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Abstract 

Active Queue Management is receiving wide attention as promising technique to prevent 

and avoid congestion collapse in packet-switched networks. It is a form of router queue 

management based on a proactive approach. By providing advanced warning of incipient 

congestion, end nodes can respond to congestion before router buffer overflows and 

finally ensure improved performance. In this thesis we represent a performance analysis of 

Random Early Detection (RED) algorithm. This is a recommended active queue 

management scheme, that is expected to provide several Internet performance advantages 

such as minimizing packet loss and router queueing delay, avoiding global 

synchronization of sources, guaranteeing high link utilization and fairness. In this study 

we consider a wired testbed network including two routers and a last-hop link of limited 

bandwidth. In the last–hop router congestion occurs and packets are dropped. The router 

alternatively employs the traditional Tail Drop discipline or RED algorithm as queue 

management mechanism.  We examine the impact of both disciplines on TCP traffic and 

compare the results. We show that RED provides fair sharing of the bottleneck capacity 

and avoids phenomena such as lock-out inherent in Tail Drop. It tends to drop packets 

from each connection in proportion to the transmission rate the flow has on the output 

link. Moreover it is more available to serve incoming traffic, apart from its data load and 

arrival time guaranteeing steady results. Given this, we then experiment with RED by 

introducing services differentiation. We investigate how the arrival of high priority UDP 

traffic can hurt the performance of lower priority TCP traffic when they share the same 

bottleneck link with one or two classes of service. RED does not minimize the number of 

dropped packets as expected, but it manages to achieve improved performance in respect 

of Tail Drop. Moreover we find out that even though the arrival of UDP competing traffic 

generally hurts the performance of the TCP connection running, surprisingly it helps Tail 

Drop to improve its TCP results when it starts simultaneously with the TCP connection. 

Indeed it prevents the Slow Start phase from being excessively aggressive thus to avoid 

phenomena such as Slow Start overshoot and severe congestion states. Most of the 

theoretical properties of RED find confirmation in our results and we believe that RED 

will help to provide fair sharing of resources and improved performance in a wide range 

of environments, with a variable number of connections with different data loads and 

throughput. 

 



 1

 1 Introduction 

End-to-end congestion control mechanisms are widely employed in the current Internet 

in order to regulate the amount of traffic in the network and match it to the available capacity. 

The objective is to assure that router buffer queue lengths and packet loss rates remain 

reasonable, thus to prevent congestion collapse. The most popular congestion avoidance 

algorithms in today’s Internet are based on the window mechanism of the Transport Control 

Protocol (TCP) [Pos81b]. Thanks to their ability to deliver service in times of extremely high 

demand and provide a solid foundation for several applications, Internet has seen an enormous 

success.  Nevertheless, this rapid growth has led it to be accessed by more and more devices 

and to see increasing requests for new services and improved performance. In order to satisfy 

these new challenges, a number of TCP enhancements have made their way into actual 

implementations, but it has become clear that TCP congestion avoidance mechanisms, even if 

necessary and powerful, are not enough to provide good service in all the circumstances. The 

main problem is that there is a limit to how much control can be achieved from the edge of the 

network, since the view of an individual TCP connection is too limited and needs to be 

complemented by some feedback from the router itself.   

TCP is a connection-oriented protocol and provides reliability by recovering data that is 

damaged, lost, duplicated, or delivered out-of-order by the Internet Communication System. It 

employs a sliding window protocol to achieve flow control and implements congestion control 

mechanisms to prevent congestion collapse. The main drawback in congestion control and 

avoidance mechanisms used in TCP is that the network fails to provide early congestion 

notification to the sources. TCP’s congestion control algorithms are based on the principle that 

the network state of congestion is detected by packet loss. When a connection starts up, it 

attempts to ramp its transmission rate quickly, by exponentially increasing its congestion 

window. If the window reaches the maximum threshold a phase of congestion avoidance starts, 

in which the window is increased at a much slower rate. When the network capacity saturates, 

because of the load of active connections, a packet may be discarded and packet loss is detected 

by the source through the receipt of duplicate acknowledgements or timeout expiration. This 

indicates that the network is congested and the senders react reducing the transmission rate in 

order to avoid further packet loss and congestion collapse. Thereby the TCP senders decrease 

their rates only after detecting packet loss due to queue overflow, but this mechanism may need 
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a long time and other packets may be discarded before the source attenuates its transmission 

rate. The consequence is that TCP connections experience high loss rate, especially during 

times of congestion. 

Moreover traditional Internet routers employ the Tail Drop discipline for managing the 

buffer queue occupancy. It simply sets a maximum length for each buffer queue and it 

enqueues packets until the maximum length is reached, then drops subsequent incoming 

packets until the queue is decreased below its maximum value. Such a mechanism allows the 

router to maintain high queue occupancy, which is clearly undesirable since it tends to 

discriminate against bursty traffic and to drop many packets at the same time producing global 

synchronization of sources. Being the data traffic in Internet inherently bursty, one way to 

alleviate the problem is to provide the routers with fairly large buffers in order to absorb burst 

arrivals of packets to reduce losses and hence maintain high link utilization. On the other hand, 

large buffers tend to increase queueing delays at congested routers. The traditional Tail-Drop 

buffer management forces network applications to choose between high utilization or low 

delay.  

To alleviate these problems a possible solution is an advanced form of router queue 

management, which refers to the decision when to start discarding packets and which packets 

to drop at a congested router. The Internet Engineering Task Force (IETF) is working in order 

to provide new techniques such as Active Queue Management (AQM) [BCCD98] and Explicit 

Congestion notification (ECN) [RFB01], as means to prevent and avoid congestion collapse of 

the network. The goal of Active Queue Management schemes is to detect congestion before the 

queue overflows and thus signal the incipient congestion to the end nodes. In this way senders 

may be able to reduce their rates before congestion collapse. Active queue management 

algorithms may use different methods to convey congestion notification to the end-hosts. It can 

drop packets or, more efficiently, mark them by setting the Congestion Experienced (CE) 

codepoint in the packet header. The possible improvements introduced by AQM in 

combination with ECN could be especially beneficial for interactive and low-bandwidth traffic 

where the user is delay-sensitive. 

A recent Internet Draft (referred to as the RED Manifesto [BCCD98]) singles out the 

Random Early Detection (RED) algorithm, proposed by Floyd and Jacobson in [FJ93], as the 

recommended scheme for use in the Internet. RED is nowadays widely implemented in 

commercially available routers. The essence of this algorithm is that the decision of dropping a 

packet is based on the estimation of the average queue length in the router buffer. Basically if 

the queue has been mostly empty in the recent past, RED will not tend to discard packets; 
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otherwise if it has been almost full lately, new packets will be more easily dropped. A RED 

gateway drops incoming packets with a dynamically computed probability just when the 

average number of packets queued exceeds a minimum threshold. The drop/marking 

probability increases as the estimated average queue size grows. In such a way this approach 

controls the queue length more effectively than other existing algorithms. In particular RED’s 

goal is to discard packets from each flow in proportion to the amount of bandwidth the flow 

uses on the output link. Therefore, the connection with the largest input rate will have the 

biggest drop percentage among total dropped packets, thus to guarantee a fair sharing of the 

available resources and avoiding synchronization and lock-out problems. Moreover, by 

avoiding full queues, RED is expected to increase effective network utilization and decrease 

end-to-end latency generally due to long queueing delays.  

Besides the need to better control packet loss and prevent congestion collapse in the 

Internet there is another interesting issue. The rapid growth of the Internet has led it to be 

accessed by more and more devices and to see an increasing request for new services and high 

performance. Moreover, the heterogeneity of the traffic supported has increased considerably, 

thanks to the development of new applications such as those based on audio and video. As a 

result of this evolution, a need for services differentiation in the network has become evident in 

order to guarantee to each kind of application an appropriate level of service.  

The two main approaches to satisfy heterogeneous application requests and provide QoS 

services are the Integrated Services Architecture (IntServ) [BCS94] and Differentiated Services 

Architecture (DiffServ) [BBCD98]. IntServ is the Internet incarnation of the traditional circuit-

based architecture and its main advantage relies on the high accuracy of resource management, 

but it has not been deployed since it is complex to implement and poor in scalability. DiffServ 

does not employ per-flow state and has better scaling properties. Recently AQM mechanisms 

have been proposed within the framework of the Internet DiffServ architecture to preferentially 

drop non-conforming over conforming packets. Moreover, a key-technology for realizing 

differentiated services is an efficient packet dropping policy, hence RED or some enhancement 

of it, have been studied as the discipline to adopt. In order to provide QoS on the Internet there 

is substantial value in following an evolutionary path in which the attention regards more router 

queue managements and forwarding behaviours than virtual circuits and end-to-end services. 

Finally another interesting problem related to the many Internet applications is the 

Wireless Networking Environment. At the beginning, TCP was specified for wired networks 

and stationary hosts, but nowadays, nomadic users want to run their favorite applications that 

are built on TCP over a wireless connection, as well. TCP performs poorly over wireless links 



 4

since the nature of wireless links is quite different compared to wireline networks for several 

aspects, such as limited bandwidth, high latency, variable delays and elevated error rate. 

Therefore, TCP interprets all packet losses as notifications of congestion in the network and the 

corrective actions taken, such as lowering the transmission rate, tend to cause suboptimal 

performance. Among the numerous solutions proposed to ameliorate TCP’s performance over 

wireless links or high loss links there are some TCP improvements such as TCP Selective 

Acknowledgments Options [FMMP00], Active Queue Management and Explicit Congestion 

Notification. If in general it is important to avoid congestion collapse, this is even more 

relevant when the network presents long delay.  

This thesis presents an experimental evaluation of RED in a testbed wired environment. 

The key-element of the testbed network is the last-hop router of limited buffer-size that 

alternatively employs traditional Tail Drop discipline or RED algorithm for controlling the 

buffer queue occupancy. On the corresponding output link we cause a bottleneck limiting the 

bandwidth through means of Linux Traffic Control [HMVV02]. This allows us to examine how 

RED and Tail Drop can prevent and eventually recover from congestion and packet loss. The 

data communication uses the TCP and in some cases UDP protocol. We have used the 

recommended TCP implementation of the Linux OS. Moreover, the traffic control framework 

available in the Linux kernel enabled us to experiment with RED by introducing services 

differentiation. The main component is a queueing discipline that maps the traffic to different 

service classes.  

The first goal of our analysis is to explore how well the state-of-the-art TCP performs 

when Tail Drop or RED is deployed. It is mainly an analytic study of RED algorithm and 

proposes an evaluation of the benefits introduced by RED over the tradition Tail Drop 

discipline. The result is essentially a comparative study of performance, but we also present a 

detailed analysis of RED mechanisms and the key reasons behind its behaviour. The second 

issue is to investigate how the TCP and marginally UDP behave when applied to a QoS-

enabled environment, in which incoming traffic is classified into several classes of service. 

Consistently the empirical analysis of the tests is divided into two areas. First, we concentrate 

on TCP performance analysis considering some TCP connections sharing a link of limited 

capacity. Second, we focus on the degradation introduced on TCP performance when TCP 

traffic and higher priority UDP traffic compete on the same bottleneck link. 

Even if our intent was not to test RED performance over a wireless link, using a slow 

wired link our results can be extended to a more general environment. Improvements to RED 

algorithm, such as Adaptive RED [FKSS99] or CHOKe [PPP00], which try to solve some of 
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RED’s imperfections or some other proposals, such as the use of RED in combination with 

ECN were not considered. We did not try to cover these proposals as we concentrated our study 

on RED behavior, which represents the basis for further studies and enhancements. 

