate. The traditional router queue overflow policy is tail-drop, packets
are put to the router queue until it is full. After this new packets are dropped.
The tail-drop policy has two important drawbacks [BCC+98]. One or a few flows
can fill up the router queue and thus monopolize it because other flows do not have
space in the queue for their packets. This phenomenon is called a lock-out and is
often the result of synchronization or other timing effects. Another problem is the
filled router queue. Because a sender will slow down only after it has detected the
congestion, the router queue has been full for a relatively long period by that time.
As the packets often arrive at routers in bursts the full or almost full router queue
will result to several packet drops. A sender experiences also longer queuing delays
because of the heavily utilized router queue.

Active queue management (AQM) mechanism drops incoming packets at a router
before the buffer becomes full. This way an AQM capable router can choose when
and how many packets to drop and therefore keep the queue utilization at a low
level. There are several advantages of the low router queue utilization. The number
of dropped packets can be reduced as there is space for short bursts, a sender

experiences lower queuing delays and the lock-out behaviour can be avoided. The

3 INTERNET TRAFFIC 16

fairness among concurrent separate flows should also be better as all flows have

space in the router queue.

The most widely used AQM mechanism, Random Early Detection (RED) [FJ93],
is an algorithm for a router to signal congestion when its queue starts to fill. There
are different possibilities to provide the congestion signal but a common method is
just to drop the packet. If TCP protocol is used the sender will slow down when it
experiences a packet drop since a packet drop is considered, correctly in this case,

as a congestion notification.

The RED algorithm calculates the average queue size of a router using a low-
pass filter with exponential weighted moving average. If the average queue size avg
is less than the minimum threshold ming,, a packet is not dropped and if it is more
than the maximum threshold maxy, a packet is dropped. Between the thresholds a

packet is dropped with probability p,. The algorithm in general is the following:

for each packet arrival
calculate the average queue size avg
if min_th <= avg < max_th
calculate probability p_a
with probability p_a:
drop the arriving packet
else if max_th <= avg

drop the arriving packet

and the average queue size is calculated as follows:

if the queue is nonempty
avg < (1 —wy,) - avg + w, - q
else
m < f (time — q_time)
avg < (q-wy)™ - avg

where g _time is start of the queue idle time, time is current time, function f(t)
grows linearly as time t grows, w, is queue weight and ¢ is current queue size.
The marking probability p, increases while the average queue size increases. p, is
calculated according to following equations:

3 INTERNET TRAFFIC 17

avg — ming,

Dp < MaTp - :
MaATg — MINgy,

Py
(— e —
Pa " T count - Db

where maz, is the maximum probability. p, is the probability that increases from
zero to max, as the average queue size increases toward to mawxs,. count is the
number of packets sent since the last drop. Therefore the probability p, increases
with the average queue size. The count value also increases marking probability to
avoid biases and global synchronization and to mark packets frequently enough to
control the average queue size.

To avoid using a drop alone as a congestion signal, the explicit congestion no-
tification (ECN) [RFBO01] was specified. With active queue management and ECN
the router can actually mark the packets instead of dropping them. This way the
sender may be able to slow down before router buffers overflow and therefore re-
transmissions can be avoided. ECN uses two bit ECN-field in the IP header which
was originally part of the Type of Service (TOS) field [IP81] and two originally re-
served bits from the TCP header. ECN requires support from both the sending and
the receiving end and also from routers between them. The four ECN bits are used

as follows

e Sender sets ECN-capable transport (ECT) flag in the IP header to inform
routers that ECN is understood.

e When a congested router’s RED algorithm chooses a packet for marking the
router marks the packet by setting the congestion experienced (CE) flag in the
IP header.

e The TCP receiver that receives the congestion experienced mark, sets ECN
congestion echo (ECE) flag in the TCP header back to the TCP sender.

e When a TCP sender receives a congestion echo mark it will slow down by
reducing the cwnd and ssthresh. The sender will also set congestion window
reduced (CWR) flag in the next packet’s TCP header after receiving the ECE
flag to inform the it has reacted to the CWR-flag.

3 INTERNET TRAFFIC 18

3.4 Streaming Traffic

Besides the bulk data transfer, where the only important metric for the user is
the finishing time, there are also other types of data transfers, like streaming data
transfer. It is a transfer of continuous stream of data, and the data is consumed
more or less immediately when it arrives and then discarded. The data can be for

example endless stream of a radio broadcast or a phone call.

Streaming transfers require steady flow of bits, otherwise video or audio will
not be fluent. Even the smallest breaks in audio stream are annoying to human
ear. For a video stream we are a bit more tolerant and the missing packets can be
compensated with more unnoticeable methods. When downloading for example a
movie trailer the stream can be buffered for a few seconds and a wider jitter can
be tolerated and short breaks avoided with retransmissions. But with interactive

streams buffering is impossible because of the high latency.

Real-time transport protocol (RTP) [SCF+-96| provides end-to-end network trans-
port functions suitable for applications transmitting real-time data, such as audio,
video or simulation data, over multicast or unicast network services. It is often
run over user datagram protocol (UDP) [Pos80| although it is not tied to it. Use
of reliable flow like TCP is unnecessary for data with real time requirements, for
example interactive streaming, because there is no time to wait for lost and re-
transmitted packets. Because of the possibly non-reliable transport layer, video
and audio specifications are usually designed to tolerate lost packets using encoding
methods that minimize the effect of missing data. A lot of work has been done to
reduce bandwidth demands of streaming video. ITU-T specifies H.263 [H263] which
is a low-bit-rate video compression algorithm and ISO/IEC has specified MPEG-
4 [MPEG4]. Compression rates as high as 80% can be achieved using algorithms

based on these specifications.

Streaming transfers are established and controlled with for example real time
streaming protocol (RTSP) [SRL98|. RTSP does not deliver the data itself, instead
it acts like “network remote control”. The data is delivered using for example RTP
but the operation of RTSP does not depend on the transport mechanism used to

carry continuous media.

RTP control protocol (RTCP) [SCF+96| specifies report packets exchanged be-

3 INTERNET TRAFFIC 19

tween sources and destinations. Reports contain statistics such as the number of
packets sent, number of packets lost, and inter-arrival jitter. RTCP packets are
sent from each of the receivers to the sender and therefore the RTCP adjusts the
interval between reports based on the number of participating receivers. Typically
the limit for the RT'CP bandwidth is 5% of the session bandwidth, divided between
the sender reports (25%) and the receiver reports (75%).

3.5 Quality of Service in the Internet

Original purpose of the Internet was to deliver information using email or copying
files among the few machines that were connected in those days. Speed of the
delivery was not important and the only service provided was best effort service; the
network does its best to deliver the data packets, but no guarantees can be given for
example about the delay. With interactive services like WWW the speed increases
usability, but high speed is still not critical. High speed and stable connections have
become necessary along with different types of streaming media. For a fluent stream
of audio or video the data flow must not experience congestion. This can not be
easily guaranteed in today’s Internet. IPv4 has always had type-of-service field in
the header but it has not been used widely. Many companies do business in the
Internet and are willing to pay for use of a good-quality network. There are many

other reasons as well why different Quality of Service (QoS) types are required.

Integrated services (IntServ) [Wro98| with for example resource reservation pro-
tocol (RSVP) [BZB+98] is one solution for QoS architecture. IntServ has, however,
some problems which are the reason why it did not succeed well. It requires a lot
from routers and the amount of state information increases proportionally with the
number of flows and does not therefore scale well. It is also too complicated. Differ-
entiated services (DiffServ) [BBC98| was designed to outcome these problems. With
DiffServ packets are classified by certain rules when they enter a DiffServ capable
network and then treated according to that class. These different classes can for
example specify an upper limit for the transmission rate and allow certain amount

of burstiness for the traffic.

4 TEST ARRANGEMENT 20

4 Test Arrangement

In this section we introduce the methods used in performance study, including
emulation of the target environment. We describe the workload and the network
characteristics used in the measurements. The difference between the Linux TCP
used and the normal behavior according to various RFCs is explained. Finally test

sets and metrics are listed.

4.1 Modeling the Target Environment

The target environment consists of a mobile host which is connected to a fixed
host through a last-hop router. We use Seawind [KGM+01] to emulate a W-WAN
environment. The target environment is shown in the upper section of the Figure 5
and the lower section describes our emulation in Seawind. The upper section shows
a server in the fast fixed network sending data using multiple flows to a mobile host
through a last-hop router and slow wireless link with variable delays and packet
losses. In the lower section the main component is the emulation host. It has an
input queue which emulates a router queue and link send and receive buffers (LSB
and LRB, respectively) which emulates the link layer buffers. Delays and packet
losses are done between the send and receive buffers.

The hardware consists of three PCs; one for mobile host, one for fixed host
and one for the host that does the actual emulation of the wireless link and a
last-hop router; the emulation host. These three PCs are connected together using
private LAN with 100 Mbit/s of bandwidth. Emulation host is connected also to
the Computer Science department’s 100 Mbit/s LAN. The fourth PC is used just

like a remote terminal to run the graphical user interface remotely.

Last-hop router has typically one router queue per outbound link and therefore
mobile hosts will not interfere with each other. Router queue size is not relevant for
uplink because the much faster fixed link should always be ready to deliver data from
the last-hop router. In the emulation environment the router queue corresponds to

input queue of the Seawind emulation host.

Link send and receive buffers are needed for the link layer to provide reliable

transmission to upper level protocols. If a packet corrupts or does not arrive to

4 TEST ARRANGEMENT 21

Downlink

—
-

| TARGET ENVIRONMENT

Uplink
Mobile host Slow wireless Last—hop router Fast fixed Fixed host
link link -
Flow l<_ Flow 1
_— e
Flow n~<+—— Varlable Constant — Flown
deldys delay,
pkt losses error free
Link buffers
| EMULATION ENVIRONMENT
Mobile host Emulation host Fixed host
LRB delays LSB input queue
----|{D 00 000 - - F - - -
receiver LSB delays LRB sender

e - ---- |- - -

J | Private 100Mbps LAN
: CS dept. \I

CLAN (

. 100Mbps GUI

Figure 5: Target and emulation environments

destination for some other reason the link layer can retransmit the missing packet.
While the packet is being retransmitted the other already arrived data packets,
which should be delivered after the missing packet, wait at the link receive buffer.
When the missing packet arrives to the destination, all the pending packets are

delivered onward at once.

Operating system in each of the computers is Linux. Sending and receiving
computers have workload generator processes (WLGs) which create and receive the
data. The end hosts use the real TCP/IP stack of the Linux kernel. The kernel
used in our tests was the newest at the moment, 2.4.20, with some modifications
[ITP]. With these modification it is possible to disable or tune some TCP features.

Because Seawind is a real-time emulator, there should not be any other CPU
or network intensive processes running on the emulation host. Detailed TCP dump
logs are gathered from each of the hosts and a log is created in the emulation host
which tells every event that a packet was affected by. It is very important that the
delays created by the emulation host are accurate and therefore both the requested
and the actual delay are logged. If the actual delay exceeds the requested delay by
more than 10 ms a warning is logged and the effect of the oversleep can be easily

detected and test run can be discarded if necessary.

4 TEST ARRANGEMENT 22

4.2 Workloads

Our workloads consist of different types of data transfers listed in Table 2. All data
flows are directed downlink from the fixed host to the mobile host. There were 10

replications for the baseline TCP with optimal link and 20 for rest of the test cases.

Workload Data amount (bytes)

2x TCP 2x 188640

2x TCP, 5sec between | 2x 188640

2x TCP + 1x UDP 2x 188640 + 32000 bits/s

Table 2: Workload types

The test runs contain the following three different workloads:

2 TCP connections. Both connections start at the same time.

2 TCP connections, 5 second delay between start times. The first connec-
tion starts at time 0 seconds and the second connection at time 5 seconds.

2 TCP connections and 1 UDP flow. All data flows start at time 0 seconds.
The length of UDP transmissions are 180 seconds which is enough for the
TCP connections to finish before the UDP flow.

The first two workloads are pure TCP workloads with different starting times
and one workload contains one additional UDP flow. With the first workload we
can analyze how two TCP connections react to each other when they are started
at the same time. The optimal case would be no reaction at all, they should both
proceed similarly taking half of the bandwidth. In the second case the first TCP
sender has already increased its sending rate and therefore the second TCP sender
can more easily experience the lock-out situation. When a UDP flow is running in
addition to two TCP data flows the available bandwidth for TCP connections is
lower as the UDP requires its own share of it and the router queue can be more

utilized.

In our tests the total amount of data transferred by TCP is always 377280

bytes. With two concurrent connections both connections will transfer 188640 bytes

4 TEST ARRANGEMENT 23

in 360 full size packets when the TCP timestamps option is used. Without the
timestamps option the amount of packets is 352 of which the last one is not full
sized. The amount of data was chosen so that it can be divided between one and two
connections and it should be large enough for different TCP data transfer behaviors

to emerge.

The UDP flow is a constant bit rate (CBR) data flow consisting of packets with
512 bytes of payload. The constant payload bit rate is 32000 bit /s, so a UDP packet
is sent every 128 ms. The tcptrace [Ost] program used to calculate the throughput
in analysis includes UDP headers in results. IP payload, including the UDP header,
is 520 bytes and the CBR is 32500 bit/s (4062.5 bytes/s) with the UDP headers.

The traffic generator used in the measurements for both TCP and UDP traffic is
Jugi’s Traffic Generator (JTG) [Man] which is based on Test TCP [PS98] program.
Using JTG we can specify for example the buffer size used when writing to TCP
socket. By selecting a proper buffer size and the amount of data according to link
characteristics we can be ensured that the TCP packets sent to the network are
always the same size. For UDP flows we can specify for example constant bitrate

and the packet size.

4.3 Network Characteristics

Link and network characteristics are listed in Table 3. Router queue length is 20
packets toward mobile host which is about two times bandwidth delay product (BDP)
as are link buffers although queue length is defined as packets and link buffers as
bytes. Propagation delay is 300 ms. Transmission rate is symmetric 64000 bit/s.
Mazimum transfer unit (MTU) of the wireless link is 576 bytes.

For the RED router the values listed in Table 4 were used in the tests. The
values are based on recommendations [Flo]. The threshold values differ slightly
from the recommended values, because they are the values of the router queue and
they do not take into account the packets in the link buffers.

We use a two-state error model for the link layer error probability where one
state represents a good error free wireless environment and the other state represents
a bad environment with high error probability. Every time a good state ends the

bad state starts and vice versa. In bad states ARQ link layer retransmissions with

4 TEST ARRANGEMENT 24

Parameter name Downlink value Uplink value
Router queue length 20 packets 1 packet
Queue overflow handling | drop, RED drop, RED

Link send buffer size 9600 bytes (2x BDP) | 9600 bytes (2x BDP)
Link receive buffer size | 9600 bytes (2x BDP) | 9600 bytes (2x BDP)

Propagation delay 300 ms 300 ms
Transmission rate 64000 bit/s 64 000 bit/s
MTU 576 bytes 576 bytes

Table 3: Link and network characteristics

Name Value

Minimum threshold 2 packets
Maximum threshold | 7 packets
Maximum probability | 0.1
Queue weight 0.002

Table 4: Parameters of the RED algorithm

different amount of persistency are emulated. If a packet is dropped, the link layer
retransmission is emulated by delaying the packet for about one RTT for each
retransmission instead of actually dropping it. The one RTT additional delay is
defined as 700 ms in our tests. After the emulated retransmission the packet may
experience a drop again and might need additional retransmissions. The different

wireless link types are the following:

e €0 is an optimal link. There are no errors and therefore no link layer retrans-

missions.

e rl is a lossy link with low ARQ persistency. The link layer tries to retransmit
a missing packet at most once. The length of a good state is specified by an
exponential distribution with the mean value of 15 seconds, minimum value
of one second, and maximum value of 20 seconds. In the bad state the packet
error probability is 63% and the state length is uniformly distributed between
0.2 and 1.5 seconds. There will be error related drops as this link is able to

hide packet drops only for short bad states with error bursts.

4 TEST ARRANGEMENT 25

e r3 is a lossy link with medium ARQ persistency. The link layer tries to
retransmit a missing packet at most three times. Length of the states and
error probabilities are the same as with 71 link. This link layer is persistent
enough to recover from all packet losses during a bad state and upper protocol

layers should not therefore experience any error-related drops.

e 16 is a lossy link with high ARQ persistency. The link layer tries to retransmit
a missing packet at most six times. The bad state is longer and packet error
rate higher than with 77 and r3links. With this link the length of the bad state
is defined by an uniform distribution between 0.5 seconds and 4.0 seconds and
the packet loss probability in the bad state is increased to 95%. Six link layer
retransmissions are enough to hide all error related packet drops and upper

protocol layers should experience only delays.

4.4 Linux TCP Features

Linux mainly follows the principles of the congestion control algorithms and dif-
ferent enhancements as specified by the RFCs, but all TCP implementations have
some specific features of their own. In this section we describe those features that
were used in this study and implemented differently in our Linux TCP version com-
pared to TCP as specified in RFCs or TCP behavior in other widely used TCP

implementations.

Because for example CBI and ratehalving algorithms cannot be disabled in
vanilla Linux kernel we used some modifications [IIP] to alter the default behavior
of the kernel. The ratehalving algorithm was disabled in every test, so the cwnd
was reduced immediately. Linux does not use a static value for delay ACKs, but
adjusts it to be two times the estimated packet interarrival time. In our tests we
used a static value of 200ms for delayed ACKs and quick acknowledgements were
disabled.

Control Block Interdependence and Initial Window

In our analysis the CBI algorithm was measured as one of the enhancements. When

the CBI algorithm was disabled, no stored variables were used for determining initial

4 TEST ARRANGEMENT 26

values for new TCP connections and a static value of two segments was used for
the initial value of cwnd. With the CBI algorithm the initial window value was set
according to the normal Linux kernel behavior, which sets it to one to four segments
by the following rules:

if MSS > 1460 bytes
Iw = 2
else
if MSS > 1095
Iw = 3
else
Iw

1}
W

Next, if a stored value of ssthresh exists, the value of IW is compared to it and if
IW is higher the IW is set to ssthresh.

SACK Based Error Recovery and Congestion Control

Linux TCP uses a scoreboard to keep track of the sent packets. There are separate
flags for every packet. These flags are sacked, retransmitted and lost and a packet
can have several flags on at the same time. Using this scoreboard the TCP knows
which packets are lost, received by a receiver, SACKed or retransmitted. A packet is
marked as lost in the following events; if the sender is in fast recovery and an RTO
expires, if there are a certain® amount of SACKed packets above a non-SACKed
packet [BAF+03]. Slow start overshoot recovery with the SACK option is shown in
Figure 6. Because every dupack has SACK information, only non-SACKed packets
are retransmitted. The packet at the recovery point is not retransmitted until the
ACK that acknowledges up to the recovery point is received since it carries the
SACK information of the third segment above the lost, non-SACKed, segment.

The Linux TCP uses the equations [SK02]:

left_out <- sacked_out + lost_out

in_flight <- packets_out - left_out + retrans_out

“Normally three

4 TEST ARRANGEMENT 27

KB
P 70.0.0.202 daia
35.0000 L - & H0.0.0.201 ack
Recovery point Limited transmit #
30.0000 7 £~
Slow start|overshoot \//ﬂ /Ms
25.0000 :
/j :
AR
20.0000 / B
15,0000 J’
J] ’
10.0000 A
=)
£
y
5.0000 i
P
0.0000 "
Secsx 16
2.0550 2.0600 2.0650 2.0700 2.0750

Figure 6: Slow start overshoot recovery with the SACK option

in calculating the number of segments outstanding in the network and the calcu-
lated value is stored in variable in_flight. The number of packets acknowledged
by SACK blocks is stored in variable sacked_out. In variable lost_out is an es-
timation of the number of packets lost in the network, left_out is the number of
packets that have left the network, packets_out is the number of packets sent but
not acknowledged by a cumulative ACK, retrans_out is the number of retransmit-
ted packets.

Linux TCP compares the in_flight number to cwnd and if lower, a packet can
be sent. Using the scoreboard the Linux TCP decides what packets to transmit. If
there are packets in the scoreboard marked as lost but not retransmitted, they are

retransmitted, otherwise new packets can be transmitted.

Linux RTO calculations

The current retransmission timer specification [PA0O| requires that RTO timer

should not be less than one second. Linux’s RTO timer has a minimum value

4 TEST ARRANGEMENT 28

of 200 ms and a timer granularity of 10 ms, where in many other implementations
the granularity can be as high as 500 ms. Because of these differences the Linux

RTO calculations can achieve better accuracy.

The RTO equations stated in the specification have two problems [SK02]. If
the RTT decreases suddenly the RTO value will be overestimated because the RTT
variance grows momentarily. The second problem is that the RTT variance can be

very low when the RTT is taken from every packet and if the window is big.