The rest of the thesis is organized as follows. Section 2 surveys related work on 

controlling congestion and on providing QoS in the Internet. In particular it presents the main 

properties of TCP protocol. Section 3 demonstrates a significant weakness in the current 

congestion control mechanism in Internet. In order to address this inefficiency an active queue 

management algorithm is proposed: Random Early Detection (RED). We describe the 

theoretical approach of RED and in addition we shortly introduce some of RED’s 

enhancements and especially Explicit Congestion Notification (ECN) that can be used in 

combination with RED. Section 4 explains, in terms of workload models, network 

configuration and metrics utilized, which tests have been run and how the results have been 

evaluated. We also provide simple guidelines in setting RED parameters. The experimental 

tests belong to two distinct test cases. The first is intended to provide a RED study applied to 

TCP traffic. The second is concerned with an evaluation of RED in combination with services 

differentiation. It involves TCP and UDP traffic. Then, in Section 5, we illustrate and analyse 

the results of our experiments. The evaluation is mainly based on a comparison between Tail 

Drop and RED’s performance. The theoretical properties of RED presented before are verified 

and criticized. Finally, in Section 6, we give our conclusions. Three topics are covered: 

conclusions about the present work, a summary of contributions of new knowledge that this 

thesis makes and ideas for future research that have been produced during the development of 

this thesis. In addition to the main text it follows a References Section that lists the publications 

that have been referenced in this Master’s Thesis. The references are ordered alphabetically by 

the author’s surname. Section 7 is a short resume in Italian of the whole thesis. Finally Section 

8 reports some test results that have been mentioned during the test analysis. 
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 2 Background 

This Section reviews the important features of the transmission control protocol as well as the 

current state of providing quality of service in the Internet. In the last part we describe shortly 

the wireless networking environment focusing on its properties and the network transport 

protocol used in such an environment. 

2.1 Transmission Control Protocol (TCP) 

The Internet Protocol (IP) [Pos81a] provides an unreliable, connectionless datagram delivery 

service. IP does not guarantee to deliver correctly an IP datagram at its destination, but it just 

assures a best effort service. The service is based on a connectionle ss design, which means that 

the delivery of each datagram is treated independently of the other datagrams belonging to the 

same flow. This simple structure makes IP a very flexible and robust protocol, but the upper 

layers, such as TCP, have to provide a more reliable service and be able to recover from 

situations such as packet loss, packets out-of-order, damaged packets or duplicated packets 

[Pos81b]. 

The Transmission Control Protocol (TCP) guarantees reliable transportation of data and 

delivery of packets in order and without errors. Moreover it provides congestion control and a 

fair allocation of network resources. The most important aspects related to the TCP mechanism 

can be summarized in this way: 

• Connection-oriented 

• Data Transfer 

• Error Control 

• Flow control 

• Multiplexing 

• Congestion control 
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2.1.1 Protocol Operation 

Before proceeding we shortly give an overview of the TCP segment format, the setting up of a 

connection, the actual data transfer and the closing of connection. 

TCP Segment Structure 

All TCP data units that are used to set up a connection, transfer data and tear-down a 

connection have a standard format, shown in Figure 2-1. All segments are transferred between 

two TCP entities in the user data field of IP datagrams. The TCP segment format is composed 

by the header and by the data field of variable length. The normal size of the header is 20 bytes, 

unless other options are present. 

 
Source Port 

16 bit 
Destination Port 

 16 bit 

Sequence Number 
32 bit 

Acknowledgment number 
32 bit 

HLEN 
4 bit 

Reserved 
6 bit 

U
R
G 

A
C
K 

P
S
H 

R
S
T 

S
Y
N 

F
I
N 

Window 
16 bit 

Checksum  
16 bit 

Urgent Pointer 
16 bit 

Options and Padding 
Variable length 

Data 
Variable length 

Figure 2-1. The TCP segment format. 

The following fields characterize the TCP header: 

 
• Source Port and Destination Port: the addresses of the end-points of the logical 

connection between two application protocols. 

• Sequence Number: is used to differentiate segments and indicates the first byte in the data 

field of the segments relative to the start of the complete message. The number is linear so 

that the first segment sent has a number N and all subsequent segments have sequence 

numbers that relate to the number of bytes in the user data. For example, using a user data 

size of 1500 bytes and an initial sequence number 0, the first segment will have sequence 

number 0 and the next one 1500, the third 3000, etc.  

• Acknowledge Number: the sequence number of the next byte this end of the connection is 

waiting for. All earlier bytes have been received successfully. 



 8

• HLEN: the total length of the TCP header. It indicates the number of 32-bit words it 

contains. 

• Reserved: field reserved for future use. 

• All TCP segments have the same header format and the validity of selected fields in the 

segment header is indicated by the setting of bits in the 6-bit code-field; if a bit is set (=1) 

the corresponding field is valid. Multiple bits can be set in a single segment. The 6 flags 

have the following meaning: URG is used if there are urgent data and in this case the 

Urgent pointer points to the urgent data; ACK contains a valid number if it is an ACK 

packet; PSH is set to 1 when the sender wants to use the PUSH command; RST is used to 

reset the connection without a precise teardown; SYN is the synchronize flag essential for 

the connection set-up and FIN is used in the connection tear-down. Their use is explained 

later in this section. 

• Window: specifies the Receiver Advertised Window (rwnd), which means the number of 

data bytes that the receiver is prepared to accept beyond the sequence number indicated in 

the acknowledgment number field (The maximum value is 65.535 bytes). 

• Checksum: CRC calculated adding to the TCP header the IP address of the source and of 

the destination.  

• Options and Padding: used to fill the header and to specify some options such as the MSS 

value in SYN segment (the default is 536 bytes till a maximum of 65535 bytes), the 

window’s scale that defines the measure unit for the window length specified in Window 

(the default is 1byte) and the timestamp value, explained later. 

Connection Establishment 

TCP is oriented to the transmission of a continuous stream of octets and converts the data flow 

in segments suitable for transmission through IP. The application passes the data to a TCP 

buffer and TCP builds segments out of them and transmits them. The segment size is limited by 

the Maximum Segment Size (MSS). TCP is a connection-oriented protocol: before end-nodes 

can exchange data, it is necessary to establish a connection between them. In order to avoid any 

ambiguity with the initial sequence number setting at both sides of a connection, each side 

informs the other of the initial sequence number it proposes to use.  

The connection establishment is realized through the three-way handshake mechanism, 

as shown in Figure 2-2. In this phase the two hosts negotiate the MSS of the connection. The 

requesting end sends an initial sequence number to the receiver using a SYNchronized packet 

(flag SYN=1). The remote host first stores the sequence number setting for the incoming 
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direction, then it answers with an SYN/ACK message to acknowledge the sender’s initial 

sequence number and to communicate its initial sequence number. Finally the initiating side 

responds with an ACK to the remote host’s sequence number. The connection is now 

established.  

 

Figure 2-2. The connection setup. 

Data Transfer and Error Recovery 

The error and flow control functions are the main procedures associated with the data transfer. 

They are employed with the intent to ensure that all the segments are successfully sent and 

acknowledged by the receiver and finally guarantee the reliable delivery of data 

TCP implements error control functions based on the go-back-n mechanism of 

retransmission. If the data have not been received within the timeout the segment has to be 

retransmitted. TCP assignes an exclusive sequence number for each octet transmitted and in the 

TCP header of each segment there is the number of the first octet of that segment. The receiver 

sends an acknowledgment (ACK) upon reception of a segment. The acknowledgments are 

cumulative: an ACK confirms all the bytes up to the given sequence number. In the ACK the 

sequence number of the next expected octet is carried. The sequence number is used to 

reconstruct the order of the segments received. Errors can be discovered thanks to the 

checksum. 

TCP has a significant property of self-clocking, in the equilibrium state, each arriving 

ACK triggers a transmission of a new segment. Generally, TCP does not acknowledge a 

received segment immediately, but waits for a certain time in order to reduce the traffic on the 

link. In fact, if a data segment is sent during this time, the acknowledgment is piggy-backed 

into it [APS99]. If there are no packets out-of-order, no errors, no duplicate packets, all the data 

local TCP remote TCP 

SYN/ACK, SEQ=1050, ACK=501 

SYN, SEQ=500 

ACK, SEQ=501,ACK=1051 
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are acknowledged, buffered at the receiver and then delivered to the upper layer. Otherwise, if 

the TCP host receives duplicate packets or out-of-order segments it does not acknowledge new 

data, but immediately sends an ACK segment that acknowledges the highest sequence number 

correctly received so far. This means that in these cases the sender may receive duplicate 

acknowledgments (DUPACK), which acknowledges the same segment as the previous ACK. 

When the first DUPACK is received TCP waits to retransmit the packets not yet acknowledged 

and when the three DUPACKs are received the Fast Retransmit algorithm is triggered. We will 

explain it later. In combination with the retransmission timer (RTO), on the sender side, ACKs 

provide reliable data delivery. A lost packet is generally indicated by the expiration of the RTO 

or the receipt of a duplicate acknowledgment. 

To prevent a fast sender from overflowing a slow receiver, TCP uses the Flow Control, 

based on the principle of the sliding window mechanism. The receiver specifies the dimension 

of the Receiver Advertised Window (rwnd) in each data it sent to the opposite end, as an 

indication of the amount of data it is able to receive. An arriving ACK allows more data to be 

transmitted by advancing the sliding window to the right. When the total size of outstanding 

segments, segments in flight (FlightSize), fills up the receiver advertised window, the 

transmission of data is stopped until the sliding window advances or a larger receiver window 

is advertised. Specifying a rwnd of zero bytes is possible and can be used to force the sender 

into the persist mode. In this state the connection is still alive, but the transmission of new data 

is blocked.  

Finally, to achieve Multiplexing communication, TCP allows the use of multiple ports 

within a single host. A socket is defined as the couple port or address host and network address. 

A pair of sockets identifies unambiguously every connection, thus a single socket can be active 

simultaneously in several connections. 

Connection Termination 

When the communication is complete the connection is closed and the resources are 

released. The connection tear-down is shown in Figure 2-3. When one side of the system wants 

to terminate the connection, it sends a FIN segment (flag FIN=1) to the other side. As a reply 

the node on the other end returns an ACK segment to acknowledge the receipt of the FIN 

segment. The connection is still open for the other direction and the host on the other side can 

go on sending data. When it has finished it sends a FIN message with the last data and waits for 

the acknowledgment. When it receives the last acknowledgment, it finally closes the 



 11 

connection. If segments disappear in the middle of the connection termination, they are resent 

with the usual retransmissions. 

Figure 2-3. The connection tear-down. 

2.1.2 Congestion Control 

When one or several TCP connections are sending at inappropriately high rates the network can 

suffer from congestion. The router buffers saturate and some packets or their corresponding 

ACKs may be dropped before reaching their destination. This occurs when routers are 

receiving more packets than they can handle. Congestion collapse is a state in which packets 

are being injected into the network, but very little useful work is being accomplished. The 

specification of the Receiver Advertised Window (rwnd) is a way to control the rate of data 

incoming at the receiver, but is not enough to prevent network congestion. 

Early in its evolution, TCP was enhanced by the congestion control mechanism to 

protect the network against the incoming traffic that exceeds its capacity. The first job of a 

congestion avoidance mechanism at the gateway is to detect incipient congestion and as stated 

in [JR88] a congestion avoidance scheme maintains the network in a region of low delay and 

high throughput. The congestion control is implemented in the hosts and consequently is an 

end-to-end congestion control. When a network is congested, more connections compete for 

limited resources. The congestion control mechanism tries to regulate the transmission rate of 

each connection in order to provide a fair sharing of network resources.  

TCP congestion control is window-based. The sender rate is regulated by a Congestion 

Window (cwnd) that limits the amount of data a sender can have outstanding in the network. It 

must not send data with a sequence number higher than the sum of the last acknowledged 

local TCP remote TCP 

ACK, SEQ=3041, ACK=2061 

FIN, SEQ=2060 

ACK, ACK=3368 

FIN, SEQ=3367 
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packet and the minimum of cwnd and rwnd. The cwnd changes its value in relation to the 

events the sender observes. The basic principle on which the TCP congestion control is built is 

to consider the packet loss as a signal of congestion. Thus the reaction to this event is to reduce 

the cwnd.  

Two algorithms, known as Slow Start and Congestion Avoidance, regulate the reduction 

and the increasing of cwnd [APS99], basing their evaluation on a further variable: the slow start 

threshold (ssthresh). Depending on its value the sender is subject to a Slow Start 

(cwnd<ssthresh) or Congestion Avoidance (cwnd>ssthresh) mechanism. 

Slow Start  

The Slow Start algorithm is based on the observation that the rate at which packets are injected 

into the network should be regulated by the rate at which acknowledgements arrive from the 

receiver should be the same. It is used at the beginning of the connection to avoid congesting 

the network or after repairing a packet loss detected by time-out expiration. The initial value of 

cwnd must be no more than 2 segments and the ssthresh may be arbitrarily high. Being 

cwnd<ssthresh the Slow Start algorithm is used. During this phase cwnd is increased by at most 

sender maximum segment size (SMSS) bytes for each ACK received that acknowledges a new 

packet. The sender can transmit up to the minimum of the cwnd and rwnd as said before. The 

growth of cwnd is exponential: cwnd roughly doubles per each RTT. Slow Start ends when 

cwnd ≥ ssthresh or when congestion occurs. Congestion is declared when a timeout expires or 

three consecutive DUPACKs are received. They are both indications of a packet loss.  

If a timeout expires TCP reacts decreasing ssthresh to be half of the number of segments 

outstanding into the network (flightsize): 

ssthresh= 













 rwnd

flightsize
,

2
min,2max    

The retransmission timer is re-calculated through the exponential backoff (the new RTO 

is equal to the old one multiplied by a constant value, greater than 2) and cwnd=1. Now 

cwnd<ssthresh so a new phase of Slow Start is entered. But now ssthresh is lower than before 

and this implies that the capacity of the network will not saturate quickly as previously. The 

sender starts to retransmit packets beginning from which has caused the timeout expire. 
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Congestion Avoidance 

The second situation to analyse is when Slow Start ends because cwnd=ssthresh (or 

cwnd>ssthresh). In this case Congestion Avoidance sta rts. During this phase cwnd is 

incremented by 1 SMSS only after a full window of data is acknowledged: 

cwnd = cwnd + SMSS * SMSS/cwnd 

for every incoming new ACK. This means that if cwnd permits to transmit N packets 

only after the reception of N ACK relative to all the packets sent, cwnd will increase by 1 

packet (SMSS bytes). The growth of cwnd is linear. Figure 2-4 illustrates an example of cwnd 

variation during the phases of Slow Start and Congestion Avoidance. 

 

Figure 2-4. TCP Congestion Window. 

Fast Retransmit/Fast Recovery  

The last case to analyse is what happens when three DUPACKs are received and congestion is 

declared. In this description we refer to the so-called Reno algorithm described in RFC 2581 

[APS99]. It also introduces the use of TCP Selective Acknowledgment [MMFR96]. 

A TCP receiver should send DUPACK as soon as possible when an out-of-order packet 

arrives. The meanings of a DUPACK for a sender can be various: a packet drop, a reordering of 

data segments and duplication of ACKs or data segments. So when the first DUPACK is 
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received TCP waits to retransmit the supposed packet drop because the cause may be different 

from that of a packet discarded. The fast retransmit algorithm uses three DUPACKs as 

indication of packet loss. The Fast Retransmit and Fast Recovery behave according to this 

model. 

1. When the third DUPACK arrives ssthresh changes: 

ssthresh = max 





 SMSS

flightsize
*2,

2
  

2. The lost packet is retransmitted. 

3. cwnd=ssthresh + 3*SMSS, this inflates the congestion window by the number of 

packets (three) that have left the network and are in the receiver buffer. 

4. Increase cwnd by one SMSS for each additional DUPACK received.  

5. Transmit a packet if allowed by the new value of cwnd and rwnd. 

6. When an ACK that acknowledges new packets arrives, set cwnd to the value ssthresh 

set in step 1. The Fast Retransmit phase ends. 

The assumption at the basis of these two algorithms is that if DUPACKs arrive it means that a 

packet has been lost. But if DUPACKs arrive it also means that after the packet loss data 

segments have arrived at the receiver buffer and this allows increasing the cwnd towards its 

previous value on arrival of each DUPACK. The problem is, what happens when there are 

multiple packets dropped. 

If the SACK (Selective Acknowledgment) option [MMFR96] is not available the sender 

has little information about which packets to retransmit during Fast Retransmit. When it 

receives the acknowledgment for the retransmitted packet in the case of multiple drops it 

receives a partial acknowledgment and this will acknowledge some but not all packets sent 

before the Fast Retransmit. Therefore, the TCP sender has no other choice than wait for 

retransmission timeout to expire. 

The Fast Retransmit and Fast Recover in NewReno algorithm  

The problem of the Fast Retransmit algorithm is that it retransmits only the first segment 

without waiting for the timeout to expire. In RFC 2582 [FH99] is presented a solution to 
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respond to partial acknowledgments (in the absence of the SACK option) and the algorithm that 

implements this is referred to as the NewReno algorithm. 

The main modifications lie in the introduction of a new variable recover in step 1 of the 

Reno algorithm and in the variation of step 6. 

1. When the third DUPACK arrives and the sender ssthresh changes: 

 ssthresh = max 





 SMSS

flightsize
*2,

2
 

       Record in the variable recover the highest sequence number sent. 

2. The lost packet is retransmitted. 

3. cwnd=ssthresh + 3*SMSS, this inflates the congestion window by the number of 

packets (three) that have left the network and are in the receiver buffer 

4. Increase cwnd by one SMSS for each additional DUPACK received. 

5. Transmit a packet if allowed by the new value of cwnd and rwnd. 

6. When an ACK that acknowledges new packets arrives: 

a. if this ACK acknowledges all the data up to and including recover: set cwnd 

either to ssthresh in 1. or to min(ssthresh, flightsize + SMSS). Fast Recovery 

ends. 

b. Otherwise this is a partial ACK. Then retransmit the first unacknowledged 

packet; deflate the congestion window with as much as the new data 

acknowledged; cwnd = ssthresh + SMSS (partial window deflating); send a 

new segment if allowed; Fast Recovery goes on. Moreover if this is the first 

partial ACK received reset the RTO. 

If the SACK (Selective Acknowledgment) option is available the receiver is able to 

inform the sender about which packets are missing and the TCP sender can identify precisely 

which segments have been lost and have to be retransmitted. 
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2.1.3 TCP Retransmission calculation 

As regards the error control one of the major problems is the calculation of the 

Retransmission Timeout (RTO). If it is too small the sender will fill the link of segments and 

will retransmit segments unnecessarily degrading TCP performance. Otherwise if it is too long, 

in case of a packet loss, the sender will take a long time to detect the loss and to start the 

retransmission of segments. The optimal value depends on the Round Trip Time (RTT). TCP 

updates constantly the value of RTO estimating the RTT and using Karn and Jacobson’s 

algorithms. 

In the original TCP specification a smoothed RTT estimator was calculated using the 

following formula: 

SRTT (i) = (1-α) SRTT (i-1) + α RTT (i)   

where α is a smoothing factor with a recommended value of 0,9. This smoothed RTT (SRTT) 

is updated every time a new measurement is made. Given the smoothed estimator, which 

changes as the RTT changes, the RFC 793 [Pos81b] recommended the retransmission timeout 

value to be set to 

RTO= β SRTT 

where β is a delay variance factor with a recommended value of 2. 

[Jac88] details the problems with this approach since it cannot keep up with wide 

fluctuations in the RTT, causing unnecessary retransmissions. These add to the network load, 

when the network is already loaded. In fact although the parameter β accounts for the RTT 

variation, the suggested value can adapt to network loads up to 30%. Above this point, a 

connection will respond to load increases by retransmitting the packets that have only been 

delayed in transit. 

In addition to the smoothed RTT estimator, we need to keep track of the variance in the 

RTT measurements, since calculating the RTO based on both the mean and variance provides a 

much better response to wide fluctuations in the round-trip times. The mean deviation is a good 

approximation of the standard deviation, but easier to compute [Jac88]. This leads to the 

following equations that are applied to each RTT measurement. The Smoothed Round Trip 

Time SRTT is calculated with a low-pass filter (in which α is a constant between 0 and 1, 

generally 1/8) and RTT (i) samples are defined considering the time elapsed between the 

transmission and the reception of the corresponding ACK:  
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SRTT (i) = (1-α) SRTT (i-1) + α RTT (i)   

The estimated mean deviation DEV and the corresponding smoothed value SDEV are: 

DEV = |RTT (i)  - SRTT (i-1) | 

SDEV (i) = ¾ SDEV (i-1)  + ¼ DEV 

Finally the new value for the Time Out is: 

RTO = SRTT + 4 SDEV 

Note that after a retransmission the value of RTT remains unchanged. Say a packet is 

retransmitted, a time-out occurs, the RTO is backed off and the packet is retransmitted with 

longer RTO, and an acknowledgment is received. Is the ACK for the first transmission or the 

second? This is called the retransmission ambiguity problem. Karn and Patridge [KP87] 

specify that when a timeout and retransmission occur, we cannot update the RTT estimators 

when the acknowledgment for the retransmitted packet arrives. This is because we do not know 

at which transmission the ACK corresponds. A new RTO does not have to be calculated until 

an acknowledgement for a segment that was not retransmitted arrives.  

2.2 Quality of Service in the Internet  

One definition for QoS is that it means providing consistent, predictable data delivery service 

[Hus00]. Its aim is to satisfy customer application requirements with a certain level of 

assurance. It includes a diverse set of service requirements such as performance, availability, 

reliability, security, etc. and all of these requirements are important aspects of a comprehensive 

network QoS. 

The service realized by TCP over today’s Internet is generally known as “best-effort”. 

Using a traditional FIFO queueing discipline in the network in combination with TCP 

congestion control at the endpoints, sources maintain approximate fairness between themselves 

when they are sharing the same bottleneck link. As the need of new service has grown, the lack 

of service differentiation has become problematic.  
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2.2.1 QoS Technologies 

The evolution of Internet during the last decade has been accompanied by the 

development of new applications, with specific requirements. The aim of service differentiation 

is to satisfy heterogeneous application demands providing them with the request level of 

service in terms of throughput, delay, jitter, bandwidth and priority. The need for services 

differentiation has led IETF to develop a number of architectural solutions to satisfy 

heterogeneous application requests and provide QoS. There are two main approaches to 

delivering QoS services. The first is to create for each service request a reservation state and 

keep it for all the connection. This is the basic idea on which the Integrated Service 

Architecture (IntServ) [BCS94] has been built. The second is to perform the classification of 

the traffic at the entering of the network and then to develop a policy administration function to 

create service outcomes. This is the principle at the basis of Differentiated Service (DiffServ) 

[BBCD98]. 