For the first problem Linux RTO introduces a new variable MDEV for the measured

mean deviance. The following code is used to calculate MDEV:

if (R< SRTT and |SRTT - R| > MDEYV)
then

MDEV « % -MDEV + 3 - | SRTT — R|
else

MDEV + 3.MDEV +1 - | SRTT — R|

where R is the newest RT'T measurement and SRTT is a smoothed RTT value. If the
newest RTT measurement is lower than the smoothed RTT and if the difference is
bigger than the mean deviance, then a very light weight is given to the newest RTT

measurement. Otherwise the weight is given as recommended in the specification
[PAOO].

If the new MDEV is higher than before, the RT'TVAR variable is set to MDEV
immediately. If not the RTTVAR is updated only once per one round trip time.

The following equations are used to calculate the actual RTO timer:

1
SRTT(—%-SRTT—Fg-R

RTO + maxz (SRTT + 4 - RTTV AR, 200ms)

Detecting Spurious Retransmissions

The RTO can expire spuriously if there is a longer delay although no packets are

lost. Fast retransmit can also be triggered spuriously as a result of reordering in

4 TEST ARRANGEMENT 29

the network. A Linux sender has three ways to detect a spurious retransmission;
F-RTO%, D-SACK and TCP timestamps. With timestamps Linux uses an Eifel
like undo mechanism [SK02] to revert the ssthresh and cwnd values. If a spurious
RTO is detected with Eifel the sender removes the lost flags from the scoreboard
and sets the ssthresh to the saved value and continues sending new data in the
congestion avoidance. If the sender is in fast recovery it increases the cwnd to the
maximum of its current value and two times ssthresh and sets ssthresh to its
saved value. These modifications lead automatically to the end of the fast recovery,
since new data can be sent and no packets are flagged as lost. The main difference
between D-SACK and Eifel is the retransmissions, with Eifel the sender can stop
when retransmission are detected as spurious but with D-SACK the conclusion can

be done only after all retransmissions are done and acknowledged as duplicates.

4.5 Test sets

The combinations of different link layer characteristics and TCP enhancements are
listed in Table 5. In the table the marking BL means our baseline TCP. The mark
states that the tests will be run for every workload and o means only the workload
where two TCP connections start simultaneously. The RTO variants are run with
the baseline, but with other TCP enhancements the Eifel acts as the baseline TCP.
To limit the amount of different test cases, the different RT'O variants are tested with
all ARQ) persistences, but only with the workload in which the two TCP connections
start simultaneously. Other TCP enhancements are tested with all workloads but
only with optimal and low ARQ links. With the medium ARQ persistency the other
TCP enhancements are tested with the workload in which the two TCP connections

start simultaneously.

Enhancement | BL BL + BL+ BL+ EIFEL+ | EIFEL+ | EIFEL+ EIFEL+
Link FRTO | DSACK | EIFEL RED ECN CBI CBI+ECN
el o o o ° ° ° ° °

rl o o o

T3 o o o o o o o o

16 o o o o - -

Table 5: Combinations of link layer characteristics and TCP enhancements. @ TCP
+ UDP, o TCP only, - not run.

SIncluded in Linux kernels starting from 2.4.21

4 TEST ARRANGEMENT 30

Table 6 lists TCP options and algorithms and their use in tests. Our baseline
TCP has limited transmit and SACK always on, delayed ACKs set to static 200
ms, initial window is set to 2 segments and ratehalving is always off. The static
initial window size is not used if the CBI option is in use. The baseline TCP
has timestamps option disabled. With timestamps option enabled the Linux TCP
uses Eifel algorithm and it is run as one of the enhancements when comparing
different RTO recovery variants, and as the baseline TCP when comparing other

TCP enhancements.

Baseline Value
Limited transmit yes
SACK yes
Delayed ACKs 200 ms
Initial Window 2
Quick ACKs no
Ratehalving no
Enhancements Value
F-RTO subset
D-SACK subset
Timestamps (Eifel) subset
Eifel + RED subset
Eifel + RED + ECN subset
Eifel + CBI subset
Eifel + CBI + RED + ECN | subset

Table 6: TCP options and algorithms

4.6 Metrics

Below we introduce the different metrics used in our tests. After the measurements
we conduct our analysis based on these metrics. The main metric for TCP is elapsed
time. Another important metric is the number of packet drops since it affects the
elapsed time of the TCP transfer a lot.

In every workload there are two TCP connections and in some test cases one

4 TEST ARRANGEMENT 31

additional UDP flow. The two TCP connections are divided into two sets. In cases
where the two connections are started at the same, the first set contains the faster
TCP connection and the second set contains the slower. In the workload case where
there is a five second difference between the starts of the TCP connections the first
connection is always counted to the first set and the second connection to the second

set. The metrics are then calculated based on these two sets.

Elapsed Time is our main TCP performance metric. The elapsed time is the time
between sending the first TCP (SYN) packet of the connection and receiving
the last ACK for the (FIN) packet of the same connection. These are measured
at the TCP sender side. We will report elapsed time in two different aspects:

e connection time (ctime) is the elapsed time calculated separately for
the first connection set and the second connection set. There are listed

in the results the 25% and 75% percentiles and the median value.

e overall time (otime) is the elapsed time calculated over all connections

in both connection sets. In the results only the median value is listed.

Throughput is directly calculated by dividing the amount of workload data by
the elapsed time. UDP throughput is calculated by dividing the amount of
received data, including the UDP headers (8 bytes per packet), with the time
between the first and the last received packet. For UDP the minimum value,
50% percentile, and the maximum value of the throughput are listed. For
TCP this metric is listed only in the tables in the appendices.

Fairness is studied using the difference of elapsed times between the two TCP
connection sets. It is not automatically calculated and listed, but determined

by comparing the times.

Stability is the difference of 25% and 75% percentiles within a connection set. The
closer they are, the better the stability. It is not automatically calculated, only

discussed.

Number of retransmissions is the amount of TCP segments retransmitted as
they are considered lost by the sender. These retransmissions often affect the
elapsed time significantly since they increase the amount of data that is sent
across the link. Some of the data is really lost and the retransmissions can

not be avoided but in some cases the sender retransmits the data needlessly.

4 TEST ARRANGEMENT 32

Number of drops is the number of packets lost in the network. In our envi-
ronment there are three reasons for a packet to be dropped; a link error has
occurred and the packet is lost, the router buffer overflows and the packet must
be dropped, or a RED capable router drops the packet as a sign of increasing
congestion. Median values of the packet drops for each of the three drop types
are listed in the drop column. ECN marks as well as actual drops with ECN
are both counted under the RED drop column. For UDP flow listed values
are the minimum value, 50% percentile and the maximum value for each of

the drop types.

Number of RTOs can not be counted easily by any automatic method and
therefore they are counted manually in some selected cases. An RTO affects
the performance of the connection a lot since typically there is a relatively
long idle period before it and the sender must start with slow start and small

congestion window after an RTO.

Router queue length is measured to analyze the congestion status in a router.
This metric is not listed in tables but shown in graphs in the cases where it
affects the behavior of a data flow. A queuing delay increases as the queue

length increases and therefore it affects the round trip time.

Jitter is listed for the UDP packets. These values show the spacing between
two received UDP packets in milliseconds. If a packet is lost and the two
received packets are not therefore consecutive, the spacing value is ignored.
We provide 50%, 75% and 90% percentiles and the maximum values. There are
two maximum values, one is the lowest maximum value among the replications

and the second is the highest of the maximum values.

5 RESULTS 33

5 Results

In this section we analyze the results. We start by analyzing enhancements over
optimal link and then over lossy links, from low ARQ to high ARQ. With all link
types we analyze one workload type at a time with all enhancements. This way we
can easily compare different enhancements to each other with a certain workload

and certain link characteristics.

There is a short summary in the beginning of each workload section which gives
overall view of the results. The summary includes one or more tables, which list
the measured results. Most of the metrics introduced in section 4.6 are listed in
the tables but some are left to appendices. For the two TCP connections starting
simultaneously there are listed 25%, 50% and 75% percentiles of the elapsed times for
the slower and for the faster connection sets. Elapsed time of the slower connection
in the case where the two TCP connections start simultaneously is important as
it tells the total time. The elapsed time is marked as ctime. When the two TCP
connections do not start simultaneously the same percentiles are listed for the first
and for the second connection set even in the case the second connection would
be faster. The amount of dropped packets are listed separately for queue overflow,
RED, and error related drops. The values are medians and are marked q / r /
e, respectively. The overall time is listed as the last column and marked as otime.
For UDP flows there are two tables in summary sections. One has the information
concerning the three different types of packet drops and the second table has the
information about throughput and spacing of the received UDP packets. There is a
graph in the summary section, which shows the minimum, 50% percentile and the
maximum values of the elapsed times of the two TCP connection sets. The graphs

make it easy to compare the effect of the different enhancements to elapsed time.

The following markings are used for the different workloads:

2tcpOudp: Two TCP connections starting at the same time.
2tcpOudpbs: 5 second delay between the starts of the TCP connections.

2tcpludp: Two TCP connections starting at the same time and an additional
UDP flow.

5 RESULTS 34

5.1 Optimal Link

This section introduces the analyzed results of the optimal link. There are three
workloads and a total of seven TCP enhancements or combinations in addition to
the baseline TCP for the 2tcpOudp workload. 2tcpludp and 2tcpOudpbs workloads

were not measured with different RTO variants.

5.1.1 Two TCP Connections Starting at the Same Time

75
Faster: min, median and max +——+—

70

65

55

Elapsed Time (s)

50

45

40

35

BL EIFEL FRTO DSACK RED ECN CBI ECN-CBI

Figure 7: Optimal link: 2tcpOudp: Elapsed times of different enhancements

Summary of the test results with different options is listed in Table 7 and elapsed
times are shown in Figure 7. Since there were no errors, our baseline TCP worked
well although in some cases the fairness was very poor because of the differences in
slow start overshoot recovery. Stability was much better with RED or CBI compared
to baseline TCP. The RTO-variants did not affect the situation significantly as there
were no RTOs. RED increased the elapsed times significantly, but kept the stability
better. ECN worked similarly to pure RED, but decreased the elapsed times a bit.
With CBI the fairness was good, because the slow start overshoot was avoided in
most cases, and the number of congestion related packet losses was low. Use of the
ECN with the CBI did not introduce any significant improvements since the CBI
alone gave very good results and the additional ECN marks increased the elapsed

times.

5 RESULTS 35
ctime (s) ctime (s) Drops (50%) | Drops (50%) | otime (s)

TCP Faster Slower Faster Slower

variant | 25% | 50% | 75% | 25% | 50% | 75% | a/r/e q/r/e 50%
BL! 46.2 | 55.4 | 55.4 | 54.7 | 55.8 | 558 | 14/0/0 | 15/0/0 55.4
EIFEL 40.8 | 56.6 | 56.6 | 56.8 | 56.9 | 56.9 14/0/0 15/0/0 56.7
FRTO 39.7 | 45.9 | 55.3 | 54.6 | 55.8 | 55.8 14/0/0 12/0/0 55.0
DSACK 39.7 | 55.4 | 55.4 | 55.7 | 55.8 | 55.8 14/0/0 15/0/0 55.4
RED 64.6 | 65.6 | 65.9 | 68.2 | 69.6 | 70.8 | 14/7/0 | 12/10/0 67.1
ECN 57.8 | 61.1 | 61.6 | 64.4 | 64.5 [655 | 13/6/0 | 15/6/0 63.8
CBI 49.8 | 49.8 | 53.1 | 53.2 | 53.2 | 533 | 0/0/0 1/0/0 53.1
CBI-ECN | 56.3 | 56.8 | 59.1 | 60.6 | 63.2 | 63.5 0/6/0 0/9/0 60.4

Table 7: Optimal link: 2tcpOudp: Summary of the results. 20 replications (110

replications).

Baseline TCP

Without any link errors there was only little variance between the basic tests, which
was expected. All the basic tests divided into two different behavior categories,
except one. The differency between these two categories was the slow start overshoot

recovery.

In the first category both connections behaved very similarly and recovered like
the normal efficient SACK recovery but in the second category one of the TCP
connections recovered very slowly which was the main problem in this test. It
managed to retransmit only one packet per RTT (see Figure 8) because roughly
half of the packets in the TCP window were lost. The first ACK that acknowledged
new data after the fast retransmit decreased the number of packets in flight and the
cwnd was only one packet greater than the number of packets in flight. Therefore
the sender could retransmit only one packet. The next ACK acknowledged this
newly retransmitted packet and again only one packet could be retransmitted. After
the recovery point the connection continued congestion avoidance but the other
connection was in the meanwhile getting almost the all available bandwidth and it

was able to complete the transfer much faster.

Fairness was good in the first category as the connections proceeded similarly.
In the second category the fairness was much worse; faster connection was ready in

most replications in 46 seconds, but for the slower it took roughly 55 seconds. Most

5 RESULTS 36

KB

32.0000 A 10.0.0.202 data
30.0000 ? 10.0.0.201 ack

28.0000

26.0000
24.0000 ,, l/l D
22.0000 }/F
20.0000 .[/
18.0000

{

16.0000
14,0000 ! : /

12.0000 g m;
10.0000 r
: Secsx 16
1.8300 1.8350 1.8400 1.8450 1.8500

Figure 8: Inefficient slow start overshoot recovery

of the replications falled into the first category.

Eifel, F-RTO and D-SACK

Because the connections did not experience any RTOs there were no significant
differences between baseline TCP, Eifel, F-RTO, and D-SACK. Only small difference
was the additional overhead caused by timestamps in the Eifel test. The lower
elapsed time median of the faster F-RTO connection was because the latter behavior
discussed with the baseline TCP was slightly more common. The latter behavior
was more common because there happened to be slightly lesser amount of packet
losses.

RED

Using a RED router the medians of elapsed times were about 10 seconds greater
than without it. This was because the RED router dropped packets as a mark of
increasing congestion as the RED algorithms average queue size increased. There
were median of 8 RED based drops for the faster connection and 10 for the slower
connection in addition to the packet drops due to queue overflow. The effect of the

drops can be severe because these drops lead easily to an RTO in the slow start

5 RESULTS 37

overshoot recovery as the difference between packets in flight and cwnd is small and
the sender can therefore retransmit only a few packets per RTT. The reason for
the high RED drop probability during slow start overshoot recovery can be seen
in Figure 9. Because the average queue size of a RED router did not decrease

immediately, it was still high when the sender was recovering from the slow start
overshoot.

25

dueue Iengliw —

20

Queue length (pkts)

e o S A L

\ L] [

100 110 120 130 140 150 160 170 180
Time (s)

190

Figure 9: An actual queue length and an average queue length of a RED router

Although the packet drops due to RED slowed down the connections signifi-
cantly, the connections were more stable than without RED. RED improved the
fairness compared to second category discussed with the baseline TCP, the median
of faster connection set with RED was only 6% faster than the slower. Queuing
delays were lower with RED than without it because, as seen in Figure 9, the input
queue size stayed low after the slow start overshoot. Lower queuing delays gave the
recovering connection lower RTT and therefore it was able to increase the sending
rate faster. Without RED the recovering connection could experience congestion
drops because the faster connection had filled up the queue, but with the RED
algorithm the faster connection had greater probability to be marked and there-
fore it had to slow down more likely than the slower connection. Therefore there
was a lower possibility for a lock-out situation, a situation where the faster connec-

tion locks out the slower one by filling up the route queue and getting all available
bandwidth.

5 RESULTS 38

ECN

Using the ECN option with the RED algorithm introduced roughly 5% improvement
in median of elapsed time compared to pure RED. The improvement was expected
because there are fewer packet drops with ECN since the packets are just marked,

not dropped.

The ECN RFC ([RFBO01] section 6.1.5) states that ECN ECT flag must not be
set on retransmitted packets. Therefore when a RED algorithm marks a packet that
is a retransmission the router must drop the packet. It can not mark the packet
with the CE flag, even if the ECN is supported among the sender, the receiver, and
the router. Because of this the ECN had the same negative effect on the slow start
overshoot recovery as with a RED router without ECN option; an RTO was easily

experienced, because some retransmitted packets were dropped.

CBI

The effect of the saved ssthresh value was very significant; the slow start phase
was very short, only few round trip times. Because the slow recovery from slow
start overshoot was avoided the use of CBI option gave better throughput than the
baseline TCP. Since the CBI prevented slow start overshoot after the first replication

the queue size remained low and both connections proceeded at the same rate.

Usually there was a single congestion drop on both connections at the start of
the last quarter of the transfer as shown in Figure 10. Both recovered efficiently and
continued the transmission at roughly the same rate. A few times the congestion
drop occurred only for one of the connections. This introduced lower fairness as
the recovering connection had to slow done while the other connection got more
bandwidth. If both of the connections experienced a congestion related packet drop
at the same time, the fairness was very good. Even if not, the fairness was still
good since the one congestion related packet drop occurred quite at the end of the

transfer and therefore the connections did not have time to get separated much.

5 RESULTS 39

25

Queue Ie‘nglh —

20

o

Queue length (pkts)

01 70 180 190 200 210 220 230 240
Time (s)
Figure 10: Queue length of a router when a sender uses CBI option. The replication
started at about time 180 seconds.

CBI and ECN

ECN and CBI combination with this type of workload and these link layer char-
acteristics yielded a median of overall elapsed time that was 7 seconds longer than

with pure CBI. Fairness was not as good as with pure CBIL

The reason for the poor behavior of the ECN option is the significant slowdown
caused by the ECN marks. There was a median of seven marks for the faster
connection and median of 10 marks for the slower. If the connections had been
longer, the combination of ECN and CBI could have managed better compared to
pure CBI because there possibly would have been more congestion related packet
drops with the pure CBI and the combination could have kept the queue length low

so that almost all congestion related drops could have been avoided.

5.1.2 Two TCP Connections, 5 Seconds Between Starts

Summary of the results is shown in Figure 11 and the test results are listed in Table
8. In this test the Eifel acted as the baseline TCP and other enhancements are
compared to it.

5 RESULTS

40

Elapsed Time (s)

65

60

55

50

45

40

35

30

Faster: min, median and max +——+—

EIFEL

RED

ECN

CBl ECN-CBI

Figure 11: Optimal link: 2tcpOudpbs: Elapsed times of different enhancements

ctime (s) ctime (s) Drops (50%) | Drops (50%) | otime (s)

TCP First Second First Second

variant 25% | 50% | 75% | 25% | 50% | 75% | a/r /e q/r/e 50%
EIFEL 32.0 | 32.0 | 32.0 | 51.3 | 51.3 | 514 18/0/0 2/0/0 41.7
RED 44.5 | 51.6 | 55.0 | 56.3 | 56.9 | 57.3 | 17 /7 /0 2/4/0 55.6
ECN 46.0 | 47.1 | 51.3 | 55.8 | 55.9 | 56.1 | 18 /7 /0 2/4/0 53.0
CBI 43.1 | 47.3 | 476 | 48.7 | 49.0 | 491 | 0/0/0 0/0/0 48.2
CBI-ECN | 49.0 | 50.6 | 50.7 | 54.0 | 57.1 | 59.6 0/5/0 0/4/0 52.9

Table 8: Optimal link

: 2tepOudpbs: Summary of the results

Main problem was the lock-out of the second connection. With this link band-

width and router queue size, and a 5 second delay between the starts of the first and

second connections, the second connection usually suffered a lot. This is because

the first connection was usually quite at the end of the slow start phase and the

queue was starting to get full. This led to high queuing delays and higher RTT

and therefore slower increase of the sending rate of the second connection. Queue

overflow drops were also likely to occur to the later connection even if it had only a

few packets in the queue. Because of the high queuing delays and the packet losses,

the second connection was efficiently locked out by the first connection. Because of

the lock-out the second connection was often able to transfer only a small fraction

of its data before the first connection had finished.

5 RESULTS 41

After the first connection finished, the other connection had the whole bandwidth
to use and in the beginning, when the second connection had not yet started, the
first connection was in slow start and did not yet use the whole bandwidth. Without
this timing issue, the fairness would be slightly worse when simply comparing the

elapsed times.

The ECN and RED enhancements did not help in the beginning of the test but
about the time the first connection had recovered from the slow start overshoot the
RED algorithm started to work better and the latter connection got more band-
width. The CBI option gave a significant improvement with this workload since it
prevented the slow start overshoot of the first connection and the later connection
did therefore experience only a very few congestion related packet drops and low

queuing delays.

Eifel

The first connection experienced slow start overshoot and recovered from it effi-
ciently. The second connection suffered a lot at the beginning and was not able to
start efficiently transferring data until the first connection was finished. At this point
the second connection had transferred only about 30 kb. There was no variance in
the results as there were no error related packet losses or any other phenomena
that could have brought randomness to the results and therefore every replication
behaved very similarly. The difference between the minimum and the maximum

elapsed time was less than 0.1 seconds in both connection sets.

The fairness was very poor because the first connection locked out the second
very efficiently. The stability was also excellent because of the lock-out. The first

connection was about 60% faster than the second in every replication.

RED

With RED the later connection still suffered like it did without RED since in the
beginning the average queue length of the RED algorithm was low and it did not
affect the slow start overshoot. Therefore the later connection usually experienced
some congestion drops in a very early state and also sometimes the RED algorithm

dropped a retransmitted packet at about the time the first connection was recovered

5 RESULTS 42

from the slow start overshoot. Because of these packet drops and high queuing
delays the start of the later connection was very slow but after the first connection
recovered from the slow start overshoot the RED algorithm started to work better

and also the latter connection got more bandwidth.