The IntServ architecture is the Internet incarnation of the traditional circuit-based 

architecture and its main advantage lies in the high accuracy of resource management even 

though it is poor in scalability. The major contribution of IntServ has been the implementation 

of the Resource Reservation Setup Protocol (RSVP) that allows the applications to specify at 

the beginning of the connection their resource requirements. On the basis of this end-to-end 

resource requirements definition, the intermediate network elements (routers, switches etc) can 

allocate the necessary amount of resources for such an application. For resources we intend link 

bandwidth on transmission links, router buffer capacity to hold packets in transit and CPU 

capacity to forward packets in real time. When subsequent packets arrive at each network 

element, they are scheduled in a manner that satisfies the application requirements. On one 

hand this service architecture is able to ensure a solid foundation for providing different classes 

of service in the Internet, but on the other hand it requires considerable changes to the network 

structure. In addition, support for such service can add a significant amount of overhead in 

packet processing within the network. 

Given these drawbacks inherent in the IntServ architecture, the IETF has considered a 

more evolutionary approach to ensure service differentiation in the Internet, the DiffServ 

model. This is expected to have better scaling properties and to be easier to implement than 

IntServ. In fact the DiffServ architecture does not introduce so much overhead and does not 

employ per-flow state. To guarantee quality of service to the applications it uses the DS field 

[NBBB98] in the IP header.  
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The three main goals of DiffServ are: 

• Keep the forwarding path simple: the packet processing at the interior of the network 

must be as simple as possible. 

• Push complexity to the edges: any per flow activity/state should be kept strictly at the 

edge of the network such as in the first-hop router. 

• Avoid assumptions about traffic type in order to satisfy all the new Internet applications 

and their requirements. 

In spite of its desirable simplicity DiffServ, like IntServ, also needs improvements to 

guarantee predictable services and an accurate resource allocation. An interesting proposal has 

been to combine the two architectures, applying IntServ functionality at the edge of the 

network and DiffServ within the network, but it still needs further studies. 

2.2.2 Differentiated Services Architecture  

The approach adopted by the Differentiated Service Architecture is to address the complexity 

of the problem decomposing it in single tasks each independent of the other. In DiffServ the 

per-hop service behaviour is achieved through the development of the admission control and 

the policy administration functions. Although there are several architectures for the 

implementation of DiffServ, all of them are made up of two basic elements: a mechanism that 

monitors the entry of packets into the network and one for the processing of these packets at the 

interior nodes of the network. 

Routers are divided into two categories: the Edge routers, which are responsible for the 

classification and the conditioning of packets and the Core routers, which maintain no state 

information and act based on the initial classification (Figure 2-5). This structure makes the 

network scalable since the boundary nodes that maintain full state information have only a 

limited number of flows going through them. During the classification the traffic stream is 

assigned to a particular per-hop behaviour (PHB), identified by a specific codepoint in the DS 

field of the IP header and present in all the packets belonging to such traffic. The nodes inside 

the network simply select the forwarding behaviour for packets through mapping the DS-

codepoint (DSCP) to one of the PHBs implemented by the Differentiated Service Domain (DS-

domain), which is a set of DS-nodes with a corresponding set of PHBs supported. No further 

profiling or classification is operated inside the network: the load related to the classification is 

let to the edge of the network [BBCD98, Hus00]. 
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Figure 2-5. The DiffServ Architecture.  

 In order to understand the DiffServ architecture we can identify its basic components 

and analyse them individually: 

• The DS field 

• Classification and Conditioning of traffic entering the network 

• Policing 

• Per Hop Behaviour (PHB) 

• Queueing and Scheduling Algorithms 

• Buffer Management and Congestion Control 

• Routing 

The DS Field 

The DiffServ architecture is based on the use of the DS field in the IP header (Figure 2-6). The 

DS field corresponds to the 8-bit Type of Service (TOS) of the IPv4 header or to the Traffic 

Class field of the IPv6 header. These 6 bits are called DiffServ Code Point (DSCP). Certain 

combinations are standardised and called Per Hop behaviours (PHBs). There are two main 

tasks related to the DS field. The former is the packet-forwarding function in which the DS 

field is used to select a particular per-hop behaviour inside the network and that it is simply 

realized using a routing table. The latter regards the routing function or more specifically the 

policy, the configuration network and the resource allocation, on which is based the correct 

working of the first function [NBBB98].  
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Figure 2-6. The DS field in the IP header.  

Classification and Conditioning of traffic entering the network 

A Differentiated Services Domain (DS-domain) is a contiguous area of the Internet over which 

a consistent set of differentiated service policies are administrated. A DS domain can 

correspond to different administrative domains or autonomous systems or different network 

topologies.  The Differentiated Service Boundary is the edge of a DS domain, where classifiers 

and traffic Conditioners are implemented. The DS-boundary nodes can be further sub-divided 

into Ingress and Egress nodes, as shown in Figure 2-5. They represent the 

downstream/upstream nodes of a boundary link in a given traffic direction. A Differentiated 

Service Boundary is usually deployed at the ingress to the first-hop differentiated-services-

compliant router that a packet will traverse during the connection, or at the egress of the last-

hop differentiated services-compliant router that a packet will traverse before reaching the host. 

A router is defined Differentiated Service Compliant if it is in compliance with what was 

specified in RFC 2474 [NBBB98]. 

The DS-Boundary nodes must check the entering traffic conform to the Traffic 

Conditioning Agreement (TCA) between their DS domain and the domain that they connect to. 

The TCA between two domains is derived from the Service Level Agreement (SLA), a service 

contract that defines the service a customer should receive. The SLA specifies the amount of 

traffic allowed for certain classes and it may include traffic conditioning and packet 

classification rules. Packets that do not conform to the SLA can be dropped or modified in the 

DS field before being transmitted. 

Traffic classifiers select packets based on the header fields of the IP packets taking into 

account several elements: 

8-bit Type of Service/DS Field 
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• DiffServ field 

• Protocol 

• Port Number 

• Source address 

• Destination address 

• Mac address 

• Time-To-Live (TTL) field 

 

If they consider only the DSCP value they are called behaviour aggregate classifier and 

if they also check source address, destination address and other elements they are called 

multifield classifier. Traffic Profiles determine the temporal properties of a classified packet 

stream, specifying if packets are in profile or out of profile. A traffic conditioner may be 

constituted by several elements, such as markers, shapers, meters and droppers, but it does not 

necessarily contain all four elements as shown in the example in Figure 2-7 . Packet markers 

set the DS field of a packet to a particular DSCP, indicating the service quality and 

corresponding to a particular PHB behaviour. The Shaper and dropper‘s task is to mould the 

packet stream in order to make it compliant with the traffic profile. Finally traffic meters 

measure the temporal properties of the stream and pass the information to the marker. 

 

  

Figure 2-7. Block diagram of a traffic classifier and a traffic conditioner. 

Policing  

This refers to a combination of rules intended to prevent a traffic stream to grab more resources 

than allowed. It is based on an agreement between the Service provider and his customer. 

Packets that do not conform to the SLA can be dropped or transmitted with a modified value of 

the DS field 

Meter 

Classifier Marker Shaper/Dropper 

Packets 
entering the 

network 

Packets 
passed to the 

forwarder 
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Per-Hop behaviour (PBH) 

The DiffServ working group has specified a set of Per-Hop Behaviours that are used by the 

router to provide differentiated services. PHBs are encoded in the DSCP and are used to 

determine the treatment the packet forwarded will receive by the intermediate nodes. On the 

specification of the PHBs is based the resource allocation at each node in the network. PHBs 

may be defined in terms of their resource or of the traffic characteristics. They can be 

considered to be building blocks by which it is possible to construct a great set of services and 

they constitute the basis for future extensibility of the structure. 

Currently three PHBs have been standardized: the Default (DE), the Explicit Forwarding 

(EF) and the Assured Forwarding (AF) PHBs. The DE PHB [NBBB98] is the common, best 

effort forwarding available in today’s Internet. IP packets marked for this service are sent into a 

network without adhering to any particular rules and the network will deliver as many of these 

packets as possible and as soon as possible, but without any guarantees. The EF PHB [JNP99] 

specifies a forwarding behaviour in which packets see a very small amount of loss and a very 

low queueing delay. In order to guarantee that every packet marked with EF receives this 

service, EF requires every router to allocate enough forwarding resources so that the rate of 

incoming EF packets is always less than or equal to the rate at which the router can serve them. 

To achieve this on an end-to-end scale, EF requires that traffic be shaped and reshaped in the 

network. The AF PHB group [HBWW99] specifies a forwarding behaviour in which packets 

see a very small amount of loss. It consists of four different classes. Within each of them, IP 

packets are marked with one of the three possible drop preference levels to differentiate 

between flows in the class itself. In case of congestion the drop precedence of a packet 

determines the relative importance of the packet within the AF class and a congested node tries 

to protect packets with a lower drop precedence value from being lost. The AF’s intent is to 

preferentially discard best-effort packets and packets which are outside of their contract when 

congestion occurs. By limiting the amount of AF traffic in the network and by managing the 

best-effort traffic appropriately, routers can then ensure low loss behaviour to packets marked 

with AF PHB. 

Queueing and Scheduling Algorithms  

A router can allocate its resources by employing several queueing algorithms and several 

scheduling techniques. The first function specifies how to behave in case of congestion, which 

packet to drop or mark .The second function is related to the decision on which link to send a 

packet.  
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Briefly we can just underline that in order to implement a DiffServ network it is 

necessary to map every different DiffServ traffic class on a specific couple of scheduling and 

queueing mechanisms. It is not still clear which is the best scheduling mechanism and the 

alternatives are different, such as: 

• MDRR (Modified Deficit Round Robin): it extends DRR [SV94] and offers the support 

for delay sensitive traffic, such as VoIP, which is associated with the LLHP (low-

latency, high-priority) queue. This special class is treated differently from the others in 

order to guarantee the associated service. 

• WRR (Weighted Round Robin) : it is priority based and provides service for voice traffic. 

• WFQ (Weighted Fair Queueing): it is a packet scheduling technique allowing guaranteed 

bandwidth services. The purpose of WFQ is to let several sessions share the same link. 

WFQ is an approximation of Generalized Processor Sharing (GPS) [SL97]. In GPS each 

service has a separate FIFO queue. At any given time the N active sessions (the ones 

with non-empty queues) are serviced simultaneously, each at a rate of 1/Nth of the link 

bandwidth. GPS also allows having different service shares for each session. This means 

that each session has its own queue and an ill-behaved session (for example one that is 

sending a lot of data) will only punish itself and not other sessions. Informally GPS 

implements a min-max weighted fair-share algorithm using a small service ration. The 

requests are sorted in order of increasing weighted resource requirements and each 

request is satisfied in order, with a weighted proportion of the residual resource; the 

unused allocated resource is placed back in the resource pool to be shared over the 

remaining requests. WFQ follows this ideal model of GPS, but at the packet level, 

considering the distortion of the resource-sharing caused by data being quantized into 

packets 

• IP RTP Priority (Internet Protocol Real-Time Transport Protocol Priority) [SCFJ96]: it 

permits to define a range of UDP/RTP ports whose voice traffic is guaranteed high 

priority service over all the other classes sharing the same interface. 

• Priority Queueing within CBWFQ [GVP01]: it uses priority queueing for voice traffic 

belonging to a class. 

Buffer Management and Congestion Control  

In order to provide different QoS to different flows the routers need both scheduling 

algorithms, such as discussed above, and buffer managements schemes. Some of them are: 
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• Tail-Drop (TD): it drops arriving packets only when the queue saturates. 

• Random Early Detection (RED) [FJ93]: it is an active queue management scheme, 

based on the average queue size; it drops or marks the packets following a probability 

algorithm. 

• Longest Queue Drop (LQD) [LNO96]: in presence of congestion it drops a packet from 

the flow that has the longest buffer queue 

• Weighted Random Early Detection (WRED)[CISCO98] 

• Random Early Detection In/Out (RIO) [CF98] 

Some of these algorithms are described thoroughly in section 3.2.3. We can just notice briefly 

that the using of active queue management mechanisms makes it possible to differentiate the 

performance of several TCP connections assigning them different priorities and developing a 

discarding strategy based on them. It is possible to realize priorization between distinct traffic 

aggregates for instance within the Assured Forwarding PHB group. For details see [WW02]. 

2.3 Wireless Networking Environment 

The Internet has been in constant growth in the last two decades, reaching a greater number of 

users and supporting new applications. New kinds of hosts, such as mobile devices, have 

become more and more important and the Internet more heterogeneous. At the beginning TCP 

was specified for wired networks and stationary hosts, but nowadays, wireless networks 

represent more and more the Internet’s reality and they will play an important role in its future. 

The wireless environment exhibits different characteristics compared to the wired one and TCP 

improvements are needed to assure reliable transport services to all the users regardless of the 

kind of links connectivity used. The nature of wireless links is quite different compared to 

wireline networks for several reasons. 

We can subdivide Wireless networks into two main categories: Local area networks 

(LAN) and Wide area networks (WAN) on the basis of the dimension of the area they cover 

[MDKM00, Pen00]. The Wireless WANs are more problematic since they are characterized by 

a delay-bandwidth four or five times greater than the Wireless LANs.  

Wireless LANs (W-LAN) in general are organized in a cellular topology in which the 

territory is subdivided into several cells, each characterized by a defined coverage area. A base 

station with a W-LAN transceiver is responsible for a single cell and for all the hosts moving in 
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that area. The base station, also called access point, is directly connected to the wired network. 

A handoff occurs when a mobile host moves from one cell to another and switches from the old 

access point to the current one. 

W-LANs are characterized by high bit rates, but by a small service area of the base 

station. They are developed on the basis of two main standards: the High Performance Radio 

Local Area Network (HIPERLAN) standard and the IEEE 802.11 standard. The former offers 

channel speeds of 1 Mbps in a range of 800 meters or up to 20 Mbps in a range of 50 meters. 

The latter offers bit rates of 1 or 2 Mb/s in a range of 100 meters. They can operate just over 

limited distances, tens of meters or less, much smaller than those allowed in wireline. The 

maximum mobile host speed is about 36 Km/h for HIPERLAN/1 (HIPERLAN Type 1) and 90 

Km/h for the IEEE 802.11 standard. For a more detailed analysis see [Tab00]. 

As regards WAN systems we can consider WAWDN (wide area wireless data networks), 

which are WANs specified for data transmission and include the technologies GPRS (General 

Packet Radio Service) and CDPD (Cellular Digital Packet Data) [Tab00]. They are 

characterized by lower bit rates, but a wider service area for users, about some tens of square 

kilometres. And then cellular networks that have been designed to provide mobile telephone 

voice service in the first place, but can carry data as well, even if in this case they are not very 

economical. Examples of these are GSM, D-AMPS and IS-95. They are characterized by lower 

bit rates like 9.6 kb/s for GSM [Tisal98] or 19.2 Kb/s for IS-95 [Tab00]. GPRS packet 

transmission offers higher transmission rates and simpler access to packet data networks than 

that provided by circuit switched services. In conventional GSM, a channel is permanently 

allocated for each user during the entire call period, while in GPRS, channels are allocated 

when data packets are sent or received in order to provide a more efficient use of resources for 

bursty data application and more flexibility. GPRS technologies represent an important step in 

the evolution towards third-generation cellular networks that promise to offer higher bit rates 

[BVE99]. 

At last there are the so-called long fat networks (LFNs or elephants) including satellite 

links and characterized by a long round trip time. W-WAN and LFNs are both L-networks 

since they have long round trip times, but only satellite networks are defined fat for the high 

bandwidth they consume. We refer to W-WAN as LTNs, long thin networks. In this brief 

description we do not analyse LFNs [MDKM00]. 
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2.3.1 Properties of Wireless Links 

In order to understand future improvements of the TCP protocol it is useful to summarize the 

most important properties of Wireless link [BKGM01, Pen00]. 

• Limited Bandwidth : wireless wide area networks present limited data rates, around some 

tens of kilobytes per second. Moreover, sometimes bandwidth can be asymmetric, with 

more capacity on the uplink than on the down one (for example the uplink rate is limited 

by battery use) and also it can oscillate over time, because the scheduler can decide to 

reallocate the resources sharing by multiple users, in order to maximize resource 

utilization. 

• High Latency: in general wireless links are characterized by higher propagation delays 

than wired links. A typical Round Trip Time varies between a few milliseconds to one 

second. This affects TCP throughput and decreases the user’s possibility to work 

interactively. We can also notice that these properties may comport in some situations 

unfair sharing of resources; for example in case two hosts are connected to the same 

Web Server, but through different links, wired in one case and wireless in the other one. 

The second host will experience a smaller bandwidth share cause of the longer RTT than 

the first one. 

• Variable delays: the latency experienced on the link may increase unexpectedly for 

several reasons, such as a temporal loss of radio coverage or handover of the mobile 

user. This is usually referred to as delay spikes. 

• Error losses: some wireless links are characterized by higher error rates. The BER on 

wired links are on the order of 10 6−
-10 8− , while on the wireless one they are on the 

order of 10 3− and sometimes 10 1− . The error rate is determined by the current radio 

conditions and they can vary considerably during the connection. This is the most 

critical aspect when we consider wireless links and the problem is not so much related to 

the high number of retransmissions (since the packet was lost and the only way to 

recover it is to retransmit), as to the fact that lost segments cause TCP to enter a 

congestion avoidance phase and to keep the congestion window small. This implies a 

lower throughput. Forward error correction (FEC) can be used to correct the bit errors 

on wireless links by using an encoding algorithm, but this involves a large use of 

bandwidth and is efficient only in some cases.  
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• User Mobility: this aspect refers to two different cases depending on whether the service 

is with or without interruptions. The first situation is related to portability and is the case 

of a laptop that can connect to different access points and the other one is related to 

mobility and is the case of a user who can move and requires a continuous service. 

Hand-offs occur when a mobile host starts communicating with a new base station by 

moving from one cell to another one. The consequence can be a temporary loss of route, 

resulting in loss of packets. 

2.3.2 Transport over Wireless Networks 

Several solutions have been proposed to improve TCP’s performance over wireless links or 

high loss links. It is important before analysing these techniques to observe how the congestion 

control schemes in today’s Internet work, referring to [Lud99]. In general, congestion control 

can be realized in two different ways: through explicit or implicit congestion signals. At 

present, TCP’s congestion control is based just on implicit congestion signals in the sense that 

it can infer from some particular network’s signal the current state of the network. From this 

point of view two different techniques can be implemented: the former is based on delay 

measurements and the latter on packet loss rate. TCP adopts the second way since it may prove 

difficult to calculate a precise estimation of network delay. As a result, TCP’s congestion 

control is entirely based on packet loss. At this point it is clear which problem these solutions 

have to face, eventually to turn to techniques never adopted such as those based on explicit 

congestion signals. There are three different kinds of approach: solutions at the link layer (LL), 

modifications of the TCP protocol and a proposal for new transport protocols [BSK95, 

DMKM01, Pen00, Vai99]. 

Link-layer protocols 

The main idea of this kind of approach is to hide the lack of reliability of wireless links to the 

higher layers and attempt to offer them a channel with the same characteristics (or almost the 

same) of wired links, so that the existing sender protocols do not need any modifications. The 

transport layers remain transparent to these hardware techniques and most packet losses seen 

by TCP are effectively due to congestion. Using IP at the network layer requires a certain level 

of robustness of the link that is not guaranteed with wireless links. IP uses checksums to protect 

the packets it transports. They are not enough with wireless networks [MDKM00]. 
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The two main techniques adopted by the LL protocol to improve wireless links are error 

correction, and most specifically FEC (forward error correction), and retransmission of packets 

loss, with schemes such as ARQ (automatic repeat request). But improving the reliability of 

wireless links is not without cost and the application of this kind of protocols can waste 

resources and cause transport protocols to perform badly. The two main causes for this negative 

result are related to timer interactions and fast retransmission interactions. The former regards 

the fact that setting the timer independently at transport and link layers may induce to a 

duplicate retransmission of packet loss, if LL timers are not set to expire faster than the TCP 

ones. The latter is related to the situation in which the link layer does not pay attention to 

delivering the packets in the correct order causing DUPACKs and fast retransmission 

[BPSK96]. 

TCP-Aware link layer: the best-known implementation of this proposal is Berkeley’s Snoop 

protocol [BKGM01]. It is based on the introduction of a snoop agent at the base station that 

monitors every TCP segment that is sent or received by the mobile hosts, who are moving in 

the interested cell. The snoop agent maintains a soft state for each TCP connection. It buffers 

data packets not yet acknowledged at the base station BS and when DUPACKs are received, if 

the packets missing are present in the buffer it retransmits them on the wireless link and it does 

not forward the DUPACKs, avoiding an unnecessary fast retransmission phase at the TCP 

sender. The advantages introduced by the snoop protocol are based on its capacity to remedy 

packet loss faster than TCP and hiding the deficiencies of the connection. But this is true only if 

the RTT of the connection is small enough and the connection is continuous. The disadvantages 

are that Snoop requires the base station to be able to examine the traffic between the sender and 

the receiver and consequently it cannot work if the IP traffic is encrypted. Moreover, for Snoop 

to work efficiently it needs the data and the corresponding acknowledgements to traverse the 

same access point. 

TCP-Unaware LL Protocols: they attempt to imitate the Snoop protocol, without making the 

BS TCP-aware. 

TULIP (Transport Unaware Link Improvements Protocol) is not aware of which transport 

protocol is used, but it needs to know the type of service requested by the packet. It works like 

Snoop, buffers packets and retransmits packets lost in order to avoid TCP to enter into 

congestion avoidance or fast retransmit and it has been showed that it can reach better 

performance than the Snoop protocol. 
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DDA (Delayed duplicate acknowledgements) is based on the same principle, but with the 

specification that each TCP segment has to be encapsulated on LL frame and each TCP ACK 

has to be encapsulated in a LL ACK. The module knows a packet has been lost when it 

receives LL-DUPACKs: it retransmits the packet lost and waits to send the DUPACKs to the 

sender for a certain amount of time. If any ACK is received before the expiration of this fixed 

time it forwards the DUPACKs to the sender. Anyway the protocol still needs further study 

[MDKM00]. 

Split Connection 

The main idea at the basis of this kind of approach is the observation that wireless and wired 

links present so different characteristics that it may be better to develop specialized protocols 

for each of them. The TCP connection is split in two different connections at the base station: 

one connection with the fixed host on the wired link and the other one with the mobile host on 

the wireless link. On the wireless link a protocol such as TCP or other may be used. Split-TCP 

proposals are Indirect-TCP (ITCP) and MTCP [MDKM00, Pen00]. The Mowgli system 

proposes a different approach that involves all protocol layers and offers the option to replace 

TCP/IP on the wireless link with a wireless specific protocol [KRA96]. 

TCP Modifications 

Several improvements of the TCP protocol have been proposed. We consider just some of 

them. For a more detailed analysis see [Pen00]. 