The main reason for the lower throughput compared to Eifel were additional
RED drops, which there were a median of 8 for the first and 4 for the second

connection set.

Overall elapsed time was much worse with RED than without it but the median
of latter connection set was only 5 seconds slower while the median of first connection
set was almost 20 seconds slower and therefore fairness was quite good compared to
Eifel. The stability was worse than with the Eifel, although it was still very good
with the latter connection.

ECN

Overall elapsed time was few seconds better than with RED. The stability was
slightly better with ECN. Compared to pure RED, the median of first connection
set was three seconds faster and the latter was only one second faster and therefore
the fairness was a bit worse than with pure RED. There were fewer marks for the
first connection and more marks for the latter connection compared to pure RED,

which could explain the worse fairness. Still the fairness was much better than with
the Eifel.

Again, the slow start phase of the latter connection was very inefficient due
to congestion related packet drops, RED drops of retransmitted packets, and high

queuing delays.

CBI

In the first replication the TCP sender had no knowledge of the previous connections
to that specific host and therefore the connections behaved like without the CBI
option. In this case the first connection was very fast (32 seconds) and the events

were similar to Eifel.

5 RESULTS 43

During the rest of the replications there was no slow start overshoot. The first
connection transferred about 37 kb in seven seconds and moved from slow start to
congestion avoidance. Therefore the queue length stayed low at the beginning of

the basic test and the second connection got started more efficiently.

Fairness was extremely good, the first connection was only slightly faster than
the second, but because the second connection had the whole bandwidth to use at
the end of the test and the first connection in the beginning of the test the elapsed

times can not be compared directly.

CBI and ECN

Fairness was very good with pure CBI and therefore ECN markings were too rough
to improve it anymore. The later connection was proceeding slightly slower than
the first connection. When ECN started to mark packets in the second half of
the transfer, both connections slowed a bit and the throughput started to variate
according to ECN marks. Situation was the same as with the previous workload
where the two TCP connections started simultaneously. There was a median of
five ECN marks for the first connection set and seven for the second connection set
which resulted to slower throughput than with pure CBI.

5.1.3 Two TCP Connections, One UDP Flow

Summary of the results with different options concerning TCP is listed in Table 9.
Summary of UDP packet drops is in Table 10 and summary of UDP throughputs
and jitter is in Table 11.

Although the slow start overshoot was the main reason for poor fairness it was
not as severe with this workload as it was with the first workload since the UDP flow
also filled the input queue of the router and neither of the TCP connections could
increase cwnd to a high value before the slow start overshoot occurred. In this test
the Eifel test acted as the baseline TCP. Although with Eifel the faster connection
the fastest, it had the worst fairness and each enhancement improved it. With the
exception of the faster connection of the Eifel test, the stability was relatively good,
especially with the slower connections. With this workload the combination of ECN

and CBI worked well as can be seen in Figure 12.

5 RESULTS 44
120 Faster: min, median and max +——+—
115
105
@ 100
§ 95
85
75
70
EIFEL RED ECN CBI ECN-CBI
Figure 12: Optimal link: 2tcpludp: Elapsed times of different enhancements
ctime (s) ctime (s) Drops (50%) | Drops (50%) | otime (s)
TCP Faster Slower Faster Slower
variant | 25% | 50% | 75% | 25% | 50% | 75% | q/r/e a/r/e 50%
EIFEL 742 | 83.6 | 90.5 | 106.4 [106.9 | 1074 | 10/0/0 | 14/0/0 102.3
RED 95.8 | 101.7 | 104.3 | 109.9 | 111.1 | 112.6 8/11/0 8/14/0 106.2
ECN 101.9 | 102.8 | 103.6 | 109.8 | 110.6 | 110.7 | 8/12/0 | 9/16/0 105.2
CBI 98.1 | 98.1 | 101.9 | 107.5 | 107.6 [1080 | 4/0/0 5/0/0 106.8
CBLI-ECN | 99.5 | 101.2 | 103.1 | 105.8 [106.0 | 106.1 | 0/18/0 | 0/16/0 105.8
Table 9: Optimal link: 2tcpludp: Summary of the results
TCP Queue Drops (pkts) | Error Drops (pkts) | RED Drops (pkts)
variant Min/50%/Max Min/50%/Max Min/50%/Max
EIFEL 12 /17 / 25 0/0/0 -/-/-
RED 3/6/10 0/0/0 28 / 41 / 47
ECN 4/9/9 0/0/0 29 /39 /70
CBI 5/11/20 0/0/0 -/-/-
CBI-ECN |[0/1/6 0/0/0 38 /47 /101
Table 10: Optimal link: 2tcpludp: Drop statistics of UDP flows
Eifel

The slow start overshoot was not as severe as it was without the UDP flow because

the router queue was more utilized and a single TCP connection did not have as

5 RESULTS

45

TCP

variant

Throughput (b/s)
Min/50%,/Max

Spacing (ms)

50% /75%,/90% /max

EIFEL
RED
ECN

CBI
CBI-ECN

3993 / 4013 / 4031
3918 / 3927 / 3976
3840 / 3933 / 3970
4016 / 4034 / 4051
3765 / 3933 / 3959

127/130/211/427-427
127/138/211/427-427
127/138/211/427-460
127/138/211/427-655
127/138/211/427-655

Table 11: Optimal link: 2tcpludp: Throughput and spacing statistics of UDP flows

many packets in it as it would have otherwise had. During the normal conges-
tion avoidance after the slow start overshoot the connections experienced several
congestion related packet drops which can be seen in Figure 13.

25

20

s =

Il
L
HLY

Queue‘ length —+—

o
o
B

Queue length (pkts)

o

Lt

40 60
Time (s)

80 100

120

Figure 13: A queue of a router when there is a UDP flow in addition to two baseline

TCP connections

Both TCP senders had transferred about 26 kb when the first sign of slow start

overshoot was received by both senders.

In many cases one of the connections

recovered inefficiently from the slow start overshoot managing to send only one

retransmission per RT'T and suffering heavily because of it. Because of the inefficient

overshoot recovery of one the TCP connections running concurrently the fairness

was not good. Median of the elapsed time of the faster connection set was almost
30% faster than the slower connection set.

5 RESULTS 46

UDP flow lost almost a median of 20 packets because of router buffer overflows.
Jitter of the UDP flow was good up to 75% percentile; the spacing of the UDP
packets was roughly 130 ms. 90% percentile was 211 ms, so 10% of the UDP packets
had waited about one additional transmission delay. Maximum spacing was 427 ms,
which means that some UDP packets waited for about four additional transmission
delays. These additional delays are because of queueing delays experienced in the

router queue.

RED

With the RED algorithm the median of the overall elapsed time was about seven
seconds greater compared to Eifel. The RED algorithm succeeded to improve fair-
ness compared to baseline TCP, the faster connection was only 9% faster than the

slower connection.

The number of TCP buffer overflows was about one third lower than without
RED, but on the other hand there was a median of 11 RED drops for the faster con-
nection and 16 for the slower. This was the main reason for slower TCP throughput.
The lower number of buffer overflows can be seen on Figure 14; the RED algorithm
kept the queue nicely in proper limits. The queue size was 20 packets and it over-
flowed only in the slow start overshoot. Therefore there was always free buffer space
and the slower connection was able to recover better and increase the transfer rate

faster because of the low queuing delays.

UDP flow experienced smaller amount of congestion drops compared to the Eifel,
but a much larger number of RED drops and therefore the throughput of the UDP
flow was lower than without the RED router. Although the congestion was not as
severe as it was without RED, the jitter was the same as with the Eifel.

ECN

The use of ECN introduced a slight improvement compared to pure RED: median
of the overall elapsed time was about one second smaller. The faster connection
was almost 8% faster than the slower which is about the same as it was with pure

RED. Utilization of the queue was very similar to a pure RED router.

5 RESULTS 47

25

bueue length L

20

o
4

Queue length (pkts)

o

IS —_—

%&—.ﬁ

I
—=

S o

ﬁ% b

|
i i

20 40 60 80 100 120
Time (s)

o

Figure 14: Queue of a RED router

In many cases RTO expired in the slow start overshoot recovery because a re-
transmitted packet got dropped by the RED router. There were many RTOs also
because the fast recovery algorithm could not recover from the overshoot as there
were not enough duplicate ACKs to decrease the number of packets outstanding in
the network below the cwnd and thus allowing the sender to start retransmitting
packets. In some cases the cwnd allowed a retransmission of a single packet which
resulted a recovery of one packet per RTT.

The ECN capable router treated UDP packets like a pure RED router, since
UDP does not support ECN. One UDP flow experienced 70 RED marks in the
worst case, while the same number using a pure RED router was only 47. The rest

of the UDP metrics were roughly the same between the pure RED router and the
ECN capable RED router.

CBI

Because of the CBI option, both TCP connections started equally, but because
of competing UDP traffic there were more overflows and hence, more congestion
related packet drops compared to same workload without UDP flow. These packet
losses decreased fairness as one of the connections experienced packet losses and

slowed down, while the other got more bandwidth. The faster connection was still

5 RESULTS 48

only 10% faster than the slower but the difference would probably be larger with

longer connections because of greater number of packet losses.

Only a median of 11 UDP packets were dropped. The throughput of the UDP
flow was good, because there were fewer congestions related packet drops than
without CBI.

CBI and ECN

The combination of CBI and ECN enhancements worked very well. Median of
the overall elapsed time was 3 seconds worse than the with Eifel but the faster
connection was only less 5% faster than the slower. CBI prevented the slow start
overshoot and ECN kept the queue in efficiently in specified limits avoiding buffer

overflows in most cases.

The UDP flow experienced very few congestion drops as the CBI and ECN op-
tions kept the queue utilization low but on the other hand, the UDP flow experienced
a lot of RED marks which lowered the throughput significantly.

5.2 Lossy Link with Low ARQ Persistency

In this section we introduce the analyzed results with a lossy link. The link layer
tried once to retransmit the lost packet which introduced a 700 ms delay and possible
drop after the delay if the packet was lost again. The workload with two TCP
connections starting simultaneously was run with every enhancement and the rest
of the workloads were analyzed only with RED, ECN, and CBI enhancements and
with the combination of CBI and ECN.

5.2.1 Two TCP Connections Starting at the Same Time

The graphical summary comparing the different enhancements is shown in Figure

15 and the summary of the results is listed in Table 12.

In this test the performance of baseline TCP was relatively good compared to
the other enhancements, except RED and ECN, which decreased the elapsed times

5 RESULTS

49

because of additional RED drops and ECN marks.

The different RTO variants

behaved roughly similarly as there were no spurious retransmissions. The fairness

was not especially good with any of the analyzed enhancements. The RED algorithm

was not efficient with this link since there were many error related packet losses.

Elapsed Time (s)

100

920

Faster: min, median and max +——+—

80

70

60

50

40

30

BL EIFEL

FRTO DSACK RED

ECN CBI

ECN-CBI

Figure 15: el 2tcpOudp: Elapsed times of different enhancements
ctime (s) ctime (s) Drops (50%) | Drops (50%) | otime (s)

TCP Faster Slower Faster Slower

variant 25% ‘ 50% ‘ 5% | 25% ‘ 50% ‘ 75% q/r/e q/r/e 50%
BL 437 [50.7 [57.4 [588 | 602 [640 1/0/2 0/0/3 58.7
EIFEL | 49.1 | 54.1 | 58.4 | 58.0 | 60.5 | 645 | 3/0/3 0/0/2 58.4
FRTO 47.5 | 52.5 | 56.6 | 58.1 | 61.1 | 64.5 11/0/1 12/0/2 57.5
DSACK 51.5 | 54.8 | 57.1 | 57.0 | 58.9 | 62.3 13/0/0 11/0/1 57.1
RED 59.7 | 63.0 | 63.7 | 67.2 | 73.0 | 75.0 8/3/1 1/3/2 66.6
ECN 56.9 | 62.4 | 67.7 | 68.2 | 72.1 | 75.0 10/2/0 12/4 /4 68.2
CBI 46.4 | 50.1 | 52.5 | 56.4 | 59.0 | 606 | 0/0/0 0/0/3 55.6
CBI-ECN | 51.3 | 55.0 | 58.0 | 60.5 | 64.3 | 66.6 0/0/1 0/0/3 59.9

Baseline TCP

Table 12: Low ARQ link: 2tcpOudp: Summary of the results

Although the link layer hide some errors by retransmitting dropped packets there

still were a median of four error related packet drops for the faster and five for the

5 RESULTS 50

slower connection. These error related packet losses did not affect the performance
a lot compared to baseline TCP with same workload on the optimal link test. Single

packet losses were recovered efficiently using the recovery algorithms.

There were a total number of 16 RTOs, of which only a very few were spurious.
Most of the RTOs occurred during the slow start overshoot recovery. These were
recovered quickly because even if they introduced a few second additional delay the
non-SACKed packets were retransmitted after the RTO in slow start and therefore
sending two new retransmission per one ACK. In some cases in fast recovery the
cwnd allowed packets to be sent and there were packets that could be sent and in
these case Linux TCP marked the packet that triggered RTO only as lost and did
not start the RTO algorithm. In very rare cases it took almost ten seconds before the
RTO timer expired. The ACK for the packet that triggered the fast retransmit was
received after the delay caused by the bad state. The ACK advanced the window
and therefore the sender reseted the RTO timer but the cwnd still did not allow new
packets to be sent and therefore the sender had to wait for the RTO to expire.

Errors and delays lowered the fairness between the connections since often the
connections experienced a bad state differently and while the other connection re-
covered from a more severe consequences the other connection got most of the
bandwidth. One significant factor was the different recovery from slow start over-
shoot. If one connection recovered faster then the slower connection had even more
trouble recovering because of the lock-out. In some cases a bad state occurred while
the connection was in slow start just before overshooting. Because of an error re-
lated packet drop the connection avoided the overshoot and changed to congestion

avoidance.

Eifel, F-RTO and D-SACK

There were many RTOs in the slow start overshoot recovery but spurious RTOs
were very rare and therefore there were no larger differences between the baseline,
Eifel, F-RTO, and D-SACK. F-RTO behaved mostly like the baseline TCP since
most of the RTOs occurred during the fast recovery and there were still incoming

dupacks.

5 RESULTS 51

RED

The RED algorithm was very inefficient in this test case. There was a median of
about four error related packet drops in both test cases, this and the baseline TCP.
RED introduced additional four RED drops. Because there was already about the
same amount of random packet drops the RED drops did not manage to level the
differences of the connections; the difference of elapsed times of the faster and the
slower connections grew from 16% to 19% compared to baseline. The overall elapsed

time also grew almost eight seconds because of the additional drops.

ECN

Situation with ECN was roughly the same as with pure RED. The algorithm worked
inefficiently because of the error related drops, the ECN marks was no efficient

enough to control the flows. Fairness was slightly worse compared to pure RED.

There were a few severe RTOs that decreased the performance significantly. In
few cases the RED algorithm, bad state or queue overflow dropped a retransmission
of the same packet twice in the slow start overshoot recovery. The result was two
timeouts of which the latter was about eight seconds. Often one of the dropped
retransmission was dropped by RED algorithm since the ECN capable flag can not

be used in retransmissions.

CBI

With the CBI option the slow start overshoot was avoided which was also the
case with the optimal link. The medians of elapsed times of the both connections
were good. One significant factor for the good throughput was the absence of
the slow start overshoot. Another reason for the good throughput of the faster
connection was the lower number of the error related packet drops compared to

baseline, although the link parameters were the same.

Normally both connections proceeded equally until the first bad state. At that
point one of the two connections often lost more packets than the other or one

connection experienced only a delay and therefore the recovery took a different

5 RESULTS 52

amount of time for connections. Therefore the fairness got worse and the faster

connection was 18% faster than the slower connection.

CBI and ECN

The use of ECN option in addition to CBI did not introduce any additional gain
compared to pure CBI, ECN marks only slowed down the connections. Because of
the erroneous link the size of the average RED queue was low and the router marked
only a median of one packet for the faster connection and a median of two packets

for the slower connection.

5.2.2 Two TCP Connections, 5 Seconds Between Starts

A graphical comparison can be seen on Figure 16. Summary of the results with
each enhancement is listed in Table 13. The Eifel acted as the baseline TCP in this
test.

90
Faster: min, median and max +——+—

80

70

60

Elapsed Time (s)

50

40

30

EIFEL RED ECN CBl ECN-CBI

Figure 16: Low ARQ link: 2tcpOudpbs: Elapsed times of different enhancements

The Eifel had good elapsed times as did the CBI. The RED algorithm gave the
best fairness but on the other hand the elapsed times were a bit higher compared to
Eifel or CBI. The ECN enhancement introduced slightly better stability compared

to RED but the fairness was worse.

5 RESULTS 53

ctime (s) ctime (s) Drops (50%) | Drops (50%) | otime (s)

TCP First Second First Second

variant | 25% | 50% | 75% | 25% | 50% | 75% | a/r /e a/t/e 50%
EIFEL | 34.3 | 48.2 | 56.6 | 51.8 | 53.4 | 58.0 | 3/0/1 2/0/1 53.3
RED 49.4 | 55.8 | 64.6 | 55.9 | 60.7 | 65.4 3/3/2 2/1/2 59.6
ECN 45.7 | 54.4 | 57.0 | 57.3 | 65.4 | 67.3 3/3/1 2/1/2 57.3
CBI 45.2 | 51.5 | 57.4 | 52.0 | 57.9 | 61.1| 0/0/1 0/0/2 53.4
CBLECN | 47.6 | 59.1 | 63.2 | 55.0 | 64.2 | 678 | 0/0/3 0/0/3 60.8

Table 13: Low ARQ link: 2tcpOudpbs: Summary of the results

Eifel

There were a median of two error related packet drops per connection. In the worst
case, the connection experienced 16 error drops. Because of these packet drops the
median of the elapsed time was lower than with the optimal link. There were total
number of four RTOs over all 20 replications, none of which were spurious. Two of

them were caused by a drop of retransmitted packet.

In few basic tests the bad state happened just before the slow start overshoot
of the first connection. Therefore the first connection slowed down and avoided
the overshoot. In these cases the second connection experienced a mild slow start
overshoot from which it recovered efficiently.

The stability of the first connection was weak; the elapsed time varied from 34.3
seconds to 56.6 seconds. For the latter connection the stability was better. In many
cases the latter connection had transferred only about one third of its data at the
time the first connection had already finished but there were also a couple of cases
in which the second connection was faster than the first connection.

RED

The RED algorithm improved slighty the fairness compared to baseline TCP. When
comparing the medians of the elapsed times, the first connection was only 9% shorter
than the second when the difference was 11% with the Eifel. The RED algorithm
dropped a median of five packets from the first connection and only a median of

2 packets from the second connection. Because of these additional RED drops the

5 RESULTS 54

median of elapsed times over all connections grew over six seconds compared to

Eifel.

ECN

In this test case the router marked roughly the same amount of packets as it dropped
with RED. The first connection experienced only 14 congestion related packet losses
and with RED there was 17 packet drops and therefore the elapsed times with ECN
were slightly smaller. The second connection experienced slightly more RED marks

and error related packet drops and therefore the fairness was worse than with pure
RED.

CBI

Most of the connections did not experience a single congestion related drop. The
CBI option prevented slow start overshoot after the first replication and the error
drops kept the transfer rate at such a low rate that the router buffers did not
overflow. Because of the earlier phase change to congestion avoidance and the
better fairness the throughput of the first connection was lower compared to Eifel.
The second connection was also slower compared to Eifel but the median of overall

elapsed time was roughly the same.

CBI and ECN

Again the combination of ECN and CBI enhancements did not introduce any gain
compared to pure CBI, ECN marks only slowed down the connections. The elapsed
times of the both connections grew remarkably although there were only a median
of zero ECN marks for the first connection and a median of two marks for the latter
connection. The number of error related drops were greater than with pure CBI.
Fairness was about the same with pure CBI and with the combination; the faster

connection was 9% faster than the slower.

5 RESULTS 55

5.2.3 Two TCP Connections, One UDP Flow

Summary of the results with each enhancement is listed in three tables. Table 14
shows the summary of numbers concerning TCP, Table 15 and Table 16 show the
summary of UDP results. The Eifel acted as the baseline TCP.

As can be seen in the graphical summary in Figure 17 the best median elapsed
time for the slower connection was with the Eifel. With the CBI option the elapsed
times were good, but the fairness was not. The ECN option improved elapsed times
compared to RED and fairness and stability were good. The elapsed times were low
and the fairness was excellent. The behavior of the UDP flow was mainly dictated
by RED drops and the link layer retransmission. The RED algorithm introduced
a lower number of congestion drops but a much higher number of RED drops and
the one link layer retransmission introduced an additional delay of about one RTT
to some packets, because they had to wait for a link retransmission.

140

Faster: min, median and max +——+—

130

120

110

100

Elapsed Time (s)

90

80

70

EIFEL RED ECN CBlI ECN-CBI

Figure 17: Low ARQ link: 2tcpludp: Elapsed times of different enhancements

Eifel

A mild overshoot phenomenon occurred also elsewhere besides in the slow start
phase. A few packets were dropped near to each other because of a buffer overflow.