TCP Selective Acknowledgements Options (SACK)  [FMMP00, MMFR96]: it is a 

mechanism developed to recover from a situation of multiple dropped packets. TCP uses a 

cumulative acknowledgement system. In the case of multiple drops in a single window, TCP 

fast recovery generally performs badly because there is no way to acknowledge blocks of 

packets received out of order, but correct. With selective acknowledgments the sender can 

communicate to the receiver more precisely which packets have been received and which must 

be retransmitted. This additional information can be piggy-backed in a duplicate ACK segment 

that is sent when an out-of-order segment is received. Anyway the use of SACK is optional 

and, if it is supported, it must be negotiated at the beginning of the connection. 

Increasing TCP’s Initial Window: [AFP98] suggests increasing the initial congestion 

window for TCP from one segment to 4Kbytes. This improvement is due to the fact that TCP 

with an initial window of one segment is time-consuming in the slow start phase. A packet loss 
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at the beginning of the connection would lead to a RTO, as there are not enough packets in the 

network to produce three duplicate acknowledgments that would trigger the fast retransmit/fast 

recovery algorithm. Increasing the initial congestion window results in faster window growth 

during a slow start and can be useful for short flows and connections characterized by long 

RTT. However this optimization is still under discussion. 

Active Queue Management [BCCD98]: as explained in detail later (see Section 3), this 

kind of algorithm allows the sender to prevent congestion collapse by controlling the average 

queue size of the router buffer and signalling to the sender of the incipient congestion before 

the queue overflows. With networks that present long delays it is much more important to avoid 

congestion. Random Early Detection (RED) [FJ93] is the most relevant proposal of this 

approach even if several enhancements have been proposed and deployed. 

Explicit Notification Schemes: TCP Congestion Control is based on the assumption that 

most of the packet losses are due to congestion. The congestion is signalled by the absence of 

acknowledgements and the sender should reduce its sending rate when it is detected. The ideal 

TCP should retransmit a packet lost for transmission errors without taking any congestion 

measures. We introduce two different approaches: Explicit Congestion Notification (ECN) 

[RFB01] and Explicit Loss Notification (ELN) [BK98].  

On one hand TCP with Explicit Congestion Notification (ECN) can signal the router of 

incipient congestion without discarding packets, but simply setting a bit in the packets header. 

In this way the TCP sender is able to understand if it must reduce its transmission rate because 

of incipient congestion (ECN bit set) or if a packet loss is due to a transmission error and it 

must not take congestion measures (ECN bit not set). ECN can be implemented as a 

complement of RED. See section 3.3 for more details. 

On the other hand Explicit Loss Notification (ELN) explicitly signals the sender when a 

loss is due to link errors (ELN bit set) and implicitly the case of incipient congestion (ELN bit 

not set). The base station stores the information about the missing packets in the packet 

sequence received from the mobile host towards the destination. When a DUPACK is received 

the BS compares the sequence number with the indications cached and if there is 

correspondence sets the ELN bit in the DUPACK forwarding it to the mobile host. So the 

sender seeing the ELN bit set understands the packet has been lost for error on the transmission 

link: retransmit the packet without decreasing its congestion window. Anyway this scheme is in 

general avoided because it is difficult to implement.  
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The limited transmit [ABF01]: it is a mechanism to recover from packet loss when the 

congestion window at the TCP sender is small and does not allow the sender to receive the 

three DUPACKs required to trigger fast retransmit. This can occur in several cases for example 

when the flow of data to send is relatively short. It allows the TCP sender to send new data 

segments upon the first two DUPACKs if the receiver’s advertised window is large enough and 

if the value of the outstanding segments is at most two more than the congestion window. Then 

the receiver answers to the new data sending acknowledging the same packet as before and 

TCP’s fast retransmit phase starts. 

The limited receiver window [DMKM01]: it is one proposed enhancement regarding 

only the TCP sender side. The delay bandwidth product is usually quite small in a slow 

wireless or wired link and consequently the capacity of the router buffer is limited. Being that 

the default receiver’s advertised window is quite big the TCP sender may increase the 

congestion window above the delay bandwidth product and cause a packet loss in the 

intermediate routers due to buffer exhaustion. Several benefits can be derived by decreasing the 

Receiver Advertised Window as show in a study conducted by [ZPBS02]. 

The Eifel algorithm [LK00, LS00]: it attempts to solve the problem of spurious 

timeouts and spurious fast retransmit. These problems may be relevant if we consider TCP 

running across wireless networks where wireless access links may be subject to handover and 

resource pre-emption or hosts connected to the Internet may experience a radio coverage hole 

resulting in frequent disconnections. A spurious timeout is a timeout that expires prematurely 

and it is caused by a sudden increase of the Round Trip Time to a different value from what has 

been previously estimated. When a timeout expires TCP forces the sender to reduce his 

congestion window and to enter fast retransmit, decreasing the network throughput. A spurious 

fast retransmit occurs when the packet re-ordering length is greater or equal to the DUPACK-

Threshold. The packet re-ordering length means the number of packets received correctly, but 

out of order. Also in this case spurious fast retransmit causes a degradation of the network 

throughput since the sender reduces its window and retransmits packets already received. The 

consequence in both cases is the so-called spurious retransmission. At the basis of both 

problems there is the incapacity of the receiver to disambiguate between ACK of the original 

transmission and ACK of the retransmission (retransmission ambiguity). The Eifel algorithm 

manages to solve the retransmission ambiguity using the TCP timestamp option as 

recommended in [IMLG02], even if it is possible to adopt other solutions like those discussed 

in [LK00]. 
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Disabling RFC1144 TCP/IP Header Compression [IMLG02]: in the case of a wireless 

link, with a high loss rate, adopting RFC1144 header compression can have negative 

implications in recovering from a packet loss through fast retransmit. In fact RFC1144 specifies 

not to transmit the entire header of consecutive packets, but only the variations between them. 

If one packet is lost the synchronization is lost too.   

Wireless Application Protocol (WAP)  

The WAP Forum [WAP01] is an industry association that has specified standards for wireless 

networks. The WAP has defined a new protocol stack, based on five protocol layers: 

Application Layer (WAE), Session Layer (WSP), Transaction Layer (WTP), Security Layer 

(WTLS) and Transport Layer (WDP) [Pen00]. 

The transport layer WDP provides unreliable datagram service to the higher layers. If the 

bearer service supports IP, UDP is used instead of WDP and in the other case, with IP not 

supported, WDP implements an intermediate protocol that works as an adaptation level 

between the bearer service and the WAP protocols. A key concept at the basis of WAP 

protocols is that the presentation and application layers are responsible for the reliability of the 

service in general provided by the TCP layer. A typical scenario in which WAP is used sees a 

WAP client, a WAP proxy and an origin server. The WAP protocol provides the functionality 

of a split connections system. The client uses the WAP protocol to send requests to the WAP 

proxy. The proxy translates the request into a WWW request and passes it to a common web 

server, using a standard TCP/IP wired network. Then the web server answers to the proxy 

encoding the answer in a binary format in order to minimize the load on the link. At the end the 

proxy forwards the answer to the WAP client.   

Alternative Transport Protocols 

Some protocols have been developed specifically for wireless links, but their application is still 

problematic. Some of them are Wireless Transmission Control Protocol (WTCP) [Sinha99], 

Wave-and-Wait Protocol (WWP) [TBV00] and TCP-Probing [TB00].  

The most important feature that differentia tes them from the TCP protocol is the role the 

receiver plays during the connection and the congestion control mechanism. In fact the receiver 

controls and decides the rate the sender has to keep over the link. Basically the idea is that the 

receiver uses some algorithms to calculate the optimal rate for the connection and asks the 

sender to modify its rate according to that estimation. The most important disadvantage of this 
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structure is that the receiver, in general the mobile host, has to employ more complicated 

technologies and this means greater power consumption.   
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 3 Active Queue Management 

This Section demonstrates a significant weakness in current congestion control in the Internet. 

In order to address this inefficiency, an Active Queue Management algorithm has been 

proposed: Random Early Detection (RED). We present the theoretical approach on which is 

based and the most important imperfections it presents. In the last part we introduce Explicit 

Congestion Notification (ECN) mechanism to be used in combination with RED in order to 

avoid unnecessary packet drops. 

3.1 Need for Active Queue Management 

In the current Internet, the TCP protocol detects congestion only after a packet has been 

dropped at the router. The TCP source uses the receipt of the three duplicate 

acknowledgements or the expiration of a retransmit timer as indication of congestion and 

consequently reduces the congestion window. The common method for managing router queue 

lengths is to fix a maximum length (in terms of packets) for each queue, accept packets for the 

queue until this limit is reached, then refuse subsequent incoming packets until the queue 

decreases because a packet from the queue has been transmitted. This technique is known as 

Tail Drop, since the packet that arrived most recently, the one on the tail of the queue, is 

rejected and discarded when the queue saturates. This is the traditional mechanism that has 

been used in the Internet for years, but it has two important disadvantages, as stated in RFC 

2309 [BCCD98]. 

1. Lock-Out 

The tail drop mechanism may allow a monopolization of queue resources by a single or 

few flows, denying other connections the possibility to find place in the router buffer.  

2.   Full Queues 

Since congestion is detected only after a packet has been discarded and this occurs just 

when the queue router is full, Tail Drop allows queues to reach a full status and to persist in 

this steady state for long. Instead, the average queue size should be kept low and 

fluctuations in the actual queue size should be allowed, thus to accommodate bursty traffic 
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and transient congestion. In fact having a small queue in the buffer reduces the end-to-end 

delay, but also permits TCP sessions that traverse the saturated queue not to loose all of an 

entire packet train, resulting in an increased throughput for the network. Buffering in the 

network has to work in order to absorb data bursts and transmit them in a period of low link 

utilization. This means that the queue limits should reflect the size of bursts we want the 

network to be able to absorb. 

Approaches like Random drop on full or Drop front on full are similar to Tail Drop and do not 

solve the problem of full queues. The only difference they have from Tail Drop is the criteria 

used to choose which packet to discard when the queue saturates. The former chooses 

randomly a packet in the queue and the latter drops the packet at the front of the queue. In order 

to solve the problem of full queues in routers this basic queue-admission policy can be 

modified by establishing admission criteria that direct which packets may be discarded even 

though space is available on the queue, but near to congestion. This general approach is called 

Active Queue Management (AQM). Such an algorithm does not eliminate packet drops, but on 

the contrary, it discards or marks packets at an earlier stage in order to solve the congestion 

problem for flows that are responsive to packet drops as congestion signal. The benefits of its 

introduction are several. 

1. First of all it allows to reduce the number of packets dropped in the router, because 

keeping the average queue size small the router buffer can absorb bursts without 

discarding packets, or better, dropping less packets in the case of queue overflows than 

in the network implementing Tail Drop or other algorithms. This is important not only 

because dropped packets represent a discard of resources, but also because TCP 

recovers easier from a single packet than a burst of packet drops. 

2. Then it solves another drawback inherent in tail drop: the problem of synchronization. 

When several TCP connections are sharing a bottleneck link, implementing Tail Drop as 

discarding policy in the buffer of such a bottleneck, losses tend to appear periodically, 

producing a synchronization of the congestion window of the TCP connection. Active 

queue management schemes may avoid this synchronization giving the possibility to the 

several TCP connections to reduce their sending rate at different moments and not all 

the same moments. This permits to achieve higher throughput. 

3. It provides lower delay on the link thanks to the reduced size of the buffer queue. 

4. It solves the problem of lock-out, as defined before. 
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3.2 RED congestion control mechanism 

One form of AQM being proposed by the IETF for deployment in the network is Random Early 

Detection (RED). The RED scheme was first presented in [FJ93]. Its objective is to provide 

control on the average buffer in order to guarantee the following benefits. 

1. avoid congestion 

2. minimize packet loss and queueing delay 

3. avoid global synchronization of sources 

4. maintain high link utilization and maximize the global power (the ratio of throughput 

to delay) 

5. remove biases against bursty sources and guarantee fairness 

6. be useful for a wide range of environments, with a variable number of connections with 

different round trip times, data loads and throughput.   

All available empirical evidence shows that the deployment of active queue management 

mechanisms in the Internet would have substantial performance benefits and one of the major is 

the fact that this kind of algorithm can absorb bursty traffic. Moreover, in addition to keeping 

the average buffer occupancy low, it solves the problem of synchronization. The probabilistic 

approach allows routers to drop packets in proportion to the connection’s share of the total 

bandwidth. Consequently the discards will generally regard the greediest connections. Thanks 

to all this advantages RFC 2309 [BCCD98], often referred to as the RED Manifesto, states that 

Internet routers should implement some active queue management mechanism to manage 

queue lengths, reduce end-to-end latency, diminish packet dropping and avoid lock-out 

phenomena. RED has been recommended as the default queue management algorithm since it 

requires a moderate overhead to be implemented in current gateways. 

3.2.1 RED algorithm 

RED congestion control mechanisms monitor the average queue size for the output 

queue and choose connections to notify of the incoming congestion. It discards packets that 

arrive at the router selectively, hence TCP connections, after they have detected lost packets, 

reduce their transmission rate and congestion can be prevented. Moreover, RED drops packets 

in a probabilistic manner and such probability grows with the estimated average size of the 

queue.  
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Figure 3-1. Detailed algorithm for RED gateways [FJ93]. 
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The RED algorithm, as explained in [FJ93], consists mainly of two phases. In the first 

stage the RED gateway calculates the average queue size (avg) that determines the degree of 

burstiness allowed in the router queue. The second phase regards the calculation of the packet 

dropping probability, given the moving average of the queue size. The moving avg is computed 

by a low-pass filter with an exponential moving average with weight wq : 

( ) qnqn wavgwavg +−=+ 11 qist 

where qist is the instantaneous queue size. n refers to a time granularity which is mandatory for 

this sort of computing. The previous expression can be interpreted as a low-pass filter through 

which the signal instantaneous queue size passes, giving as output the average queue size. wq is 

the time constant of the filter, which prevents the avg from being sensitive to noise. As 

demonstrated in [FJ93], once fixed the minimum threshold minth and the burst of packets L we 

want to be able to absorb, wq is bounded in this way:  
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The RED algorithm estimates avg at each packet arrival with the inconvenience that it 

misses the dequeue movements when there are no packet arrivals. For example, if one packet 

arrives at time 0 when the instant and the average queue sizes are 500 packets and the next one 

arrives after 250 packets have left the buffer, RED would calculate an average queue length 

near to 500, because the instant queue size is 250, but the average is still 500. 

Figure 3-2. Instantaneous queue length [[CJOS02]. 
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The RED pseudo-algorithm is formally reported in Figure 3-1. Note that the algorithm is 

not based on the instantaneous queue size, but on an approximation of the average queue size to 

improve buffer utilization through low average buffer occupancy as illustrated in Figure 3-2. 

When the moving average is below the minimum threshold minth, no packets are dropped and 

the new packets are queued. If it is above the maximum threshold maxth, every incoming packet 

is dropped. Between these boundary conditions, the incoming packets are marked with a 

packet-marking probability p’ (intermediate) whose value is calculated on the basis of the 

average queue size. As avg varies from minth to maxth, the packet-marking probability 

(intermediate) p’ varies linearly from 0 to the maxp (Figure 3-3), which is an upper bound on 

the temporary packet drop probability: 

p’= maxp (avg-minth )/( maxth- minth) 

The final packet-marking probability p increases slowly with the count variable: 

p=p’/(1-count * p’) 

count is the number of unmarked packets since the last time a packet was dropped or since the 

avg exceeded  minth. 

 

Figure 3-3. Dropping/Marking behaviour of RED. 

 It is interesting to note that the correction introduced by count in the calculation of p 

assures that the drop probability is uniformly distributed [CEP99]. We consider two different 

methods to determine the final dropping probability p as linear function of avg. Let X be the 

number of packet arrived between two successive marked packets.  

1. X is geometric distributed 
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Each packet is marked with probability p’, as defined before, and 

'pp')(1n]Prob[X 1n −−==  

which is the geometric distribution. Consequently by setting p=p’ we obtain X geometric 

distributed. 

2. X is uniformly distributed 

On the contrary setting p=p’/(1-count * p’), as suggested before, we have: 

( ) '
'/10

'11'
'1

'
1

'11
'

][

2

0
pn

pnp
ip

p
pn

p
nXProb

n

i
>

≤≤=







−

−
−−== ∏

−

=
 

that is the definition of uniform distribution on the interval [1,1/p’]. This second result is 

much more desirable than the first one since marking packets at regular intervals and 

equally distributed guarantees not to incur in connection synchronization. In fact, Figure 

3-4 shows the distribution of marked packets obtained using the first definition for p and 

setting p’=0,02 (in the upper part) and the second one for p’= 0.01 (in the inferior part). 

The number of drop packets is approximately the same (100 out of 5000 incoming packets), 

but while in the first case the points indicating the marked packet are concentrated in some 

areas, with the second method they are equally distributed over the full interval. It is better 

to avoid to have marked packets close to each other because this can induce the active 

connections to have packets discarded at the same time and consequently to reduce their 

transmission rate at the same moment resulting in a global synchronization. 

Figure 3-4. Comparison between two marking probability method [FJ93]. 

By default the RED algorithm follows the original version and measures the queue size 

in packets rather than in bytes. Modifications to this basic version have been implemented to 

allow the application of RED to different networks such as ATM [RBL99] and with this option 

the algorithm changes in this way: 
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p’= maxp (avg-minth )/( maxth- minth) 

 p’=p’*L/M 

p=p’/(1-count * p’) 

L is the Packet Size and M is the Maximum Packet Size specified for that connection. This 

modification ensures that the probability that a packet is marked is proportional to the packet 

size in bytes. 

3.2.2 Parameter sensitivity 

Unlike Tail Drop where the only free parameter is the buffer size in RED we have several 

parameters to set, like wq, mint h  ,maxth and maxp. In order to achieve a good congestion 

avoidance the parameter sensitivity must be kept low. Some rules to follow are suggested in 

[FJ93,Flo97] and shortly we summarize them: 

1. set minth high enough to guarantee a high utilization of the link. The optimal value for it 

depends on the link speed, propagation delay and buffer size. In the ns-2 simulator, minth 

is set as default to 5 packets (or, for a queue measured in bytes rather than packets, 5 

packets times the mean-packet-size in bytes) and according to the link characteristics it 

seems to be a good rule not to keep it too small, such as 1 or 2 packets because we do not 

allow enough burstiness in the arrival process. 

2. maxth- minth must be kept large enough to avoid global synchronization. If it is small, avg 

can oscillate regularly from the minimum till the maximum threshold and the gateway 

will discard a lot of packets in the same moment. The [FJ93] paper recommends setting 

maxth to at least twice minth, but the current rule of thumb is to set maxth to three or more 

times minth. In the ns-2 simulator minth and maxth are set to 5 and 20 packets respectively.  

3. set maxp to 0.1. There is no need to set it higher than 0,1, because we do not want a 

router to work with high drop rates. Moreover the RED gateways perform best when the 

packet dropping probability changes fairly slowly as the average queue size varies. 

4. set wq ≥ 0.001 and vary that according to the burst length L we want to be able to 

accommodate, without dropping any packets. For example if minth is 5 packets and L is 

50 packets, then wq has to be around 0.0042. In the ns-1 and ns-2 simulator it is set to 

0.002. That is why if wq is too low, then avg is responding too slowly to transient 

congestion. If it is too high, then the estimated average queue size is too dependent on 

the instantaneous queue size. 
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The conclusion is that unfortunately there are no precise optimal values because they depend on 

a wide range of factors, including not only the link speed and propagation delay, but also the 

traffic characteristics.   

3.2.3 Alternative RED mechanisms 

There are a number of imperfections in RED’s performance that can be resolved by adding 

additional mechanisms to RED gateways. We can consider some of these variations to the 

original RED algorithms. The proposed improvements are relative to several aspects. 

Adaptive RED ([FKSS99]) focuses on the problem of parameterizing the RED algorithm in 

order to reach good performance in each possible scenario. For example, in the case of a 

bottleneck link shared by N connections, congestion notification requires each connection to 

reduce the traffic of 





 −

N2
1

1 . If N is large the effect of traffic reduction by each connection 

will be small, and on the contrary, if N is small it will be considerable. In the first case we need 

a more aggressive RED algorithm in order to avoid packet loss and to perform as a simple Tail 

Drop queue; in the second case we need a less aggressive algorithm to keep the link utilization 

to an acceptable level. Hence there are two main drawbacks in using RED [FGS01]: 

• The average queueing delay with RED is sensit ive to the traffic load and to parameters, 

and consequently is not predictable in advance. When the congestion is light and/or 

maxp is high, avg is close to minth and when the congestion is heavy and/or maxp is low, 

the avg is near to maxth.. In order to have some guaranteed delay with RED it is 

necessary to perform a frequent tuning of its parameter according to the traffic 

variations. 

• The second point is that the throughput is also sensitive to the traffic load and to the 

parameters. In particular when the avg is larger than maxth the throughput performance 

decreases greatly. 

The solution proposed is to provide an adaptive variation of RED parameters based on 

the avg. The key idea is to adapt maxp (the initial discarding probability parameter) in order to 

keep the average queue size between minth and maxth. When minth≤ avg ≤ maxth there are no 

variations, but if avg < minth, RED must be less aggressive and maxp = maxp+α. Otherwise 

(avg>maxth) RED must be more aggressive and maxp is increased:  maxp= maxp+ β.  α and β are 

constant factors. A pseudo-code description of the algorithm is given in Figure 3-5. 
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Figure 3-5. The RED Adaptive algorithm. 

RED with Penalty Box [Zhang00] is one of the first proposals intended to distinguish 

responsive users from unresponsive users. It is based on the observation that high bandwidth 

flows see proportionally larger amounts of packet loss. It maintains a list of the recent packet 

loss events verified in the network in order to identify all the misbehaving flows in the penalty 

box. These unresponsive flows are limited in the rate using a mechanism such as class-based 

queueing. 

FRED (Flow RED [LM97]) tries to solve some particular cases of unfairness allowed in RED. 

The traffic traversing an Internet gateway tends to fluctuate and is generally greedy. An ideal 

gateway should buffer temporary excess loads and provide negative feedback if the excess load 

persists. This can guarantee fairness. The solutions to this problem are several. For example, 

keeping a separate queue for each flow in the gateway and implementing hop-by-hop flow 

control between the gateways can ensure fair shares of bandwidth, but even if effective it is 

very costly to implement. Otherwise an approach as the FIFO discipline that provides a 

feedback to the senders by dropping packets is simple, but unfair, and tends to penalize bursty 

connections. According to RED algorithms the amount of marked or dropped packets for each 

connection is proportional to their bandwidths. But in this way RED does not guarantee to give 

each connection the same fraction of the total resources and ignore the control on misbehaving 

flows. For example, if two TCP connections unequally share one link, discarding periodically 

one packet from the slowest connection will prevent it from claiming its fair share, even if the 

fast-speed flow experiences more packet drops. TCP connections with small window sizes are 
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more damaged by packet loss than those with large windows, since they need a short time, such 

as one RTT, to recover from multiple packet drops, while a flow with a small window may take 

a long timeout to recover. Moreover RED is developed for adaptive flows. TCP congestion 

control reacts to small increases in the loss rate with great decreases in the transmission rate. A 

source that sends too fast would receive an unfair share of the total bandwidth. FRED is an 

improvement of RED able to provide major protection for bursty and low-speed flows and it 

guarantees more fairness than RED in presence of different traffic types. The main difference 

between them is that FRED keeps the information state for those flows that have packets 

buffered in the router. It introduces new parameters that allow a more accurate estimation of 

discarding probability. 