Many of the packet losses were recovered only by retransmitting one packet per

5 RESULTS 56
ctime (s) ctime (s) Drops (50%) | Drops (50%) | otime (s)
TCP Faster Slower Faster Slower
variant | 25% | 50% | 75% | 25% | 50% | 75% | q/r/e a/r/e 50%
EIFEL 92.5 | 102.7 | 106.4 | 112.0 | 1149 | 117.5 8/0/2 6/0/2 111.7
RED 108.4 | 112.5 | 114.9 | 120.2 | 124.1 | 126.3 8/6/2 5/9/4 118.2
ECN 103.0 | 108.4 | 111.8 | 113.9 | 114.6 | 114.9 6/8/2 2/9/4 112.9
CBI 91.2 | 101.6 | 104.8 | 112.5 | 116.1 | 116.8 | 2/0/0 3/0/3 108.9
CBI-ECN | 104.6 | 110.9 | 112.7 | 114.8 | 1179 | 1214 0/10/2 0/13/2 113.8

Table 14: Low ARQ link: 2tcpludp: Summary of the results

TCP variant | Queue Drops (pkts) | Error Drops (pkts) | RED Drops (pkts)
Min/50%/Max Min /50% /Max Min /50% /Max

EIFEL 5/19 /30 8 /14 /23 -/-/-

RED 2/7/13 8 /15 /29 15 /29 / 44

ECN 3/10/13 6 /13 /25 25 / 33 / 50

CBI 2 /13 /27 8/14 /21 /- -

CBLECN |0/1/12 6 /14 /27 16 / 43 / 98

Table 15: Low ARQ link: 2tcpludp: Drop statistics of UDP flows

TCP variant

Throughput (b/s)
Min/50%/Max

Spacing (ms)
50%,/75% /90

%,/ max

EIFEL
RED
ECN

CBI
CBI-ECN

3950 / 3961 / 4002
3863 / 3915 / 3964
3846 / 3930 / 3933
3940 / 3976 / 4025
3817 / 3906 / 3976

127/128/211/911-1133
127/139/211/916-1127
127/128/211/911-1055
127/128/211/839-1055
127/139/211,/911-1199

Table 16: Low ARQ link: 2tcpludp: Throughput and spacing statistics of UDP

flows

RTT because there were not enough dupacks for a more efficient recovery. There

were total number of 18 RTOs, none of which were spurious.

The faster connection was about 12% faster than the slower connection when

comparing the medians of the elapsed times which is roughly the same as the dif-
ference with the Eifel without the UDP flow.

5 RESULTS o7

UDP flows experienced about the same amount of congestion related packet
drops as with the optimal link but there was a median of 14 error related packet
drops, which lowered the throughput. Maximum jitter grew about one RTT com-
pared to optimal link because of the one link layer retransmission. However 90%

percentile of the jitter was still the same.

RED

The RED algorithm kept the queue length below 10 packets most of the time.
Without RED the queue overflowed several times in every replication. Therefore
there were a median of three congestion related packet drops less in the faster
connection and a median of four drops less in the slower connection than in the
Eifel test. But because of the RED algorithm there were about a median of 10
RED drops for both connections and that lead to lower elapsed times. Therefore
the median of the overall elapsed time grew about six seconds compared to Eifel.
On the other hand RED managed to improve the fairness slightly.

The UDP flow experienced the same effect as the TCP connections. The number
of congestion drops was much lower compared to Eifel but on the other hand the
number of RED drops was significantly greater than the difference between the
amounts of congestion related packet drops. Therefore the throughput decreased a
bit. RED did not affect the jitter of the UDP flow, even though it kept the queue
less utilized.

ECN

With the ECN option the TCP connections were about as fast as with the Eifel,
when comparing the overall elapsed time. There were more RED marks with ECN
than pure RED and a slightly lesser amount of error related packet drops. ECN
also achieved good fairness in this test; the faster connection was less than 6% faster
than the slower connection. There were again few RTOs because the ECN option

can not be used in retransmissions.

UDP flow experienced roughly the same amount of packet drops than with pure

RED and the jitter was also roughly the same.

5 RESULTS 58

CBI

With the CBI option the faster connection was very fast, over two seconds faster
than with the Eifel. This is because with the CBI option the slow start overshoot was
avoided. Another reason is that there was only a median of one error related packet
drop for the faster connection and five for the slower. Fairness was poor, the faster
connection was about 14% faster than the slower connection. Both connections
proceeded equally in the beginning, then a bad state occurred and often one of the
connections experienced a packet loss while the other connection experienced only
a delay. After this event the connection that recovered first remained faster until
the end of the test.

The UDP flow experienced a slightly lesser amount of congestion drops than the
Eifel since there was no TCP slow start overshoot and therefore throughput was
better with CBI than with Eifel. The CBI option did not affect the jitter of the
UDP flow.

CBI and ECN

There were median of zero congestion related drops mainly due to absence of slow
start overshoot and the ECN option which kept the size of queue low. The overall
elapsed time was high but the fairness was the best with this workload; the faster

connection was less than 6% faster than the slower connection.

The UDP flow experienced a very low number of congestion related packet drops:
a median of one. The UDP flow did, however, experience a very high amount of
RED drops. The median was 43 RED drops and the maximum value for a single
flow was 98 RED drops. Therefore the throughput was low compared to Eifel or
pure CBI tests. Neither the ECN option nor the CBI option affected the jitter of
the UDP flow.

5.3 Lossy Link with Medium ARQ Persistency

In this section we discuss the results run over medium ARQ persistency link. The

link layer tries to retransmit a lost packet at most three times which is enough to

5 RESULTS 59

hide all error related packet losses from upper protocol layers.

Two TCP Connections Starting at the Same Time

The summary of the results is listed in Table 17. The CBI option introduced the
best overall elapsed time. The next best results were given by the baseline TCP
and the different RTO variants, but they all had poor fairness which, on the other
hand, was very good with the CBI as can be seen in Figure 18. Using the ECN in
addition to CBI gave good results also, but mostly because of the CBI option. The
combination did, however, increase the stability compared to pure CBI. Pure RED
slowed the connections down a lot and the fairness was not as good as it was with
the CBI. RED with ECN introduced a few second improvement over pure RED.

100

Faster: min, median and max +——+—

90

80

70

60 [

“ |

40

Elapsed Time (s)

30

BL EIFEL FRTO DSACK RED ECN CBI ECN-CBI

Figure 18: Medium ARQ link: 2tcpOudp: Elapsed times of different enhancements

Baseline TCP

The stability for the faster connection was low and the elapsed times varied from
37.8 seconds to 59.7 seconds. For the slower connection the stability was much
better as the range was from 56.5 to 62.9 seconds. Because the connections did not
experience error related packet drops, the situation was similar to the baseline TCP

with the optimal link.

5 RESULTS 60
ctime (s) ctime (s) Drops (50%) | Drops (50%) | otime (s)

TCP Faster Slower Faster Slower

variant | 25% | 50% | 75% | 25% | 50% | 75% | a/r /e q/r/e 50%
BL 421520 [54.2 [582 [59.1 596] 12/0/0 | 13/0/0 57.4
EIFEL | 43.8 | 51.9 | 55.9 | 59.1 | 60.6 | 61.5 | 11/0/0 | 13/0/0 58.3
FRTO 39.8 | 44.2 | 52.6 | 57.4 | 58.3 | 59.7 10/0/0 13/0/0 57.0
DSACK 47.5 | 52.7 | 55.5 | 57.5 | 58.5 | 59.4 11/0/0 12/0/0 57.6
RED 57.4 | 63.1 | 65.6 | 65.5 | 69.3 | 71.0| 11/5/0 | 10/5/0 65.8
ECN 56.4 | 61.2 | 64.4 | 66.7 | 67.6 [694 | 12/4/0 | 12/5/0 66.2
CBI 525 | 53.3 | 55.1 | 56.3 | 56.8 | 57.7 | 0/0/0 1/0/0 55.9
CBLECN | 56.1 | 58.4 | 60.5 | 59.6 | 62.4 | 64.3 | 0/4/0 0/5/0 60.4

Table 17: Medium ARQ link: 2tcpOudp: Summary of the results

Eifel, F-RTO and D-SACK

There were hardly any spurious RTOs and therefore the different RTO variants
behaved similarly. The medians of overall elapsed times of other RTO variants were
slightly better compared to Eifel because of the overhead caused by the timestamps

option. F-RTO had a better median of the elapsed time of faster connection.

RED

With a RED router there was smaller amount of congestion related packet drops
as the RED algorithm kept the queue from overflowing but there was a median of
six RED drops for a connection and therefore the elapsed times were much greater
compared to baseline TCP. The RED algorithm improved the fairness; with the
baseline TCP the median of the elapsed time of the faster connection set was 14%
smaller than the same of the slower set and with RED the difference was only about
10%. RED decreased the stability especially for the slower connection.

There were RTOs because the RED algorithm dropped some retransmissions.
In some cases there were two RTOs in the slow start overshoot recovery and also
three RTOs were experienced in the overshoot recovery although this case was very
rare. There were also cases where the RED router dropped the same packet twice,

first the original transmission and then the retransmission of it.

5 RESULTS 61

ECN

The use of ECN option in addition to a RED router introduced a few second im-
provement to medians of elapsed times. The fairness was about the same as with
pure RED. The main reason for unfair connections was the different slow start over-
shoot recoveries of the connections. In many cases the slower connection recovered
only by one retransmission per one RTT. Another reason for poor recovery were
RTOs caused by RED drops on retransmitted segments since the ECN is not used

In retransmissions.

CBI

The CBI option introduced again very good results. The overall elapsed time was
two seconds better than in the baseline and still the faster connection was only 6%
faster than the slower connection. The stability was also good with CBI, especially
for the slower connection. In most of the replications the connections proceeded
equally from the beginning to the end, all bad states were experienced and recovered

very similarly.

CBI and ECN

Elapsed time got a bit longer compared to pure CBI because there was a median
of five ECN marks for the faster connection and a median of six ECN marks for
the slower connection. The fairness was about the same as it was with pure CBI.
Median of the overall elapsed time was three seconds higher than with the baseline
TCP and five seconds higher than with pure CBI but because of ECN the stability

was good for both connections.

5.4 Lossy Link with High ARQ Persistency

In this section we discuss results of the high ARQ persistency link. The bad state
was long but because the link layer tried to retransmit a lost packet up to six times,
no error related packet losses were experienced by the upper protocol layers. Because
of the long bad states there were often several spurious RTOs experienced by the

5 RESULTS

TCP connections. With this link only the workload with two TCP connections

starting simultaneously was measured.

Two TCP Connections Starting at the Same Time

The summary of the results is listed in Table 18. In this test case there were roughly

from zero to five spurious RTOs experienced by a connection. The Eifel and F-RTO

algorithms recovered efficiently from spurious RTOs.

Elapsed Time (s)

110

100

Faster: min, median and max +——+—

90

80

70

60

50

40

BL

EIFEL

FRTO DSACK

Figure 19: High ARQ link: 2tcpOudp: Elapsed times of different enhancements

ctime (s) ctime (s) Drops (50%) | Drops (50%) | otime (s)
TCP Faster Slower Faster Slower
variant | 25% | 50% | 75% | 25% | 50% | 75% | a/r/e q/r/e 50%
BL 57.2 | 65.2 | 72.1 | 69.5 | 76.1 | 82.5 9/0/0 8/0/0 71.5
EIFEL | 49.8 | 56.8 | 64.1 | 65.8 | 68.7 | 71.8 | 10/0/0 | 13/0/0 65.6
FRTO | 49.3 | 57.9 | 62.5 | 64.1 | 67.3 | 68.7 | 11/0/0 1/0/0 63.7
DSACK | 53.9 | 65.7 | 71.8 | 67.0 | 68.7 | 75.0 12/0/0 12/0/0 67.3

Table 18: High ARQ link: 2tcpOudp: Summary of the results

5 RESULTS 63

Baseline TCP

With the baseline TCP the sender retransmitted every packet in current TCP win-
dow after a spurious RTO even if they had all been received by the receiver. Because
the receiver had all the packets when the retransmitted packets arrived it generated
a dupack for every duplicate packet which, in turn, lead to unnecessary fast retrans-
mit. When an RTO expired spuriously in a fast recovery, after slow start overshoot
for example, no unnecessary fast retransmit was triggered since unnecessary retrans-

missions were avoided because of the SACK information.

The sender did often receive the ACKs for the original packets in bursts, because
the link layer had buffered the packets while retransmitting some earlier lost packet.
The sender then sent a new packet for every incoming ACK and therefore also the
data packets were often sent in bursts. Linux TCP will send only three packets in
one burst and wait 5 ms before sending again. Nevertheless this delay is very small
compared to transmission delay of 72 ms for a packet of 576 bytes using a 64 kbit/s
link and therefore in some cases this burstiness lead to queue overflow by several

packets.

Because of the many RTOs the congestion window remained small and the con-
nections were most of the time slowly increasing their speed and therefore there
were a relatively small number of packet losses caused by an queue overflow. The
stability was poor with both connections.

Eifel

The fairness was very poor; median of the elapsed time of the faster connection
set was 21% faster than the median of the slower set. This was mainly because
often one of the connections recovered very poorly from the slow start overshoot.
Because of the long bad states there were many spurious RTOs but they were
recovered efficiently using the Eifel undo mechanism. There were no unnecessary

retransmissions besides the packet that triggered the RTO.

5 RESULTS 64

F-RTO

The F-RTO variant behaved similarly to Eifel; the spurious RTOs were recovered
efficiently. F-RTO improved the fairness only slightly but increased the stability
of both connections significantly. Median of the overall elapsed time was two sec-
onds better with F-RTO than with the Eifel and seven seconds better compared to
baseline TCP.

D-SACK

The elapsed times were similar to the baseline TCP because the unnecessary re-
transmissions after a spurious RTO were also made with D-SACK and therefore the
fast retransmit was also triggered. Although the sender undid the modifications to
ssthresh and cwnd after the spurious RTO was recovered, the ssthresh and cwnd

were decreased again because of the fast retransmit.

The fairness with D-SACK was the best among the enhancements with this
workload and link combination. The faster connection was less than 4% faster than

the slower connection. The stability was as low as it was with the baseline TCP.

5.5 Summary

In this section we summarize the results analyzed above. For TCP connections
median, minimum and maximum elapsed time over all replications in each test
case are drawn in the summary Figure 20. On the graph the enhancements are
from left to right in the same order as they were discussed earlier in this section.
In the graph marking 2T means the workload with two TCP connections starting
simultaneously, 2T5s means the workload with two TCP connections starting with
a five second difference and 2T1U means the workload with two TCP connections

starting simultaneously with one UDP flow.

With the baseline TCP and the Eifel the fairness among the two competing
TCP connections was usually poor. If the connections started simultaneously on
an optimal link and both recovered efficiently from the slow start overshoot, they

proceeded at roughly the same speed until the end. However, in many cases one of

5 RESULTS 65

160
Overall time: min, median and max —+—

T
L)] Sl :s i i it €

Elapsed Time (s)

1 W S M

Ll . s

| 2T 2T5s 2T1U | 2T 2T5s 2T1U | 2T | 2T |
e0 r1 r3 ré

Figure 20: Overall elapsed times of all workloads, link environments and enhance-

ments

the connections did not manage to recover efficiently from the slow start overshoot
and transferred data very slowly for a relatively long period of time. Meanwhile
the other connection that recovered efficiently from the overshoot was increasing
its transfer rate. As it utilized more and more of the router queue, the queuing
delays got longer and the recovery of the slower connection got even slower. Even
after the recovery the slower connection still suffered from high queueing delays and
managed to start transferring data at normal rate only after the faster connection

was finished.

In most of the test cases where the latter connection started five seconds later
than the first connection, the first connection efficiently locked the latter connection
out. At the starting time of the latter connection, the first connection was usually
at the end of the slow start overshoot and the latter connection experienced very
high queuing delays and often congestion related packet drops as the faster connec-

tion had filled the queue. Even when the first connection had recovered from the

5 RESULTS 66

overshoot the latter connection did not have much bandwidth. As a result it had
usually transferred only a small fraction of its data by the time the first connection
had finished. The situation was better with lossy link as the first connection had
to slow down when it experienced a packet loss and often no lock-out situation
occurred. The use of the RED algorithm also helped the situation after the first
connection was recovered from the slow start overshoot. Before that the average
queue was not high enough for the RED router to start marking packets. Because
of the CBI option no slow start overshoot occurred after the first connection and
the lock-out situation was efficiently avoided.

The CBI enhancement gave very good results in most link environments. It
improved fairness among the connections and the overall elapsed time was often
better with CBI than with the baseline TCP or with the Eifel. The better fairness
was gained as the use of the CBI option avoided slow start overshoot and the
queue size remained low in the beginning of the connection and therefore there were
no congestion related packet losses and the queueing delays were low. Although
the CBI enhancement gave good results with our workloads, it might not be the
case generally. The connections behaved well in the beginning because of the saved
ssthresh value, but the stability got worse toward the end of the test because of the
few congestion related packet losses. With longer transfers the effect of the avoided
slow start overshoot could be less significant. A greater number of concurrent data
flows could also change the situation more against the good results of the CBI
enhancement as there would be more congestion related packet losses.

In general the RED active queue management algorithm worked well. It usually
lowered the throughput as it dropped a number of packets. Still the number of RED
drops could probably not have been any smaller as the effectiveness of the RED
algorithm would have diminished. The use of the ECN option in addition to the
RED algorithm usually introduced a slight improvement because the retransmissions
caused by the RED drops were avoided. However, the RED algorithm was not
efficient with the lossy link as there were many error related packet losses and effect
of RED drops was not significant enough to control the data flows. The RED
algorithm could have worked better with more aggressive RED parameters, but
then the throughput would probably have been even lower.

The different RTO variants, baseline TCP, Eifel, F-RTO and D-SACK, gave

very similar results with the optimal link and the low and median ARQ persistency

5 RESULTS 67

compared to baseline TCP as there were roughly any spurious RTOs. With the high
ARQ persistent link and long bad states the difference was significant. The baseline
TCP had no undo mechanism nor a way to distinguish between ACKs of the original
packets and retransmitted packets and therefore the packets were retransmitted un-
necessarily after a spurious RTO. This often led to unnecessary fast retransmit and
therefore the sender slowed down the transfer rate twice. The situation was almost
the same with D-SACK even though it has an undo mechanism. The packets were
retransmitted unnecessarily and the fast retransmit was triggered also unnecessarily
and the sender proceeded slowly in the congestion avoidance phase. Because of un-
necessary retransmissions and fast retransmit these two variants gave poor results.
The Eifel and The F-RTO algorithms on the other hand worked efficiently. The
effect of a spurious RTO was relatively small; the RTO was detected as spurious,
and the TCP variants continued sending new data. Although the F-RTO variant
did not undo the modifications to ssthresh and cwnd, its results were roughly the

same as with the Eifel.

With the presence of a RED router the UDP flow experienced a large num-
ber of RED drops and therefore the throughput of the UDP flow was lower than
without the RED router even if the flow experienced a low number of congestion
related drops. The jitter of the UDP flow was mainly dictated by the link layer
retransmissions as they delayed packets for one additional RTT. Without link layer
retransmissions the UDP flow experienced some additional delays caused by queuing

delays as there sometimes were few packets in the queue before the UDP packet.

6 CONLUSION 68

6 Conlusion

Our objective was to analyze the impact of concurrent TCP connections and stream-
ing traffic to each other in a wireless environment. A TCP connection is affected
by other traffic because it employs a congestion control and will slow down sending
rate when congestion in the network increases. The streaming traffic in our mea-
surements was a constant bit rate UDP flow which injected packets to the network
at a steady rate. The UDP sender did not get any feedback from the network nor
had implemented any congestion control mechanism therefore ignoring possible con-
gestion. We measured workloads where two TCP connections started at the same
and at different times. Third workload had an UDP flow in addition to two TCP
connections. In this workload all data flows started at the same time.

The workloads were run over software emulated link and last-hop router using
real end hosts. With the Seawind emulator we were able to control the character-
istics of the link and we analyzed the workloads with an optimal link, with a link

with errors, and with a link with long delays.

The main problem in our environment was the unfair use of the bandwidth
between the two TCP connections and the long delays caused by link layer retrans-
missions. The slow start overshoot recovery was the main reason for the unfair use
of the bandwidth and packet losses also decreased the fairness between the TCP
connections. Spurious RTOs caused by long delays were efficiently recovered with
F-RTO and Eifel algorithms. When UDP traffic was used, the UDP flow consumed
half of the bandwidth, increasing congestion in the last-hop router. The most im-
portant metric for a UDP flow was jitter because interactive streaming traffics need

a steady data flow.

We measured and analyzed the behavior of the baseline TCP, CBI enhancement,
and the RED active queue management algorithm as well as different RTO recovery
algorithms, Eifel, F-RTO and D-SACK. In addition to RED, ECN was also analyzed
as well as a combination of ECN and CBI enhancements. The SACK enhancement

was included already in the baseline TCP.

The CBI enhancement seemed to improve the results in every link environment
because slow recovery from slow start overshoot was avoided. The RED algorithm
generally improved the fairness among the TCP connections and ECN introduced a

6 CONLUSION 69

slight improvement over RED. Eifel and F-RTO detected efficiently spurious RTOs
unlike the baseline TCP and D-SACK. The jitter of the UDP was slightly increased
by queueing delays in congested network. Link layer retransmissions increased the
jitter significantly as the last-hop router buffered packets while retransmitting a lost
packet that should be delivered before the other ones.

In future we intend to analyze more complicated workloads; more concurrent
TCP connections and UDP flows and also uplink traffic. The behavior of traffic

flows would be interesting to analyze in presence of a DiffServ capable router.

REFERENCES 70

References

[ABFO1]

[AFP02]

[APS99)

[BAO3)

[BAF+03]

[BBCOS)]

[BCC+98]

[BPS-+96]

[Brag9)

M. Allman, H. Balakrishnan, and S. Floyd, Enhancing TCP’s Loss Re-
covery Using Limited Transmit. Request for Comments, 3042, January
2001.

M. Allman, S. Floyd, and C. Partridge, Increasing TCP’s Initial Win-
dow. Request for Comments, 3390, October 2002.

M. Allman, V. Paxson, and W. Stevens, TCP Congestion Control. Re-
quest for Comments, 2581, April 1999.

E. Blanton and M. Allman, Using TCP DSACKs and SCTP Du-
plicate TSNs to Detect Spurious Retransmissions. Available at:
http://www.ietf.org/internet-drafts/
draft-ietf-tsvwg-dsack-use-01.txt, last checked 03.10.2003.

E. Blanton, M. Allman, K. Fall, and L. Wang A Conservative Selective
Acknowledgment (SACK)-based Loss Recovery Algorithm for TCP. Re-
quest for Comments, 3517, April 2003

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An
Architecture for Differentiated Service. Request for Comments, 2475,
December 1998.

B. Braden, D. Clark, J. Crowcroft B. Davie, S. Deering, D. Estrin, S.
Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakr-
ishnan, S. Shenker, J. Wroclawski, and L. Zhang, Recommendations on

Queue Management and Congestion Avoidance in the Internet. Request
for Comments, 2309, April 1998.

H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, A
Comparison of Mechanisms for Improving TCP Performance over Wire-
less Links. Proceedings of ACM SIGCOMM ’96, Standford, Ca, August
1996.

R. Braden, Requirements for Internet Hosts — Communication Layers.
Request for Comments, 1122, October 1989

REFERENCES 71

[BW9S]

[BZB+98]

[FH99)

[FJ93]

[FMMO00]

[Flo]

[FW02]

[H263]

[TIP]

[IML+02]

[IP81]

[Jac88|

G. Brasche and B. Walk, Concepts, Services and Protocols of the New
GSM Phase 24 General Packet Radio Service. IEEE Communication

magazine, pages 94-104, August 1997.

R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, Resource
ReSerVation Protocol (RSVP) — Version 1 Functional Specification. Re-
quest for Comments, 2205, September 1997.

S. Floyd and T. Henderson, The NewReno Modification to TCP’s Fast
Recovery Algorithm. Request for Comments, 2582, April 1999.

S. Floyd and V. Jacobson, Random Early Detection Gateways for Con-
gestion Avoidance. IEEE/ACM Transactions on Networking, vol. 1, no.
3, pp. 397-413, August 1993.

S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, An Extension to
the Selective Acknowledgement (SACK) Option for TCP. Request for
Comments, 2883, July 2000.

S. Floyd, RED: Discussions of Setting Parameters. Available at:
http://http://www.icir.org/floyd/REDparameters.txt,
last checked 18.09.2003.

G. Fairhurst and L. Wood, Advice to link designers on link Automatic
Repeat reQuest (ARQ). Request for Comments, 3366, August 2002.

Video coding for low bit rate communication. ITU-T Recommendations
H.263, March 1996.

ITP Mixture Project, Patches to Linux kernels. Available at:
http://www.cs.helsinki.fi/research/iwtcp/kernel-patch/,
last checked 01.10.2003.

H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, and F. Khafizov,
TCP over Second (2.5G) and Third (3G) Generation Wireless Networks.
Request for Comments, 3481, February 2003.

Internet Protocol. Request for Comments, 791, September 1981.

V. Jacobson, Congestion Avoidance and Control. Computer Communi-
cation Review, vol. 18, no. 4, pp. 314-329, August 1988.

REFERENCES 72

[Jac90]

V. Jacobson, Compressing TCP /TP Headers for Low-Speed Serial Links.
Request for Comments, 1144, February 1990.

[KGM~+01] M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, T. Alanko, and K.

[KRL+97]

[LKOO]

[Man]|

Raatikainen. Seawind: a Wireless Network Emulator. In Proceedings
of 11th GI/ITG Conference on Measurement, Modelling and Analysis
(MMB 2001), Aachen, Germany, September 2001.

M. Kojo, K. Raatikainen, M. Liljeberg, J. Kiiskinen, and T. Alanko,
An Efficient Transport Service for Slow Wireless Telephone Links. I[EEE

Journal on Selected Areas in Communications, Vol. 15, No. 7, September
1997.

R. Ludwig and R. H. Katz, The Eifel Algorithm: Making TCP Ro-
bust Against Spurious Retransmissions. ACM Computer Communica-
tions Review, 30(1), January 2000.

J. Manner, Jugi’s Traffic Generator. Available at:
http://www.cs.helsinki.fi/u/jmanner/software/jtg/,
last checked 18.09.2003.

[MDK~+00] G. Montenegro, S. Dawkins, M. Kojo, V. Magret, and N. Vaidya, Long

Thin Networks. Request for Comments, 2757, January 2000.

[MMF+96] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, TCP Selective

[MM92]

[MPEG4]

Acknowledgment Options. Request for Comments, 2018, October 1996.

M. Mouly and M. Pautet, The GSM Systems for Mobile Communica-
tions. Furope Media Duplication, S.A., 1992.

MPEG-4 Overview. INTERNATIONAL ORGANISATION FOR
STANDARDISATION, ISO/IEC JTC1/SC29/WG11 N4668, March
2002.

[MSM+99] M. Mathis, J. Semke, J. Mahdavi and K. Lahey, The Rate-Halving

[Ost]

Algorithm for TCP Congestion Control, June 1999. Available at:
http://www.psc.edu/networking/ftp/papers/
draft-ratehalving.txt, last checked 18.09.2003.

S. Ostermann, Tcptrace, Available at: http://www.tcptrace.org, last
checked 18.09.2003.

REFERENCES 73

[PAOO]

[PS98]

[Pos80]

[Pos81]

[RFBO1]

[SCF+96]

[SKR02]

[SK02]

[SRL9S|

[Tou97]

[Wro98]

V. Paxson and M. Allman, Computing TCP’s Retransmission Timer.
Request for Comments, 2988, Noveber 2000.

S. Parker and C. Schmechel, Some Testing Tools for TCP Implementors
Request for Comments, 2398, August 1998

J. Postel, User Datagram Protocol. Request for Comments, 768, August
1980.

J. Postel, Transmission Control Protocol. Request for Comments, 793,
September 1981.

K. Ramakrishnan, S. Floyd, and D. Black, The Addition of Explicit Con-
gestion Notification (ECN) to IP. Request for Comments, 3168, Septem-
ber 2001.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP: A Trans-
port Protocol for Real-Time Applications. Request for Comments, 1889,
January 1996.

P. Sarolahti, M. Kojo, and K. Raatikainen, F-RTO: A New Recovery
Algorithm for TCP Retransmission Timeouts. Series of Publications C,
No. C-2002-07, University of Helsinki, Department of Computer Sci-
ence, February 2002.

P. Sarolahti and A. Kuznetsov, Congestion Control in Linux TCP. In
Proceedings of Useniz 2002/Freeniz Track, pp. 49-62. Monterey, CA,
USA, June 2002.

H. Schulzrinne, A. Rao, and R. Lanphier, Real Time Streaming Protocol
(RTSP). Request for Comments, 2326, April 1998.

J. Touch, TCP Control Block Interdependence. Request for Comments,
2140, April 1997.

J. Wroclawski, The Use of RSVP with IETF Integrated Services Request
for Comments, 2210, September 1997.

A CONFIGURATION PARAMETERS 74

A Configuration Parameters

In this appendix we list the different parameters of Seawind, workload generator

and the kernel that were used in our analysis.

A.1 Seawind Parameters

In this section we list the Seawind parameters, that were used in the analysis. Table
19 holds the common parameters for all test cases. With the optimal case there were
no errors nor state changes. Table 20 has the information conserning the two states
with low ARQ persistency link. Tables 21 has the same information for medium
ARQ link and Table 22 for the high ARQ link. Between the low and medium ARQ
links the only difference is the lenght of delay_drop_threshold parameter. With
high ARQ link the state_duration of the bad state and the error_probability

is different.

A CONFIGURATION PARAMETERS

Parameter Value

edge BOTH
traffic_type TUN_IP
snaplen 100b

packet logging level END TO END
filter level BINARY
rewind user distribution 1

logging level NORMAL
Parameter DL Value | UL Value
link receive buffer_size 9600b 9600b
link layer ack emulation TRUE TRUE
queue_drop_policy Tail Tail
reordering FALSE FALSE
link send buffer size 9600b 9600b
propagation _delay 300 300
queue max_length 20 1
queue overflow handling DROP DROP
rate_base 64000bit/s | 64000bits/s
reassembly FALSE FALSE
user max_rate 1 1
max_ packet size 2048b 2048b

Table 19: Link parameters for all tests

A CONFIGURATION PARAMETERS

Good state
Parameter Value
state duration exponential, 15.0s, 1.0s, 20.0s
Bad state
Parameter Value
state__duration uniform, 0.2s, 1.5s
Parameter DL Value UL Value
error _delay function static, 700ms static, 700ms
error_rate type UNIT UNIT
error _handling DELAY ITERATE | DELAY ITERATE
error _probability static, 0.63% static, 0.63%
delay drop threshold 701ms 701ms

Table 20: Low ARQ persistency link parameters

Good state
Parameter Value
state duration exponential, 15.0s, 1.0s, 20.0
Bad state
Parameter Value
state__duration uniform, 0.2s, 1.5s
Parameter DL Value UL Value
error _delay function static, 700ms static, 700ms
error_rate type UNIT UNIT
error _handling DELAY ITERATE | DELAY ITERATE
error _probability static, 0.63% static, 0.63%
delay drop threshold 2101ms 2101ms

Table 21: Medium ARQ persistency link parameters

A CONFIGURATION PARAMETERS

7

Good state

Parameter

Value

state duration

exponential, 15.0s, 1.0s, 20.0s

Bad state

Parameter

Value

state duration

uniform, 0.4s, 4.0s

Parameter DL Value UL Value
error _delay function static, 700ms static, 700ms
error_rate type UNIT UNIT

error _handling
error probability
delay drop threshold

DELAY ITERATE
static, 0.95%
4201ms

DELAY ITERATE
static, 0.95%
4201ms

Table 22: High ARQ persistency link parameters

A CONFIGURATION PARAMETERS 78

A.2 Kernel Configuration

Table 23 contains kernel parameters provided by our patch and Table 24 contains
the rest of the kernel parameter sused in our measurements. 0/1 means that the pa-
rameter was in some tests enabled and in some tests disabled. iip_rto_behaviour

parameter value 1 means normal Linux RTO behavior and 3 enables F-RTO.

Parameter Value
iip chi 0/1
iip_rto_behaviour 1/3
iip_iw 2
iip_delack_mode 1
iip limitedxmit 1
iip_ratehalving 0

iip_srwnd max 16384
iip_srwnd _min 1024

iip srwnd _size 16384

iip_srwnd _addr 0

Table 23: Kernel parameters

A CONFIGURATION PARAMETERS 79
Parameter Value | Parameter Value
tcp dsack 0/1 | tcp ecn 0/1
tcp_timestamps 0/1 | tcp_sack 1
tcp fack 0 | tcp_window scaling 0
tcp tw_reuse 0 | tcp_adv_win_scale 2
tcp_app_win 31 | tcp_rmem 4096 87380 174760
tcp wmem 4096 32768 131072 | tcp mem 23552 24064 24576
tcp reordering 3 | tcp_orphan retries 0
tcp_max_syn_backlog 256 | tcp_rfcl337 0
tcp stdurg 0 | tcp_abort on overflow 0
tcp tw_recycle 0 | tcp_fin timeout 60
tcp_retries2 15 | tcp_retriesl 10
tcp keepalive intvl 75 | tcp keepalive probes 9
tcp_keepalive time 7200 | tcp_max_tw_ buckets 16384
tcp__max_orphans 8192 | tcp_synack retries 5
tcp__syn_retries 5 | tcp_retrans collapse 1
icmp_ ratemask 6168 | icmp_ratelimit 100
icmp _ignore_bogus_error_responses 0 | icmp_echo_ignore broadcasts 0
icmp _echo_ignore_all 0 | inet peer gc maxtime 120
inet peer gc mintime 10 | inet peer maxttl 600
inet peer_ minttl 120 | inet peer threshold 65664
ipfrag_low_ thresh 196608 | ipfrag_high thresh 262144
ipfrag time 30 | ip local port range 1024 4999
ip_dynaddr 0 | ip_nonlocal bind 0
ip_no pmtu_disc 0 | ip_autoconfig 0
ip_default ttl 64 | ip forward 0

Table 24: Kernel parameters

A CONFIGURATION PARAMETERS 80

A.3 Workload Generator Parameters

With JTG workload generator the parameters listed in Table 25 were used. With
timestamps option the length of packets was 524 bytes and the number of packets
was 360 and without timestamps the values was 536 and 352, respectively. The
value swd means that Seawind assigned the port numbers. The -A option was used
with UDP workloads. The middle section of the table describes the UDP only

parameters and the last section describes the receiver only parameters.

Parameter | Description Value
144 length of packets written to network 524/536
-n## number of bufs written to network 360/352
-PHH port number to send to/listen at swd
-W force the sender to use busy waiting

-W force the sender to use select (-w -W:

use both based on HZ)
-P take into account processing latencies

(send pckts more accurately)
-Axxx define another [addr:|port for commu- swd

nicating with the receiver

- delay in seconds before ending test 10
(sender & receiver)
-Q "be quiet" otherwise, but print the log
of received packets on stdout
-u use UDP instead of TCP subset
-d## transmission time in seconds 180
-b#H# Bandwidth for CBR in bits/s 32000
-T receive
-q "be quiet!"

Table 25: JTG parameters

B STATISTICS 81

B Statistics

There are listed in the tabels some metrics of the results. Those not discussed in

section 4.6 are explained here as well as the other markings in the tables.

TCP SET 1, CLI—-SRYV is the first TCP connection set from the client (cli) to
the server (srv) or from the server to the client (SRV—CLI). For the UDP
there is only one set. The first set contains always the faster connection or the
first connection in the workload case where the two TCP connection started
at different time. The second TCP set contains the other connections.

rexmt data pkts is the number of retransmitted packets.

duplicate acks is the number of dupacks the sender has received and therefore

the sent but dropped dupacks are not counted.

triple dupacks is the number of times the sender has received three consecutive
dupacks and therefore the sent but dropped dupacks are not counted.

pkts dropped is the number of packets dropped by Seawind. These drops are
listed separately by marking (q) for a queue drop, (r) for a RED drop, and
(e) for an error drop. In the cases where the ECN option is used a RED drop
means an ECN mark and also the actual RED drops with ECN are counted.
If the “pkts dropped” metric is ommitted, then there were no packets dropped.

sacks sent is the number of SACK blocks received by the sender and therefore
the sent but dropped SACK blocks are not counted.

B STATISTICS

82

B.1 Optimal Link

B.1.1 Two TCP Connections Starts at the Same Time

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 39.65 46.21 55.35 55.36 55.57
throughput 3395.00 | 3401.00 | 3408.00 | 4082.00 | 4758.00
rexmt data pkts 12.00 14.00 15.00 15.00 15.00
duplicate acks 22.00 27.00 41.00 41.00 43.00
triple dupacks 1.00 2.00 2.00 2.00 3.00
pkts dropped (q) 12.00 14.00 15.00 15.00 15.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 33.00 39.00 54.00 54.00 55.00
pkts dropped (q) 0.00 000 |000 |000 |0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 54.52 54.68 55.76 55.78 55.86
throughput 3377.00 | 3382.00 | 3383.00 | 3393.00 | 3460.00
rexmt data pkts 12.00 15.00 15.00 15.00 17.00
duplicate acks 28.00 36.00 42.00 42.00 44.00
triple dupacks 1.00 2.00 2.00 2.00 3.00
pkts dropped (q) 12.00 15.00 15.00 15.00 17.00
pkts dropped (e) 0.00 000 |000 |000 |0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 28.00 51.00 54.00 55.00 58.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 26: 2 TCP connections started simultaneously, no competing traffic. Baseline,

no errors, queue 20 pkt.

B STATISTICS

83

TCP SET 1, CLI-»SRV | min 25% 50% 5% max
elapsed time 40.68 40.75 56.62 56.63 56.68
throughput 3328.00 | 3331.00 | 3332.00 | 4630.00 | 4638.00
rexmt data pkts 14.00 14.00 15.00 15.00 15.00
duplicate acks 24.00 42.00 42.00 46.00 46.00
triple dupacks 1.00 2.00 2.00 2.00 2.00
pkts dropped (q) 14.00 | 14.00 |15.00 |15.00 | 15.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 35.00 54.00 54.00 58.00 58.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-»SRV | min 25% 50% 5% max
elapsed time 55.79 56.76 56.89 56.91 56.95
throughput 3312.00 | 3315.00 | 3316.00 | 3323.00 | 3381.00
rexmt data pkts 12.00 15.00 15.00 17.00 17.00
duplicate acks 29.00 37.00 42.00 42.00 42.00
triple dupacks 1.00 2.00 2.00 2.00 2.00
pkts dropped (q) 12.00 15.00 15.00 17.00 17.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 5% max
sacks sent 28.00 51.00 54.00 54.00 54.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 27: 2 TCP connections started simultaneously, no competing traffic. Eifel,

no errors, queue 20 pkt.

B STATISTICS

84

TCP SET 1, CLI-»SRV | min 25% 50% 75% max
elapsed time 39.65 39.72 45.72 55.34 55.48
throughput 3400.00 | 3409.00 | 4097.00 | 4748.00 | 4757.00
rexmt data pkts 13.00 14.00 14.00 15.00 15.00
duplicate acks 22.00 24.00 41.00 43.00 45.00
triple dupacks 1.00 1.00 2.00 2.00 2.00
pkts dropped (q) 13.00 | 14.00 |14.00 |15.00 | 15.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 35.00 35.00 54.00 55.00 56.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 54.56 54.64 55.76 55.78 55.89
throughput 3375.00 | 3381.00 | 3383.00 | 3446.00 | 3458.00
rexmt data pkts 12.00 12.00 15.00 17.00 17.00
duplicate acks 28.00 29.00 36.00 42.00 44.00
triple dupacks .00 | 1.00 |200 |200 |3.00
pkts dropped (q) 12.00 12.00 15.00 17.00 17.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 28.00 28.00 51.00 54.00 58.00
pkts dropped (q) 0.00 000 |000 |000 |0.00
pkts dropped () 0.00 000 |000 |000 |0.00

Table 28: 2 TCP connections started simultaneously, no competing traffic. F-RTO,

no errors, queue 20 pkt.

B STATISTICS 85
TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 39.65 39.74 55.34 55.36 55.68
throughput 3388.00 | 3407.00 | 3408.00 | 4147.00 | 4758.00
rexmt data pkts 13.00 14.00 15.00 15.00 15.00
duplicate acks 22.00 41.00 41.00 41.00 45.00
triple dupacks 1.00 2.00 2.00 2.00 2.00
pkts dropped (q) 13.00 | 14.00 |15.00 |15.00 |15.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 33.00 54.00 54.00 55.00 56.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 54.57 55.71 55.78 55.80 55.87
throughput 3376.00 | 3381.00 | 3382.00 | 3386.00 | 3457.00
rexmt data pkts 12.00 15.00 15.00 15.00 17.00
duplicate acks 28.00 36.00 42.00 42.00 42.00
triple dupacks 1.00 2.00 2.00 2.00 2.00
pkts dropped (q) 12.00 15.00 15.00 15.00 17.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 28.00 51.00 54.00 54.00 55.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 29: 2 TCP connections started simultaneously, no competing traffic. D-

SACK, no errors, queue 20 pkt.

B STATISTICS

86

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 60.16 64.59 65.57 65.92 69.64
throughput 2709.00 | 2862.00 | 2877.00 | 2921.00 | 3136.00
rexmt data pkts 20.00 21.00 21.00 24.00 24.00
duplicate acks 51.00 52.00 57.00 63.00 63.00
triple dupacks 5.00 6.00 6.00 7.00 7.00
pkts dropped (q) 13.00 14.00 14.00 14.00 14.00
pkts dropped (1) 6.00 7.00 | 8.00 10.00 | 10.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 64.00 65.00 66.00 73.00 77.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |000 |000 |0.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 66.01 68.16 69.60 70.80 72.92
throughput 2587.00 | 2665.00 | 2710.00 | 2768.00 | 2858.00
rexmt data pkts 20.00 22.00 22.00 24.00 24.00
duplicate acks 47.00 60.00 63.00 67.00 74.00
triple dupacks 6.00 6.00 7.00 8.00 9.00
pkts dropped (q) 11.00 12.00 13.00 14.00 15.00
pkts dropped (r) 7.00 10.00 11.00 11.00 13.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 58.00 74.00 76.00 84.00 86.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |000 |000 |0.00

Table 30: 2 TCP connections started simultaneously, no competing traffic. Eifel 4

RED, no errors, queue 20 pkt.

B STATISTICS

87

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 55.33 57.83 61.13 61.64 63.47
throughput 2972.00 | 3060.00 | 3086.00 | 3262.00 | 3410.00
rexmt data pkts 13.00 14.00 15.00 15.00 15.00
duplicate acks 23.00 30.00 31.00 33.00 34.00
triple dupacks 1.00 2.00 2.00 2.00 2.00
pkts dropped (q) 13.00 13.00 13.00 13.00 14.00
pkts dropped (r) 6.00 6.00 8.00 8.00 9.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 31.00 34.00 36.00 36.00 38.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |000 |000 |0.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 64.08 64.38 64.47 65.53 69.56
throughput 2712.00 | 2879.00 | 2926.00 | 2930.00 | 2944.00
rexmt data pkts 14.00 15.00 16.00 17.00 17.00
duplicate acks 20.00 20.00 22.00 46.00 63.00
triple dupacks 1.00 1.00 1.00 2.00 2.00
pkts dropped (q) 14.00 15.00 15.00 15.00 15.00
pkts dropped (r) 4.00 6.00 6.00 10.00 11.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 33.00 33.00 34.00 55.00 72.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |000 |000 |0.00

Table 31: 2 TCP connections started simultaneously, no competing traffic. Eifel 4

ECN, no errors, queue 20 pkt.

B STATISTICS

88

TCP SET 1, CLI-»SRV | min 25% 50% 5% max
elapsed time 40.68 49.80 49.80 53.06 53.08
throughput 3554.00 | 3555.00 | 3788.00 | 3788.00 | 4637.00
rexmt data pkts 0.00 0.00 0.00 1.00 14.00
duplicate acks 1.00 1.00 1.00 21.00 46.00
triple dupacks 0.00 0.00 0.00 1.00 2.00
pkts dropped (q) 0.00 0.00 0.00 1.00 14.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 0.00 0.00 20.00 58.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-»SRV | min 25% 50% 5% max
elapsed time 53.20 53.20 53.25 53.26 56.73
throughput 3325.00 | 3542.00 | 3543.00 | 3546.00 | 3546.00
rexmt data pkts 1.00 1.00 2.00 2.00 17.00
duplicate acks 20.00 20.00 20.00 21.00 37.00
triple dupacks 1.00 1.00 1.00 1.00 2.00
pkts dropped (q) 1.00 1.00 2.00 2.00 17.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 5% max
sacks sent 20.00 21.00 21.00 21.00 51.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 32: 2 TCP connections started simultaneously, no competing traffic. Eifel +

CBI, no errors, queue 20 pkt.

B STATISTICS

89

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 53.90 56.26 56.75 59.08 61.36
throughput 3075.00 | 3193.00 | 3324.00 | 3353.00 | 3500.00
rexmt data pkts 0.00 0.00 0.00 0.00 15.00
duplicate acks 1.00 1.00 1.00 1.00 28.00
triple dupacks 0.00 0.00 0.00 0.00 2.00
pkts dropped (q) 0.00 0.00 0.00 0.00 14.00
pkts dropped (r) 4.00 6.00 7.00 7.00 9.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 0.00 0.00 0.00 31.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |000 |000 |0.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 60.12 60.64 63.18 63.53 65.71
throughput 2871.00 | 2969.00 | 2986.00 | 3111.00 | 3138.00
rexmt data pkts 0.00 0.00 0.00 0.00 16.00
duplicate acks 1.00 1.00 1.00 1.00 48.00
triple dupacks 0.00 0.00 0.00 0.00 2.00
pkts dropped (q) 0.00 0.00 0.00 0.00 14.00
pkts dropped (r) 8.00 9.00 10.00 12.00 14.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 0.00 0.00 0.00 48.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |000 |000 |0.00

Table 33: 2 TCP connections started simultaneously, no competing traffic. Eifel 4
CBI + ECN, no errors, queue 20 pkt.

B STATISTICS

90

B.1.2 Two TCP connections, 5 Seconds Between Starts

TCP SET 1, CLI-»SRV | min 25% 50% 5% max
elapsed time 31.99 32.00 32.01 32.02 32.03
throughput 5889.00 | 5891.00 | 5893.00 | 5896.00 | 5896.00
rexmt data pkts 18.00 18.00 18.00 18.00 18.00
duplicate acks 44.00 44.00 44.00 44.00 44.00
triple dupacks 2.00 2.00 2.00 2.00 2.00
pkts dropped (q) 18.00 18.00 18.00 18.00 18.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 5% max
sacks sent 60.00 60.00 60.00 60.00 60.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 51.31 51.32 51.34 51.35 51.39
throughput 3671.00 | 3674.00 | 3674.00 | 3676.00 | 3677.00
rexmt data pkts 2.00 2.00 2.00 2.00 2.00
duplicate acks 6.00 6.00 6.00 6.00 6.00
triple dupacks 1.00 1.00 1.00 1.00 1.00
pkts dropped (q) 2.00 2.00 2.00 2.00 2.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 5% max
sacks sent 6.00 6.00 6.00 6.00 6.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 34: 2 TCP connections, 5 second difference at start times, no competing

traffic. Eifel, no errors, queue 20 pkt.

B STATISTICS 91

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 42.40 44.46 51.56 55.02 59.37
throughput 3177.00 | 3429.00 | 3659.00 | 4243.00 | 4449.00
rexmt data pkts 22.00 24.00 25.00 25.00 26.00
duplicate acks 61.00 74.00 82.00 87.00 91.00
triple dupacks 4.00 6.00 6.00 7.00 7.00
pkts dropped (q) 17.00 17.00 17.00 18.00 18.00
pkts dropped (r) 5.00 700 |800 |800 |9.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 79.00 83.00 96.00 101.00 | 107.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |000 |000 |0.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 52.64 56.28 56.91 57.33 62.72
throughput 3008.00 | 3290.00 | 3315.00 | 3352.00 | 3584.00
rexmt data pkts 4.00 6.00 6.00 6.00 7.00
duplicate acks 16.00 25.00 29.00 31.00 38.00
triple dupacks 3.00 3.00 5.00 5.00 5.00
pkts dropped (q) 2.00 2.00 2.00 2.00 2.00
pkts dropped (r) 2.00 4.00 4.00 4.00 5.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 17.00 25.00 30.00 32.00 39.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |000 |000 |0.00

Table 35: 2 TCP connections, 5 second difference at start times, no competing
traffic. Eifel + RED, no errors, queue 20 pkt.

B STATISTICS 92

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 41.45 45.99 47.14 51.31 52.23
throughput 3611.00 | 3677.00 | 4002.00 | 4102.00 | 4551.00
rexmt data pkts 19.00 19.00 19.00 19.00 21.00
duplicate acks 52.00 57.00 59.00 59.00 60.00
triple dupacks 2.00 2.00 2.00 2.00 2.00
pkts dropped (q) 18.00 18.00 18.00 18.00 18.00
pkts dropped (r) 6.00 7.00 7.00 7.00 9.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 60.00 61.00 61.00 61.00 61.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |000 |000 |0.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 53.76 55.79 55.89 56.14 60.90
throughput 3098.00 | 3360.00 | 3376.00 | 3381.00 | 3509.00
rexmt data pkts 2.00 2.00 2.00 2.00 3.00
duplicate acks 6.00 6.00 6.00 6.00 6.00
triple dupacks 1.00 1.00 1.00 1.00 1.00
pkts dropped (q) 2.00 2.00 2.00 2.00 2.00
pkts dropped (r) 3.00 4.00 6.00 7.00 7.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 6.00 6.00 6.00 6.00 6.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |000 |000 |0.00

Table 36: 2 TCP connections, 5 second difference at start times, no competing
traffic. Eifel + ECN, no errors, queue 20 pkt.

B STATISTICS

93

TCP SET 1, CLI-SRV | min 25% 50% 5% max
elapsed time 32.00 43.08 47.33 47.61 47.65
throughput 3959.00 | 3962.00 | 3986.00 | 4379.00 | 5894.00
rexmt data pkts 0.00 0.00 1.00 2.00 18.00
duplicate acks 1.00 1.00 22.00 28.00 44.00
triple dupacks 0.00 0.00 1.00 2.00 2.00
pkts dropped (q) 0.00 0.00 1.00 2.00 18.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 0.00 21.00 28.00 60.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-SRV | min 25% 50% 5% max
elapsed time 48.73 48.74 49.04 49.09 51.34
throughput 3674.00 | 3843.00 | 3846.00 | 3871.00 | 3871.00
rexmt data pkts 0.00 0.00 0.00 1.00 2.00
duplicate acks 1.00 1.00 1.00 19.00 19.00
triple dupacks 0.00 0.00 0.00 1.00 1.00
pkts dropped (q) 0.00 0.00 0.00 1.00 2.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 5% max
sacks sent 0.00 0.00 0.00 18.00 18.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 37: 2 TCP connections, 5 second difference at start times, no competing
traffic. Eifel + CBI, no errors, queue 20 pkt.

B STATISTICS

94

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 40.97 49.00 50.60 50.73 52.57
throughput 3588.00 | 3718.00 | 3728.00 | 3850.00 | 4604.00
rexmt data pkts 0.00 0.00 0.00 0.00 19.00
duplicate acks 1.00 1.00 1.00 1.00 58.00
triple dupacks 0.00 0.00 0.00 0.00 2.00
pkts dropped (q) 0.00 0.00 0.00 0.00 18.00
pkts dropped (r) 4.00 5.00 5.00 6.00 7.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 0.00 0.00 0.00 61.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |000 |000 |0.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 53.23 53.96 57.13 59.62 63.72
throughput 2961.00 | 3164.00 | 3302.00 | 3496.00 | 3544.00
rexmt data pkts 0.00 0.00 0.00 0.00 2.00
duplicate acks 1.00 1.00 1.00 1.00 6.00
triple dupacks 0.00 0.00 0.00 0.00 1.00
pkts dropped (q) 0.00 0.00 0.00 0.00 2.00
pkts dropped (1) 3.00 | 4.00 7.00 8.00 9.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 0.00 0.00 0.00 6.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |000 |000 |0.00

Table 38: 2 TCP connections, 5 second difference at start times, no competing

traffic. Eifel + CBI + ECN, no errors, queue 20 pkt.

B STATISTICS 95

B.1.3 Two TCP Connections, One UDP Flow

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 73.62 74.24 82.50 90.52 98.67
throughput 1912.00 | 2084.00 | 2226.00 | 2541.00 | 2562.00
rexmt data pkts 10.00 10.00 12.00 13.00 14.00
duplicate acks 34.00 42.00 47.00 55.00 60.00
triple dupacks 3.00 3.00 3.00 4.00 5.00
pkts dropped (q) 10.00 10.00 12.00 13.00 14.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 40.00 49.00 55.00 64.00 67.00
TCP SET 2, CLI—-SRV | min 25% 50% 75% max
elapsed time 105.99 | 106.40 | 106.61 | 107.38 | 109.97
throughput 1715.00 | 1757.00 | 1759.00 | 1773.00 | 1780.00
rexmt data pkts 13.00 14.00 14.00 15.00 17.00
duplicate acks 32.00 35.00 37.00 42.00 58.00
triple dupacks 3.00 4.00 4.00 4.00 5.00
pkts dropped (q) 13.00 14.00 14.00 15.00 17.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 43.00 44.00 46.00 51.00 67.00
UDP SET 1, CLI—-SRV | min 25% 50% 5% max
elapsed time 179.97 | 179.97 | 179.97 | 179.97 | 179.97
throughput 3993.00 | 4011.00 | 4013.00 | 4019.00 | 4031.00
pkts dropped (q) 12.00 16.00 17.00 19.00 25.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 39: 2 TCP connections started simultaneously, 1 competing 32 kbit/s UDP

flow. Eifel, no errors, queue 20 pkt.

B STATISTICS

96

TCP SET 1, CLI-»SRV | min 25% 50% 75% max
elapsed time 93.27 95.85 101.72 | 104.26 | 105.50
throughput 1788.00 | 1809.00 | 1855.00 | 1968.00 | 2023.00
rexmt data pkts 17.00 18.00 21.00 21.00 29.00
duplicate acks 63.00 65.00 69.00 76.00 81.00
triple dupacks 8.00 8.00 9.00 9.00 10.00
pkts dropped (q) 6.00 8.00 9.00 10.00 11.00
pkts dropped (1) 10.00 |11.00 |11.00 |12.00 | 21.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 73.00 75.00 84.00 88.00 89.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 106.91 | 109.90 | 111.13 | 112.60 | 115.70
throughput 1630.00 | 1675.00 | 1697.00 | 1716.00 | 1764.00
rexmt data pkts 18.00 22.00 25.00 25.00 27.00
duplicate acks 53.00 55.00 67.00 73.00 91.00
triple dupacks 8.00 8.00 9.00 12.00 12.00
pkts dropped (q) 8.00 8.00 9.00 10.00 10.00
pkts dropped (r) 10.00 14.00 16.00 16.00 18.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 63.00 68.00 75.00 84.00 100.00
UDP SET 1, CLI—-SRV | min 25% 50% 5% max
elapsed time 179.97 | 179.97 | 179.97 | 179.97 | 179.97
throughput 3918.00 | 3924.00 | 3927.00 | 3973.00 | 3976.00
pkts dropped (q) 3.00 3.00 6.00 10.00 10.00
pkts dropped (r) 28.00 32.00 41.00 44.00 47.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 40: 2 TCP connections started simultaneously, 1 competing 32 kbit/s UDP

flow. Eifel + RED, no errors, queue 20 pkt.

B STATISTICS

97

TCP SET 1, CLI—-SRV | min 25% 50% 75% max
elapsed time 87.06 101.93 | 102.82 | 103.63 | 104.05
throughput 1813.00 | 1820.00 | 1835.00 | 1851.00 | 2167.00
rexmt data pkts 8.00 9.00 9.00 10.00 10.00
duplicate acks 12.00 14.00 15.00 17.00 30.00
triple dupacks 1.00 1.00 1.00 1.00 2.00
pkts dropped (q) 7.00 8.00 9.00 10.00 10.00
pkts dropped (r) 10.00 12.00 15.00 16.00 33.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 20.00 21.00 23.00 23.00 31.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 106.25 | 109.77 | 110.58 | 110.65 | 112.29
throughput 1680.00 | 1705.00 | 1706.00 | 1719.00 | 1775.00
rexmt data pkts 10.00 11.00 11.00 11.00 12.00
duplicate acks 11.00 12.00 23.00 26.00 31.00
triple dupacks 1.00 1.00 2.00 2.00 2.00
pkts dropped (q) 9.00 9.00 10.00 10.00 11.00
pkts dropped (r) 12.00 16.00 16.00 17.00 26.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 20.00 20.00 24.00 29.00 37.00
UDP SET 1, CLI—-SRV | min 25% 50% 5% max
elapsed time 179.97 | 179.97 | 179.97 | 179.97 | 179.97
throughput 3840.00 | 3924.00 | 3933.00 | 3953.00 | 3970.00
pkts dropped (q) 4.00 7.00 9.00 9.00 9.00
pkts dropped (r) 29.00 31.00 39.00 51.00 70.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 41: 2 TCP connections started simultaneously, 1 competing 32 kbit/s UDP

flow. Eifel + ECN, no errors, queue 20 pkt.

B STATISTICS

98

TCP SET 1, CLI—-SRV | min 25% 50% 75% max
elapsed time 90.13 98.09 98.10 101.86 | 107.01
throughput 1763.00 | 1852.00 | 1923.00 | 1923.00 | 2093.00
rexmt data pkts 3.00 4.00 4.00 4.00 13.00
duplicate acks 30.00 34.00 36.00 36.00 42.00
triple dupacks 3.00 3.00 3.00 3.00 4.00
pkts dropped (q) 3.00 4.00 4.00 4.00 13.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 30.00 34.00 36.00 36.00 45.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 106.53 | 107.54 | 107.61 | 108.05 | 109.97
throughput 1715.00 | 1746.00 | 1753.00 | 1754.00 | 1771.00
rexmt data pkts 5.00 5.00 5.00 7.00 15.00
duplicate acks 33.00 33.00 33.00 42.00 44.00
triple dupacks 3.00 3.00 3.00 4.00 4.00
pkts dropped (q) 5.00 5.00 5.00 7.00 15.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 34.00 34.00 34.00 44.00 50.00
UDP SET 1, CLI—-SRV | min 25% 50% 5% max
elapsed time 179.97 | 179.97 | 179.97 | 179.97 | 179.97
throughput 4016.00 | 4028.00 | 4034.00 | 4034.00 | 4051.00
pkts dropped (q) 5.00 11.00 11.00 13.00 20.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 42: 2 TCP connections started simultaneously, 1 competing 32 kbit/s UDP

flow. Eifel + CBI, no errors, queue 20 pkt.

B STATISTICS

99

TCP SET 1, CLI—-SRV | min 25% 50% 75% max
elapsed time 97.20 99.51 101.17 | 103.08 | 107.06
throughput 1762.00 | 1830.00 | 1865.00 | 1896.00 | 1941.00
rexmt data pkts 0.00 0.00 0.00 0.00 10.00
duplicate acks 1.00 1.00 1.00 1.00 23.00
triple dupacks 0.00 0.00 0.00 0.00 2.00
pkts dropped (q) 0.00 0.00 0.00 0.00 9.00
pkts dropped (r) 11.00 18.00 23.00 32.00 51.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 0.00 0.00 0.00 25.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 105.66 | 105.84 | 106.01 | 106.06 | 107.25
throughput 1759.00 | 1779.00 | 1779.00 | 1782.00 | 1785.00
rexmt data pkts 0.00 0.00 0.00 5.00 12.00
duplicate acks 1.00 1.00 1.00 10.00 11.00
triple dupacks 0.00 0.00 0.00 1.00 1.00
pkts dropped (q) 0.00 0.00 0.00 3.00 11.00
pkts dropped (r) 14.00 16.00 19.00 32.00 38.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 0.00 0.00 11.00 20.00
UDP SET 1, CLI—-SRV | min 25% 50% 5% max
elapsed time 179.97 | 179.97 | 179.97 | 179.97 | 179.97
throughput 3765.00 | 3820.00 | 3933.00 | 3956.00 | 3959.00
pkts dropped (q) 0.00 0.00 1.00 3.00 6.00
pkts dropped (r) 38.00 40.00 47.00 84.00 101.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 43: 2 TCP connections started simultaneously, 1 competing 32 kbit/s UDP
flow. Eifel + CBI + ECN, no errors, queue 20 pkt.

B STATISTICS

100

B.2 Low ARQ persistency

B.2.1 Two TCP Connections Starts at the Same Time

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 36.90 43.74 50.67 57.36 62.36
throughput 3025.00 | 3272.00 | 3719.00 | 3942.00 | 5112.00
rexmt data pkts 6.00 8.00 15.00 17.00 22.00
duplicate acks 18.00 28.00 40.00 52.00 75.00
triple dupacks 1.00 2.00 3.00 3.00 4.00
pkts dropped (q) 0.00 1.00 13.00 14.00 19.00
pkts dropped (e) 0.00 2.00 4.00 5.00 12.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 27.00 34.00 50.00 66.00 90.00
pkts dropped (q) 0.00 000 |000 |000 |0.00
pkts dropped (e) 0.00 1.00 2.00 3.00 6.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 57.20 58.77 59.98 64.01 79.95
throughput 2359.00 | 2945.00 | 3117.00 | 3203.00 | 3298.00
rexmt data pkts 4.00 7.00 16.00 19.00 21.00
duplicate acks 21.00 31.00 49.00 51.00 59.00
triple dupacks 2.00 3.00 3.00 4.00 5.00
pkts dropped (q) 0.00 0.00 11.00 14.00 17.00
pkts dropped (e) 1.00 |3.00 |500 |6.00 |9.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 27.00 41.00 50.00 66.00 76.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 1.00 1.00 2.00 4.00

Table 44: 2 TCP connections started simultaneously, no competing traffic. Baseline,

low ARQ, queue 20 pkt.

B STATISTICS

101

TCP SET 1, CLI-»SRV | min 25% 50% 5% max
elapsed time 39.80 49.14 54.01 58.39 67.01
throughput 2815.00 | 3226.00 | 3475.00 | 3776.00 | 4740.00
rexmt data pkts 3.00 8.00 14.00 17.00 22.00
duplicate acks 22.00 32.00 50.00 56.00 66.00
triple dupacks 1.00 2.00 3.00 3.00 5.00
pkts dropped (q) 0.00 3.00 11.00 | 14.00 | 17.00
pkts dropped (e) 0.00 3.00 4.00 6.00 12.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 29.00 36.00 51.00 72.00 79.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 1.00 2.00 4.00 5.00
TCP SET 2, CLI-»SRV | min 25% 50% 5% max
elapsed time 55.68 58.04 60.15 64.47 76.95
throughput 2451.00 | 2897.00 | 3099.00 | 3222.00 | 3388.00
rexmt data pkts 3.00 7.00 15.00 17.00 25.00
duplicate acks 10.00 35.00 45.00 46.00 74.00
triple dupacks 1.00 3.00 3.00 3.00 5.00
pkts dropped (q) 0.00 0.00 9.00 14.00 18.00
pkts dropped (e) 0.00 2.00 5.00 6.00 10.00
TCP SET 2, SRV—CLI | min 25% 50% 5% max
sacks sent 10.00 37.00 50.00 58.00 84.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 1.00 2.00 3.00 7.00

Table 45: 2 TCP connections started simultaneously, no competing traffic. Eifel,

low ARQ, queue 20 pkt.

B STATISTICS

102

TCP SET 1, CLI-SRV | min 25% 50% 5% max
elapsed time 40.21 47.46 52.47 56.59 63.08
throughput 2990.00 | 3333.00 | 3592.00 | 3964.00 | 4692.00
rexmt data pkts 5.00 11.00 14.00 19.00 22.00
duplicate acks 21.00 30.00 41.00 47.00 63.00
triple dupacks 1.00 2.00 2.00 3.00 5.00
pkts dropped (q) 0.00 11.00 | 13.00 |13.00 | 15.00
pkts dropped (e) 0.00 1.00 3.00 5.00 9.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 26.00 36.00 51.00 61.00 76.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 1.00 1.00 2.00 4.00
TCP SET 2, CLI-»SRV | min 25% 50% 5% max
elapsed time 55.20 58.12 60.37 64.55 73.04
throughput 2583.00 | 2862.00 | 3051.00 | 3239.00 | 3418.00
rexmt data pkts 4.00 15.00 18.00 19.00 23.00
duplicate acks 15.00 37.00 45.00 52.00 60.00
triple dupacks 2.00 2.00 3.00 3.00 6.00
pkts dropped (q) 0.00 12.00 12.00 14.00 16.00
pkts dropped (e) 1.00 2.00 4.00 6.00 10.00
TCP SET 2, SRV—CLI | min 25% 50% 5% max
sacks sent 20.00 48.00 56.00 62.00 76.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 1.00 3.00 3.00

Table 46: 2 TCP connections started simultaneously, no competing traffic. F-RTO,

low ARQ, queue 20 pkt.

B STATISTICS

103

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 47.63 59.71 62.95 63.69 74.33
throughput 2538.00 | 2944.00 | 2993.00 | 3140.00 | 3961.00
rexmt data pkts 6.00 17.00 19.00 20.00 30.00
duplicate acks 50.00 56.00 59.00 68.00 106.00
triple dupacks 3.00 4.00 5.00 7.00 7.00
pkts dropped (q) 0.00 8.00 12.00 13.00 16.00
pkts dropped (r) 2.00 3.00 4.00 7.00 8.00
pkts dropped (e) 0.00 1.00 4.00 6.00 11.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 52.00 62.00 72.00 80.00 115.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 |1.00 |200 |300 |6.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 59.08 67.20 72.37 75.02 91.02
throughput 2073.00 | 2470.00 | 2565.00 | 2783.00 | 3193.00
rexmt data pkts 5.00 14.00 21.00 24.00 32.00
duplicate acks 32.00 45.00 55.00 66.00 76.00
triple dupacks 3.00 4.00 5.00 7.00 8.00
pkts dropped (q) 0.00 1.00 12.00 13.00 15.00
pkts dropped (r) 1.00 3.00 4.00 7.00 11.00
pkts dropped (e) 0.00 2.00 5.00 8.00 11.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 33.00 56.00 64.00 74.00 83.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |200 |500 |9.00

Table 47: 2 TCP connections started simultaneously, no competing traffic. Eifel 4
RED, low ARQ, queue 20 pkt.

B STATISTICS

104

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 43.34 56.94 61.75 67.74 74.64
throughput 2527.00 | 2769.00 | 2993.00 | 3283.00 | 4353.00
rexmt data pkts 3.00 10.00 15.00 18.00 21.00
duplicate acks 16.00 24.00 36.00 43.00 72.00
triple dupacks 1.00 2.00 3.00 3.00 5.00
pkts dropped (q) 0.00 10.00 12.00 14.00 15.00
pkts dropped (r) 1.00 2.00 4.00 5.00 11.00
pkts dropped (e) 0.00 0.00 2.00 4.00 7.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 15.00 34.00 43.00 49.00 78.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |100 |300 |7.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 58.07 68.17 71.94 75.05 93.74
throughput 2012.00 | 2350.00 | 2611.00 | 2684.00 | 3248.00
rexmt data pkts 5.00 15.00 19.00 23.00 26.00
duplicate acks 20.00 34.00 46.00 57.00 61.00
triple dupacks 1.00 2.00 3.00 5.00 7.00
pkts dropped (q) 0.00 12.00 14.00 15.00 18.00
pkts dropped (r) 2.00 4.00 5.00 7.00 24.00
pkts dropped (e) 0.00 4.00 5.00 6.00 11.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 26.00 44.00 59.00 65.00 73.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 1.00 1.00 3.00 4.00

Table 48: 2 TCP connections started simultaneously, no competing traffic. Eifel 4
ECN, low ARQ, queue 20 pkt.

B STATISTICS

105

TCP SET 1, CLI-SRV | min 25% 50% 5% max
elapsed time 38.89 46.41 50.03 52.48 59.07
throughput 3193.00 | 3579.00 | 3753.00 | 4017.00 | 4851.00
rexmt data pkts 0.00 0.00 1.00 4.00 11.00
duplicate acks 1.00 1.00 16.00 31.00 39.00
triple dupacks 0.00 0.00 1.00 3.00 3.00
pkts dropped (q) 0.00 0.00 0.00 0.00 11.00
pkts dropped (e) 0.00 0.00 1.00 4.00 6.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 0.00 16.00 31.00 39.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 2.00 2.00 4.00
TCP SET 2, CLI-SRV | min 25% 50% 5% max
elapsed time 54.54 56.41 59.03 60.56 63.49
throughput 2971.00 | 3063.00 | 3195.00 | 3295.00 | 3458.00
rexmt data pkts 1.00 3.00 5.00 7.00 19.00
duplicate acks 13.00 17.00 28.00 33.00 44.00
triple dupacks 1.00 2.00 2.00 3.00 4.00
pkts dropped (q) 0.00 0.00 0.00 0.00 14.00
pkts dropped (e) 1.00 3.00 5.00 6.00 10.00
TCP SET 2, SRV—CLI | min 25% 50% 5% max
sacks sent 14.00 18.00 30.00 40.00 48.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 1.00 2.00 3.00 6.00

Table 49: 2 TCP connections started simultaneously, no competing traffic. Eifel +
CBI, low ARQ, queue 20 pkt.

B STATISTICS

106

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 47.43 51.32 54.77 58.02 66.52
throughput 2836.00 | 3180.00 | 3414.00 | 3658.00 | 3977.00
rexmt data pkts 0.00 1.00 2.00 5.00 22.00
duplicate acks 1.00 9.00 17.00 24.00 53.00
triple dupacks 0.00 1.00 1.00 2.00 3.00
pkts dropped (q) 0.00 0.00 0.00 0.00 20.00
pkts dropped (1) 0.00 0.00 1.00 3.00 53.00
pkts dropped (e) 0.00 1.00 1.00 4.00 6.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 8.00 18.00 24.00 61.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |200 |200 |5.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 56.37 60.50 64.30 66.57 68.97
throughput 2735.00 | 2819.00 | 2929.00 | 3018.00 | 3347.00
rexmt data pkts 2.00 3.00 4.00 5.00 9.00
duplicate acks 4.00 17.00 21.00 29.00 36.00
triple dupacks 1.00 2.00 2.00 3.00 4.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (1) 0.00 0.00 2.00 5.00 51.00
pkts dropped (e) 1.00 3.00 4.00 5.00 9.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 4.00 18.00 21.00 29.00 41.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |100 |200 |5.00

Table 50: 2 TCP connections started simultaneously, no competing traffic. Eifel 4
CBI + ECN, low ARQ), queue 20 pkt.

B STATISTICS

107

B.2.2 Two TCP connections, 5 Seconds Between Starts

TCP SET 1, CLI-»SRV | min 25% 50% 75% max
elapsed time 31.32 34.29 45.25 56.59 73.92
throughput 2552.00 | 3233.00 | 3684.00 | 5466.00 | 6022.00
rexmt data pkts 3.00 9.00 18.00 21.00 24.00
duplicate acks 23.00 42.00 50.00 70.00 88.00
triple dupacks 1.00 2.00 3.00 4.00 5.00
pkts dropped (q) 1.00 3.00 16.00 18.00 22.00
pkts dropped (e) 0.00 1.00 2.00 6.00 16.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 23.00 52.00 62.00 84.00 95.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped () 0.00 |000 |200 |300 |5.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 39.21 51.84 53.40 57.98 74.84
throughput 2520.00 | 3188.00 | 3531.00 | 3624.00 | 4811.00
rexmt data pkts 1.00 3.00 7.00 13.00 20.00
duplicate acks 4.00 13.00 24.00 42.00 76.00
triple dupacks 1.00 | 200 |200 |3.00 |6.00
pkts dropped (q) 1.00 2.00 2.00 9.00 18.00
pkts dropped (e) 0.00 1.00 2.00 5.00 8.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 5.00 12.00 28.00 52.00 89.00
pkts dropped (q) 0.00 000 |000 |000 |0.00
pkts dropped (e) 0.00 0.00 2.00 2.00 5.00

Table 51: 2 TCP connections, 5 second difference at start times, no competing
traffic. Eifel, low ARQ, queue 20 pkt.

B STATISTICS 108

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 38.98 49.43 55.11 64.59 81.73
throughput 2308.00 | 2832.00 | 3343.00 | 3620.00 | 4840.00
rexmt data pkts 9.00 13.00 23.00 26.00 29.00
duplicate acks 29.00 49.00 69.00 85.00 100.00
triple dupacks 3.00 3.00 5.00 6.00 9.00
pkts dropped (q) 0.00 3.00 17.00 17.00 20.00
pkts dropped (r) 3.00 3.00 5.00 6.00 9.00
pkts dropped (e) 0.00 2.00 3.00 5.00 10.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 35.00 68.00 81.00 94.00 117.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 |100 |200 |300 |5.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 43.75 55.93 60.62 65.44 81.01
throughput 2329.00 | 2855.00 | 3104.00 | 3328.00 | 4312.00
rexmt data pkts 4.00 6.00 9.00 17.00 27.00
duplicate acks 14.00 23.00 33.00 52.00 84.00
triple dupacks 2.00 3.00 4.00 5.00 7.00
pkts dropped (q) 0.00 2.00 2.00 9.00 18.00
pkts dropped (1) 0.00 .00 |200 [500 |7.00
pkts dropped (e) 0.00 2.00 4.00 6.00 7.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 15.00 26.00 37.00 58.00 107.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |100 |200 |5.00

Table 52: 2 TCP connections, 5 second difference at start times, no competing
traffic. Eifel + RED, low ARQ, queue 20 pkt.

B STATISTICS 109

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 39.86 45.70 54.34 57.02 68.90
throughput 2738.00 | 3212.00 | 3460.00 | 4014.00 | 4733.00
rexmt data pkts 4.00 7.00 14.00 21.00 30.00
duplicate acks 33.00 39.00 48.00 58.00 80.00
triple dupacks 1.00 2.00 3.00 3.00 6.00
pkts dropped (q) 0.00 3.00 13.00 18.00 22.00
pkts dropped (r) 0.00 3.00 5.00 6.00 9.00
pkts dropped (e) 0.00 1.00 2.00 6.00 11.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 36.00 43.00 58.00 68.00 88.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |100 |300 |5.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 49.02 57.28 64.57 67.33 81.64
throughput 2311.00 | 2777.00 | 2851.00 | 3288.00 | 3848.00
rexmt data pkts 2.00 4.00 7.00 16.00 25.00
duplicate acks 10.00 17.00 25.00 46.00 75.00
triple dupacks 1.00 2.00 3.00 4.00 7.00
pkts dropped (q) 0.00 2.00 2.00 12.00 14.00
pkts dropped (1) 0.00 .00 |3.00 [500 |9.00
pkts dropped (e) 0.00 2.00 5.00 7.00 15.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 9.00 16.00 28.00 59.00 83.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 000 |100 |300 |800

Table 53: 2 TCP connections, 5 second difference at start times, no competing
traffic. Eifel + ECN, low ARQ, queue 20 pkt.

B STATISTICS

110

TCP SET 1, CLI-»SRV | min 25% 50% 5% max
elapsed time 34.56 45.24 51.01 57.35 64.17
throughput 2940.00 | 3286.00 | 3622.00 | 4055.00 | 5458.00
rexmt data pkts 1.00 3.00 3.00 6.00 19.00
duplicate acks 12.00 17.00 20.00 35.00 52.00
triple dupacks 1.00 1.00 2.00 3.00 5.00
pkts dropped (q) 0.00 0.00 0.00 0.00 18.00
pkts dropped (e) 1.00 1.00 3.00 5.00 8.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 11.00 19.00 20.00 36.00 57.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 1.00 1.00 3.00 6.00
TCP SET 2, CLI-»SRV | min 25% 50% 5% max
elapsed time 50.35 52.00 57.00 61.12 80.24
throughput 2351.00 | 3073.00 | 3214.00 | 3600.00 | 3747.00
rexmt data pkts 0.00 2.00 4.00 7.00 11.00
duplicate acks 1.00 13.00 27.00 36.00 47.00
triple dupacks 0.00 1.00 2.00 4.00 7.00
pkts dropped (q) 0.00 0.00 0.00 0.00 2.00
pkts dropped (e) 0.00 2.00 4.00 7.00 11.00
TCP SET 2, SRV—CLI | min 25% 50% 5% max
sacks sent 0.00 13.00 28.00 40.00 51.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 1.00 2.00 2.00 4.00

Table 54: 2 TCP connections, 5

second difference at start times, no competing
traffic. Eifel + CBI, low ARQ, queue 20 pkt.

B STATISTICS 111

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 40.69 47.60 58.07 63.16 73.53
throughput 2565.00 | 2878.00 | 3140.00 | 3804.00 | 4636.00
rexmt data pkts 1.00 2.00 4.00 6.00 22.00
duplicate acks 8.00 19.00 25.00 30.00 60.00
triple dupacks 1.00 1.00 2.00 3.00 5.00
pkts dropped (q) 0.00 0.00 0.00 0.00 18.00
pkts dropped (1) 0.00 0.00 0.00 2.00 8.00
pkts dropped (e) 1.00 3.00 4.00 7.00 12.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 8.00 19.00 25.00 32.00 78.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 |100 |200 |200 |7.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 50.25 55.02 64.05 67.83 73.14
throughput 2579.00 | 2727.00 | 2931.00 | 3361.00 | 3754.00
rexmt data pkts 0.00 3.00 5.00 6.00 9.00
duplicate acks 1.00 15.00 32.00 35.00 47.00
triple dupacks 0.00 2.00 3.00 4.00 6.00
pkts dropped (q) 0.00 0.00 0.00 0.00 2.00
pkts dropped (1) 0.00 0.00 2.00 | 4.00 7.00
pkts dropped (e) 0.00 3.00 6.00 6.00 12.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 15.00 31.00 38.00 47.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 |1.00 |200 |400 |7.00

Table 55: 2 TCP connections, 5 second difference at start times, no competing
traffic. Eifel + CBI + ECN, low ARQ, queue 20 pkt.

B STATISTICS 112

B.2.3 Two TCP Connections, One UDP Flow

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 80.66 92.49 102.43 | 106.36 | 116.68
throughput 1617.00 | 1765.00 | 1833.00 | 1967.00 | 2339.00
rexmt data pkts 4.00 12.00 15.00 19.00 24.00
duplicate acks 31.00 42.00 53.00 60.00 73.00
triple dupacks 3.00 4.00 5.00 5.00 8.00
pkts dropped (q) 2.00 8.00 12.00 15.00 22.00
pkts dropped (e) 0.00 2.00 3.00 4.00 9.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 31.00 48.00 63.00 70.00 86.00
pkts dropped (e) 0.00 0.00 2.00 2.00 4.00
TCP SET 2, CLI-SRV | min 25% 50% 5% max
elapsed time 108.55 | 112.04 | 114.29 | 117.49 | 127.69
throughput 1477.00 | 1594.00 | 1634.00 | 1672.00 | 1738.00
rexmt data pkts 7.00 11.00 14.00 19.00 27.00
duplicate acks 25.00 37.00 47.00 56.00 85.00
triple dupacks 3.00 4.00 5.00 6.00 8.00
pkts dropped (q) 1.00 6.00 11.00 14.00 20.00
pkts dropped (e) 0.00 2.00 4.00 6.00 12.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 27.00 46.00 55.00 65.00 106.00
pkts dropped (e) 0.00 0.00 2.00 3.00 5.00
UDP SET 1, CLI—-SRV | min 25% 50% 75% max
elapsed time 179.97 | 179.97 | 179.97 | 179.97 | 180.67
throughput 3950.00 | 3953.00 | 3961.00 | 3982.00 | 4002.00
pkts dropped (q) 5.00 12.00 19.00 25.00 30.00
pkts dropped (e) 8.00 13.00 14.00 18.00 23.00

Table 56: 2 TCP connections started simultaneously, 1 competing 32 kbit/s UDP
flow. Eifel, low ARQ, queue 20 pkt.

B STATISTICS

113

TCP SET 1, CLI-SRV | min 25% 50% 5% max
elapsed time 93.32 108.39 | 112.24 | 114.94 | 120.40
throughput 1567.00 | 1620.00 | 1673.00 | 1728.00 | 2022.00
rexmt data pkts 14.00 20.00 22.00 24.00 29.00
duplicate acks 52.00 62.00 69.00 72.00 96.00
triple dupacks 6.00 8.00 9.00 10.00 13.00
pkts dropped (q) 0.00 8.00 9.00 9.00 13.00
pkts dropped (r) 4.00 6.00 8.00 11.00 17.00
pkts dropped (e) 1.00 |200 |500 |6.00 |12.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 64.00 76.00 80.00 84.00 104.00
pkts dropped (e) 000 |100 |200 |300 |6.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 115.71 120.18 123.82 126.27 136.60
throughput 1381.00 | 1490.00 | 1517.00 | 1568.00 | 1630.00
rexmt data pkts 16.00 22.00 24.00 26.00 30.00
duplicate acks 51.00 59.00 70.00 78.00 84.00
triple dupacks 7.00 9.00 10.00 11.00 12.00
pkts dropped (q) 0.00 5.00 7.00 9.00 11.00
pkts dropped (r) 500 |9.00 |11.00 |13.00 |17.00
pkts dropped (e) 200 |400 |500 |6.00 |14.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 61.00 71.00 80.00 86.00 96.00
pkts dropped (e) 0.00 2.00 2.00 3.00 5.00
UDP SET 1, CLI-SRV | min 25% 50% 5% max
elapsed time 179.27 | 179.97 | 179.97 | 179.97 | 180.67
throughput 3863.00 | 3894.00 | 3915.00 | 3924.00 | 3964.00
pkts dropped (q) 2.00 5.00 7.00 10.00 13.00
pkts dropped (r) 15.00 24.00 29.00 33.00 44.00
pkts dropped (e) 8.00 12.00 15.00 19.00 29.00

Table 57: 2 TCP connections started simultaneously, 1 competing 32 kbit/s UDP

flow. Eifel + RED, low ARQ, queue 20 pkt.

B STATISTICS

114

TCP SET 1, CLI-SRV | min 25% 50% 5% max
elapsed time 99.33 103.03 | 108.42 | 111.83 | 119.41
throughput 1580.00 | 1687.00 | 1740.00 | 1831.00 | 1899.00
rexmt data pkts 9.00 12.00 12.00 14.00 14.00
duplicate acks 25.00 25.00 38.00 41.00 50.00
triple dupacks 2.00 3.00 3.00 3.00 6.00
pkts dropped (q) 3.00 6.00 9.00 9.00 12.00
pkts dropped (r) 7.00 8.00 11.00 12.00 17.00
pkts dropped (e) 1.00 | 200 |3.00 [300 |9.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 33.00 33.00 43.00 51.00 59.00
pkts dropped (e) 1.00 |1.00 |200 |500 |6.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 111.78 113.92 114.57 114.94 122.53
throughput 1540.00 | 1641.00 | 1646.00 | 1656.00 | 1688.00
rexmt data pkts 5.00 8.00 10.00 11.00 11.00
duplicate acks 14.00 20.00 24.00 36.00 50.00
triple dupacks 1.00 2.00 3.00 4.00 8.00
pkts dropped (q) 2.00 2.00 6.00 6.00 8.00
pkts dropped (r) 9.00 |9.00 |16.00 |16.00 | 18.00
pkts dropped (e) 0.00 4.00 4.00 4.00 7.00
TCP SET 2, SRV—CLI | min 25% 50% 5% max
sacks sent 20.00 25.00 27.00 37.00 53.00
pkts dropped (e) 0.00 0.00 2.00 3.00 4.00
UDP SET 1, CLI-SRV | min 25% 50% 5% max
elapsed time 179.97 | 179.97 | 179.97 | 179.97 | 179.97
throughput 3846.00 | 3875.00 | 3930.00 | 3933.00 | 3933.00
pkts dropped (q) 3.00 6.00 10.00 11.00 13.00
pkts dropped (r) 25.00 31.00 33.00 45.00 50.00
pkts dropped (e) 6.00 10.00 13.00 21.00 25.00

Table 58: 2 TCP connections started simultaneously, 1 competing 32 kbit/s UDP

flow. Eifel + ECN, low ARQ, queue 20 pkt.

B STATISTICS

115

TCP SET 1, CLI-»SRV | min 25% 50% 75% max
elapsed time 78.83 91.15 100.00 | 104.77 | 105.95
throughput 1781.00 | 1801.00 | 1827.00 | 2069.00 | 2393.00
rexmt data pkts 3.00 5.00 6.00 8.00 16.00
duplicate acks 26.00 35.00 37.00 39.00 57.00
triple dupacks 2.00 3.00 3.00 4.00 4.00
pkts dropped (q) 2.00 2.00 3.00 5.00 15.00
pkts dropped (e) 0.00 0.00 1.00 4.00 6.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 27.00 34.00 40.00 43.00 70.00
pkts dropped (e) 0.00 0.00 1.00 3.00 4.00
TCP SET 2, CLI-SRV | min 25% 50% 5% max
elapsed time 111.86 | 112,51 | 115.85 | 116.83 | 119.91
throughput 1573.00 | 1615.00 | 1622.00 | 1677.00 | 1686.00
rexmt data pkts 6.00 8.00 10.00 12.00 14.00
duplicate acks 20.00 32.00 43.00 50.00 53.00
triple dupacks 3.00 3.00 5.00 6.00 7.00
pkts dropped (q) 2.00 3.00 4.00 5.00 9.00
pkts dropped (e) 0.00 3.00 5.00 7.00 16.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 26.00 36.00 46.00 53.00 59.00
pkts dropped (e) 0.00 0.00 1.00 3.00 5.00
UDP SET 1, CLI-»SRV | min 25% 50% 75% max
elapsed time 179.97 | 179.97 | 179.97 | 179.97 | 180.67
throughput 3940.00 | 3967.00 | 3976.00 | 3996.00 | 4025.00
pkts dropped (q) 2.00 13.00 13.00 19.00 27.00
pkts dropped (e) 8.00 11.00 14.00 18.00 21.00

Table 59: 2 TCP connections started simultaneously, 1 competing 32 kbit/s UDP

flow. Eifel + CBI, low ARQ, queue 20 pkt.

B STATISTICS

116

TCP SET 1, CLI-SRV | min 25% 50% 5% max
elapsed time 92.92 104.58 | 110.68 | 112.66 | 117.66
throughput 1603.00 | 1666.00 | 1698.00 | 1797.00 | 2030.00
rexmt data pkts 2.00 3.00 4.00 5.00 10.00
duplicate acks 6.00 11.00 15.00 24.00 35.00
triple dupacks 1.00 | 200 |200 [3.00 |5.00
pkts dropped (q) 0.00 0.00 0.00 0.00 8.00
pkts dropped (r) 7.00 10.00 12.00 20.00 45.00
pkts dropped (e) 0.00 |200 |300 |500 |10.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 6.00 10.00 16.00 25.00 35.00
pkts dropped (e) 0.00 |000 |200 |300 |5.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 112.53 114.79 117.60 121.36 130.28
throughput 1448.00 | 1548.00 | 1597.00 | 1640.00 | 1676.00
rexmt data pkts 1.00 3.00 5.00 9.00 21.00
duplicate acks 4.00 12.00 18.00 26.00 57.00
triple dupacks 1.00 2.00 3.00 4.00 8.00
pkts dropped (q) 0.00 0.00 0.00 0.00 14.00
pkts dropped (r) 7.00 | 13.00 |17.00 |19.00 | 43.00
pkts dropped (e) 1.00 | 200 |4.00 |800 |12.00
TCP SET 2, SRV—CLI | min 25% 50% 5% max
sacks sent 3.00 11.00 22.00 26.00 70.00
pkts dropped (e) 0.00 1.00 2.00 4.00 6.00
UDP SET 1, CLI-SRV | min 25% 50% 5% max
elapsed time 179.27 | 179.97 | 179.97 | 179.97 | 180.67
throughput 3817.00 | 3863.00 | 3906.00 | 3941.00 | 3976.00
pkts dropped (q) 0.00 0.00 1.00 1.00 12.00
pkts dropped (r) 16.00 26.00 43.00 48.00 98.00
pkts dropped (e) 6.00 12.00 14.00 19.00 27.00

Table 60: 2 TCP connections started simultaneously, 1 competing 32 kbit/s UDP
flow. Eifel + CBI + ECN, low ARQ, queue 20 pkt.

B STATISTICS

117

B.3 Medium ARQ persistency

Two TCP Connections Start at the Same Time

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 37.61 42.09 51.28 54.24 59.73
throughput 3158.00 | 3441.00 | 3576.00 | 4473.00 | 5015.00
rexmt data pkts 6.00 12.00 13.00 14.00 15.00
duplicate acks 20.00 21.00 23.00 43.00 48.00
triple dupacks 1.00 1.00 1.00 2.00 3.00
pkts dropped (q) 6.00 12.00 13.00 14.00 15.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 29.00 33.00 34.00 52.00 57.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-SRV | min 25% 50% 5% max
elapsed time 56.54 58.17 59.13 59.60 62.85
throughput 3001.00 | 3152.00 | 3189.00 | 3239.00 | 3336.00
rexmt data pkts 12.00 13.00 15.00 16.00 18.00
duplicate acks 16.00 19.00 35.00 40.00 44.00
triple dupacks 1.00 1.00 2.00 2.00 2.00
pkts dropped (q) 12.00 13.00 15.00 16.00 18.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 29.00 33.00 42.00 52.00 57.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 61: 2 TCP connections started simultaneously, no competing traffic. Baseline,
medium ARQ, queue 20 pkt.

B STATISTICS

118

TCP SET 1, CLI-»SRV | min 25% 50% 75% max
elapsed time 37.01 43.83 50.78 55.93 61.12
throughput 3086.00 | 3360.00 | 3563.00 | 4233.00 | 5098.00
rexmt data pkts 7.00 11.00 14.00 15.00 23.00
duplicate acks 21.00 23.00 34.00 45.00 50.00
triple dupacks 1.00 1.00 2.00 2.00 3.00
pkts dropped (q) 6.00 11.00 14.00 14.00 16.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 29.00 34.00 44.00 56.00 58.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 58.02 59.07 60.51 61.45 63.65
throughput 2964.00 | 3069.00 | 3105.00 | 3163.00 | 3251.00
rexmt data pkts 11.00 13.00 15.00 16.00 17.00
duplicate acks 17.00 37.00 39.00 41.00 46.00
triple dupacks 1.00 | 200 |200 |200 |3.00
pkts dropped (q) 11.00 13.00 15.00 16.00 17.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 26.00 44.00 51.00 54.00 57.00
pkts dropped (q) 0.00 000 |000 |000 |0.00
pkts dropped () 0.00 000 |000 |000 |0.00

Table 62: 2 TCP connections started simultaneously, no competing traffic. Eifel,
medium ARQ, queue 20 pkt.

B STATISTICS

119

TCP SET 1, CLI-»SRV | min 25% 50% 5% max
elapsed time 35.21 39.81 44.22 52.63 59.94
throughput 3147.00 | 3552.00 | 4261.00 | 4701.00 | 5358.00
rexmt data pkts 7.00 10.00 11.00 13.00 15.00
duplicate acks 20.00 23.00 25.00 35.00 48.00
triple dupacks 1.00 1.00 1.00 2.00 3.00
pkts dropped (q) 7.00 10.00 | 11.00 |13.00 | 15.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 30.00 34.00 35.00 43.00 58.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-»SRV | min 25% 50% 5% max
elapsed time 56.11 57.44 58.32 59.70 62.29
throughput 3028.00 | 3126.00 | 3232.00 | 3273.00 | 3362.00
rexmt data pkts 9.00 13.00 15.00 16.00 20.00
duplicate acks 17.00 19.00 20.00 36.00 46.00
triple dupacks 1.00 1.00 1.00 2.00 2.00
pkts dropped (q) 9.00 13.00 15.00 16.00 20.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 5% max
sacks sent 25.00 32.00 34.00 46.00 59.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 63: 2 TCP connections started simultaneously, no competing traffic. F-RTO,
medium ARQ, queue 20 pkt.

B STATISTICS 120
TCP SET 1, CLI-»SRV | min 25% 50% 5% max
elapsed time 40.23 47.45 52.68 55.52 63.51
throughput 2970.00 | 3239.00 | 3577.00 | 3933.00 | 4689.00
rexmt data pkts 10.00 11.00 12.00 14.00 15.00
duplicate acks 20.00 22.00 32.00 43.00 48.00
triple dupacks 1.00 1.00 2.00 2.00 3.00
pkts dropped (q) 10.00 |11.00 |12.00 |14.00 |15.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 31.00 33.00 40.00 54.00 58.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-»SRV | min 25% 50% 5% max
elapsed time 56.40 57.55 58.50 59.43 63.52
throughput 2970.00 | 3174.00 | 3220.00 | 3267.00 | 3345.00
rexmt data pkts 11.00 12.00 13.00 15.00 17.00
duplicate acks 18.00 28.00 40.00 41.00 44.00
triple dupacks 1.00 1.00 2.00 2.00 3.00
pkts dropped (q) 11.00 12.00 13.00 15.00 17.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 5% max
sacks sent 28.00 33.00 51.00 54.00 56.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 64: 2 TCP connections started simultaneously, no competing traffic. D-

SACK, medium ARQ, queue 20 pkt.

B STATISTICS

121

TCP SET 1, CLI-»SRV | min 25% 50% 5% max
elapsed time 46.87 57.42 62.36 65.56 73.60
throughput 2563.00 | 2857.00 | 2957.00 | 3195.00 | 4024.00
rexmt data pkts 14.00 16.00 18.00 19.00 21.00
duplicate acks 28.00 49.00 60.00 67.00 76.00
triple dupacks 2.00 3.00 4.00 5.00 6.00
pkts dropped (q) 9.00 11.00 12.00 13.00 14.00
pkts dropped (r) 2.00 5.00 6.00 7.00 10.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 5% max
sacks sent 40.00 56.00 67.00 76.00 86.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI—-SRV | min 25% 50% 75% max
elapsed time 60.78 65.48 69.01 71.04 82.09
throughput 2298.00 | 2636.00 | 2711.00 | 2782.00 | 3104.00
rexmt data pkts 13.00 17.00 19.00 21.00 24.00
duplicate acks 29.00 45.00 59.00 66.00 95.00
triple dupacks 2.00 4.00 5.00 6.00 8.00
pkts dropped (q) 8.00 10.00 12.00 13.00 14.00
pkts dropped (r) 3.00 5.00 6.00 9.00 13.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 41.00 51.00 67.00 73.00 99.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 65: 2 TCP connections started simultaneously, no competing traffic. Eifel 4
RED, medium ARQ, queue 20 pkt.

B STATISTICS

122

TCP SET 1, CLI-»SRV | min 25% 50% 5% max
elapsed time 47.98 56.43 61.02 64.40 67.64
throughput 2789.00 | 2912.00 | 3071.00 | 3226.00 | 3932.00
rexmt data pkts 10.00 12.00 15.00 16.00 17.00
duplicate acks 16.00 22.00 27.00 32.00 52.00
triple dupacks 1.00 1.00 2.00 2.00 2.00
pkts dropped (q) 9.00 12.00 | 13.00 | 14.00 | 17.00
pkts dropped (r) 3.00 4.00 6.00 8.00 16.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 26.00 29.00 34.00 38.00 64.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-»SRV | min 25% 50% 75% max
elapsed time 64.46 66.71 67.49 69.39 90.85
throughput 2077.00 | 2664.00 | 2783.00 | 2814.00 | 2927.00
rexmt data pkts 10.00 12.00 15.00 15.00 22.00
duplicate acks 19.00 23.00 28.00 30.00 49.00
triple dupacks 1.00 1.00 1.00 2.00 3.00
pkts dropped (q) 9.00 12.00 13.00 14.00 17.00
pkts dropped (r) 4.00 5.00 6.00 8.00 23.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 28.00 30.00 33.00 35.00 62.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 66: 2 TCP connections started simultaneously, no competing traffic. Eifel 4

ECN, medium ARQ, queue 20 pkt.

B STATISTICS

123

TCP SET 1, CLI-»SRV | min 25% 50% 5% max
elapsed time 41.89 52.46 53.31 55.06 58.31
throughput 3235.00 | 3402.00 | 3534.00 | 3575.00 | 4503.00
rexmt data pkts 0.00 0.00 0.00 1.00 9.00
duplicate acks 1.00 1.00 1.00 21.00 26.00
triple dupacks 0.00 0.00 0.00 1.00 1.00
pkts dropped (q) 0.00 0.00 0.00 1.00 9.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 0.00 0.00 20.00 33.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-»SRV | min 25% 50% 5% max
elapsed time 53.67 56.27 56.71 57.67 58.65
throughput 3216.00 | 3270.00 | 3314.00 | 3345.00 | 3515.00
rexmt data pkts 1.00 1.00 2.00 2.00 17.00
duplicate acks 17.00 20.00 20.00 21.00 27.00
triple dupacks 1.00 1.00 1.00 1.00 2.00
pkts dropped (q) 1.00 1.00 2.00 2.00 17.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 5% max
sacks sent 19.00 20.00 20.00 21.00 32.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 67: 2 TCP connections started simultaneously, no competing traffic. Eifel +

CBI, medium ARQ), queue 20 pkt.

B STATISTICS

124

TCP SET 1, CLI-»SRV | min 25% 50% 5% max
elapsed time 53.74 56.13 58.12 60.52 63.85
throughput 2954.00 | 3112.00 | 3210.00 | 3352.00 | 3510.00
rexmt data pkts 0.00 0.00 0.00 1.00 9.00
duplicate acks 1.00 1.00 1.00 2.00 35.00
triple dupacks 0.00 0.00 0.00 0.00 2.00
pkts dropped (q) 0.00 0.00 0.00 0.00 8.00
pkts dropped (r) 2.00 4.00 5.00 6.00 9.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 5% max
sacks sent 0.00 0.00 0.00 0.00 36.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI—-SRV | min 25% 50% 75% max
elapsed time 58.18 59.64 61.88 64.34 65.64
throughput 2874.00 | 2926.00 | 3002.00 | 3158.00 | 3242.00
rexmt data pkts 0.00 0.00 0.00 1.00 13.00
duplicate acks 1.00 1.00 1.00 2.00 19.00
triple dupacks 0.00 0.00 0.00 0.00 1.00
pkts dropped (q) 0.00 0.00 0.00 0.00 13.00
pkts dropped (r) 4.00 5.00 6.00 7.00 13.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 0.00 0.00 0.00 30.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (r) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 68: 2 TCP connections started simultaneously, no competing traffic. Eifel 4

CBI + ECN, medium ARQ), queue 20 pkt.

B STATISTICS

125

B.4 High ARQ persistency

Two TCP Connections Start at the Same Time

TCP SET 1, CLI-SRV | min 25% 50% 75% max
elapsed time 40.54 57.16 65.09 72.08 91.61
throughput 2059.00 | 2567.00 | 2891.00 | 3290.00 | 4653.00
rexmt data pkts 8.00 12.00 14.00 23.00 56.00
duplicate acks 14.00 22.00 23.00 34.00 71.00
triple dupacks 1.00 1.00 1.00 3.00 5.00
pkts dropped (q) 0.00 9.00 12.00 14.00 20.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 11.00 32.00 35.00 86.00
pkts dropped (q) 0.00 000 |000 |000 |0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-SRV | min 25% 50% 75% max
elapsed time 62.85 69.48 76.02 82.53 108.35
throughput 1741.00 | 2280.00 | 2478.00 | 2662.00 | 3001.00
rexmt data pkts 12.00 17.00 33.00 46.00 55.00
duplicate acks 13.00 32.00 38.00 44.00 67.00
triple dupacks 1.00 2.00 3.00 4.00 6.00
pkts dropped (q) 0.00 8.00 14.00 15.00 24.00
pkts dropped (e) 0.00 000 |000 |000 |0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 11.00 33.00 36.00 57.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 69: 2 TCP connections started simultaneously, no competing traffic. Baseline,

high ARQ, queue 20 pkt.

B STATISTICS

126

TCP SET 1, CLI-SRV | min 25% 50% 5% max
elapsed time 40.30 49.80 56.77 64.08 69.22
throughput 2725.00 | 2883.00 | 3315.00 | 3667.00 | 4681.00
rexmt data pkts 8.00 10.00 13.00 14.00 22.00
duplicate acks 22.00 24.00 25.00 42.00 48.00
triple dupacks 1.00 1.00 1.00 2.00 3.00
pkts dropped (q) 7.00 10.00 | 13.00 |14.00 | 15.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 28.00 33.00 35.00 54.00 59.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-»SRV | min 25% 50% 5% max
elapsed time 63.63 65.75 68.58 7177 80.30
throughput 2349.00 | 2583.00 | 2739.00 | 2844.00 | 2965.00
rexmt data pkts 12.00 15.00 16.00 17.00 18.00
duplicate acks 17.00 20.00 38.00 42.00 46.00
triple dupacks 1.00 1.00 2.00 2.00 3.00
pkts dropped (q) 12.00 13.00 15.00 16.00 17.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 5% max
sacks sent 24.00 33.00 49.00 54.00 58.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 70: 2 TCP connections started simultaneously, no competing traffic. Eifel,

high ARQ), queue 20 pkt.

B STATISTICS

127

TCP SET 1, CLI-»SRV | min 25% 50% 5% max
elapsed time 43.88 49.32 57.16 62.46 68.48
throughput 2754.00 | 2979.00 | 3218.00 | 3767.00 | 4299.00
rexmt data pkts 2.00 11.00 13.00 14.00 17.00
duplicate acks 1.00 21.00 22.00 33.00 61.00
triple dupacks 0.00 1.00 1.00 2.00 3.00
pkts dropped (q) 0.00 11.00 13.00 14.00 17.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 0.00 31.00 34.00 48.00 76.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-»SRV | min 25% 50% 5% max
elapsed time 60.83 64.13 66.47 68.72 72.84
throughput 2590.00 | 2719.00 | 2769.00 | 2930.00 | 3101.00
rexmt data pkts 1.00 3.00 14.00 16.00 17.00
duplicate acks 0.00 9.00 24.00 39.00 44.00
triple dupacks 0.00 1.00 1.00 2.00 3.00
pkts dropped (q) 0.00 1.00 14.00 15.00 17.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 5% max
sacks sent 0.00 8.00 34.00 51.00 58.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 71: 2 TCP connections started simultaneously, no competing traffic. F-RTO,

high ARQ), queue 20 pkt.

B STATISTICS 128
TCP SET 1, CLI-»SRV | min 25% 50% 75% max
elapsed time 42.21 53.90 65.61 71.85 83.63
throughput 2256.00 | 2604.00 | 2866.00 | 3499.00 | 4469.00
rexmt data pkts 10.00 13.00 15.00 43.00 62.00
duplicate acks 21.00 25.00 45.00 55.00 59.00
triple dupacks 1.00 2.00 2.00 4.00 7.00
pkts dropped (q) 0.00 12.00 |13.00 |15.00 | 18.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 1, SRV—CLI | min 25% 50% 75% max
sacks sent 32.00 34.00 57.00 63.00 82.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, CLI-»SRV | min 25% 50% 75% max
elapsed time 59.37 67.01 67.85 75.03 102.46
throughput 1841.00 | 2355.00 | 2714.00 | 2810.00 | 3177.00
rexmt data pkts 8.00 15.00 28.00 42.00 73.00
duplicate acks 14.00 30.00 41.00 48.00 70.00
triple dupacks 1.00 2.00 2.00 4.00 8.00
pkts dropped (q) 0.00 12.00 15.00 16.00 20.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00
TCP SET 2, SRV—CLI | min 25% 50% 75% max
sacks sent 15.00 39.00 51.00 65.00 95.00
pkts dropped (q) 0.00 0.00 0.00 0.00 0.00
pkts dropped (e) 0.00 0.00 0.00 0.00 0.00

Table 72: 2 TCP connections started simultaneously, no competing traffic. D-

SACK, high ARQ, queue 20 pkt.