• minq and maxq, the minimum and maximum number of packets each flow is allowed 

to have in the buffer; 

• qlen, the number of packets in the buffer for each flow; 

• avgcq, the estimation of the average per-flow buffer count; 

• strike, the number of times each connection has failed to react to congestion 

notification. 

FRED allows each connection to buffer minq packets and apply discard probability to the 

subsequent packets. It never permits a flow to buffer more than maxq packets and it stores the 

times in which it has tried to do that in strike. Flows with high strike are more subject to loss 

packets and they cannot buffer more than avgcq packets. Moreover, in FRED the frequency of 

avg calculation is higher than in RED. In fact, the averaging is done at both arrival and 

departure in order to provide a more accurate estimation of avg, and when a packet is dropped 

avg does not vary. Simulation results show that FRED is often fairer than RED when handling 

connections with different round trip times and window sizes and it allows detecting 

unresponsive users. Anyway, it adds overhead to store information about the flows which have 

packets buffered in the router. The cost of this per-active-flow accounting is proportional to the 

buffer dimension and independent of the total number of connections served by the gateway. 

SRED (Stabilized RED [OLW99]) is a RED-derived mechanism that attempts to improve RED 

performance by considering a further element in calculating discard or marking probability, 

that is, the estimated number of active connections or flows. The basic idea for estimating the 

number of active flows is to compare, every time a packet arrives at the buffer, the new packet 

with one entry randomly taken from the so-called Zombie list. When the two packets belong to 

the same flow (for example, they have the same destination and source addresses, the same 
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destination and source port numbers and the same protocol), a hit is declared and the count is 

incremented in the corresponding entry in the Zombie list. Otherwise the entry in the Zombie 

list is replaced with a probability p. Actually in the version of SRED proposed by [OLW99] the 

discard probability is entirely based on the instantaneous length of the buffer queue and on the 

number of active flows, but the adding of average queue size estimation does not present any 

difficulties. This improvement has the advantage to stabilize the buffer occupancy, 

independently of the number of active connections and to provide a way through the hit-

mechanism to detect situations of unfairness, in which some flows are attempting to take more 

than their fair share of bandwidth (misbehaving flows). 

CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for unresponsive flows 

[PPP00]) is another proposal, based on the RED algorithm, whose goal is to approximate fair 

queueing and be, at the same time, simple to implement. It is based on the assumption that the 

FIFO buffer is a reliable indication of which flows are consuming a great amount of resources. 

If a packet arrives at a congested router (avg > minth), if the avg > maxth, the packet is 

discarded, like in normal RED, otherwise the new packet is compared to a randomly chosen 

packet from the FIFO buffer. If they belong to the same flow they are both discarded, otherwise 

the randomly drawn packet is left intact and the new one is admitted into the FIFO buffer with 

a probability calculated like in the original RED, based on the avg. The advantage of this 

algorithm compared to those mentioned above is that it does not need any state information and 

consequently it introduces the minimal implementation overhead. 

Figure 3-6. RIO algorithm. 

RIO (RED with In/Out bit [CF98]) is based on the two-drop precedence policy. A packet is 

marked at the edge of the network as IN or OUT of its service contract and it is treated 
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differently inside the network, on the basis of this priority classification. The router inside the 

network keeps just one queue for IN and OUT packets and apply to them two different RED 

algorithms as we can see in Figure 3-6. Instead of using the same average queue size for both 

priorities, it uses the average queue size for OUT (out of profile) packets, and the average 

queue size without taking into account the queued OUT packets for IN (in profile) packets. In 

time of congestion the router starts to drop OUT packets and eventually, if congestion persists, 

will start to discard IN packets, as well. 

WRED (Weighted RED [CISCO98]) WRED was initially proposed as RIO in [CF98]. It has 

been developed as an extension of the RED approach by taking into account the priority of 

packets. It assigns to every priority a different RED algorithm, making it possible to 

differentiate the performance of different TCP connections whose packets are queued in the 

same queue. Different QoS can be provided for different classes. For example packets from 

higher priority traffic is dropped with a lower probability than the standard traffic, during 

periods of congestion. This is implemented with two RED algorithms running in parallel. In 

order to reduce the packet loss rates experienced with RED a different queue management 

algorithm has been implemented. 

BLUE [FKSS99] differs from all the classical algorithms such as RED and derivations from 

RED based on the control of the average queue variations, since it is based directly on packet 

loss and link utilization history. BLUE uses a unique marking/dropping probability pm. If the 

router buffer saturates continually and packets are discarded, pm is incremented. On the other 

hand, if the queue is almost empty or the link idle the pm is reduced. This allows BLUE to learn 

the correct rate it needs to send back a congestion notification. The algorithm is formally shown 

in Figure 3-7. Besides the marking probability it introduces two new variables: 

• freeze_time, the minimum time interval between two successive updates of pm 

• d1 and d2 that indicate the amount by which pm has to be incremented or decremented 

respectively.  

 
Upon packet loss (or Qlen >L) event: 
 if ((now-last_update) > freeze_time) then 
     pm= pm +d1 
     last_update=now 
 
Upon link idle event: 

if ((now-last_update) > freeze_time) then 
    pm = pm –d2 
    last_update=now 

Figure 3-7. The BLUE algorithm.  
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Simulations prove BLUE to perform better than RED, even when operating with a 

smaller buffer.  

SFB (Stochastic Fair BLUE [FKSS01]) is an extension of BLUE developed to solve the 

problem of non-responsive flows. SFB tries to identify the non-responsive flows and limit them 

to a fixed amount of bandwidth. 

3.3 Explicit Congestion Notification (ECN) 

The Active queue management algorithm detects congestion before the buffer queue overflows 

and signals to the end nodes the incipient congestion. As mechanism for congestion indication 

the router may drop packets, but a more efficient way to achieve that is marking packets. The 

router may use the Congestion Experience (CE) codepoint in the IP packet header as an 

indication of congestion for the end-nodes [RFB01].  

0 1 2 3 4 5 6 7 

DS FIELD DSCP ECN FIELD 

 
 
DSCP=differentiated service codepoint 
ECN=Explicit Congestion Notification 

Figure 3-8. The DS and the ECN Fields in the IP-header [RFB01]. 
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0 0 Not-ECT 
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Figure 3-9. The ECN Field [RFB01]. 

Considering the IP header in the IPv4 TOS octet, represented in Figure 3-8, the ECN 

field is defined through the bits 6 and 7, defined for experimental use of ECN [RFB01]. 

Marking packets is done through the ECN field and there are four possible ECN codepoints as 

shown in Figure 3-9. In the ECN field we distinguish the ECT (ECN-Capable Transport) bit 

and the CE bit. The ECN-Capable Transport codepoints, ECT (0) and ECT (1), mean that the 

   ECT               CE 
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end-points are ECN-capable. The Not-ECT codepoints means that the packet is not using the 

ECN field. Then there is the CE codepoint used to signal the presence of congestion.  

When the router is ready to discard packets to signal end-points of incip ient congestion, 

at the reception of a new packet it has to check the ECT codepoint. If is set (ECN-capable 

flows) it should set the CE codepoint and forwards the packet, or on the contrary (not ECN-

capable flows) discard packet. When the end-nodes receive a packet ECN-capable with the CE 

bit set, the reaction will be the same to the detection of a drop packet. It is important that the 

router sets the CE codepoint only in the case it would have discarded the packet. If the router is 

not in the presence of incipient congestion it just has to forward the packet without modifying 

the CE codepoint. We expect that using ECN in combination with RED the router will set the 

CE codepoint when the average queue size exceeds the fixed threshold, instead of dropping the 

packet. It is evident that the measures taken by the router against congestion must not be based 

on the instantaneous value of the queue, but on the average queue size, because this is subject 

to frequent variations. 

The use of two ECN-Capable Transport codepoints is due to several reasons and one of 

them is that it makes it more difficult for a router to erase the CE codepoint, without being 

discovered by the end nodes, since they have to be able to reconstruct the original one. 

In order to support the use ECN field some modifications are requested to TCP level. 

First of all, during connection set-up, the two end nodes must negotiate if they are both ECN 

capable (1). Then there is a need to find a way to communicate the reception of a CE packet 

from the receiver to the sender (2) and to signal the corresponding reduction of the congestion 

window from the sender to the receiver (3). 
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Figure 3-10. The TCP header and the definition of bits 8 and 9 to support ECN [RFB01]. 

In order to support ECN functionality, two new flags are defined in the TCP header: the 

Explicit Congestion Notification (ECE) and the Congestion Window Reduced (CWR) flags as 

shown in Figure 3-10. 

(1) During the connection setup the two end-hosts decide whether to support the ECN 

functionality. They do that by exchanging SYN packets with ECE and CWR 
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opportunely set. If both the nodes are ECN-capable they will use ECN notification 

during the connection setting in the IP-header of each packet a ECT codepoints. For 

more details see RFC 3168 [RFB01]. 

(2) The receiver at the reception of a CE packet can inform the sender of the incipient 

congestion setting the ECN-Echo (ECE) flag in the TCP header. The sender seeing the 

ECE flag set infers that congestion was encountered in the network on the path from 

the sender to the receiver and reacts in the common way, as TCP congestion control 

indicates: it halves the congestion window and reduces the slow start threshold. It is 

important to notice that the TCP sender should react to an ECN at most once per 

roundtrip time. The TCP should ignore subsequent ECNs if the source has reacted to a 

previous ECN or to a dropped packet in the last round trip time. 

(3) When an ECN-capable TCP sender reduces the congestion window it will set the CWR 

flag in the TCP header of the first new packet sent to inform the data receiver that the 

congestion window has been reduced. The TCP receiver uses the CWR flag received to 

determine when to stop setting the ECN-Echo flag in the TCP header. 

Several simulations show that there are several advantages deriving from the 

introduction of the ECN mechanism in TCP networks [Flo94]. A main benefit of the ECN 

scheme is in avoiding unnecessary packet drops. This is of great importance for interactive 

traffic and for low-bandwidth traffic where the user is delay-sensitive. Moreover, ECN 

provides a fast and clear mechanism to inform the sender of incipient congestion, sparing it to 

wait for a retransmit timeout or the reception of three DUPACKs. 

On the other hand there are two potential disadvantages of ECN. One is related to the 

case of non-compliant TCP connections that, even being ECN capable, ignore ECN 

notifications, but this is a problem also for networks that based congestion control on packet 

drops. The other drawback is specific for the ECN mechanism and occurs when an ECN 

message is discarded by the network and the notification of congestion cannot reach the end-

node. But if the routers implement RED they will go on calculating the average queue size and 

mark packets randomly, as long as the congestion persists. 
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 4 Test Arrangements 

In this chapter we describe our test methodology and the aspects our performance experiments 

focus on. We explain the test methodology and the test environment in terms of workload 

models, metrics and TCP features used in the performance measurements. During this 

description we follow some advice proposed in [AF99]. There are several methods for 

evaluating TCP’s performance and there are various environments in which to develop the 

study. The methodology in which an experiment studies TCP has a direct impact on the 

relevance and utility of the results obtained and the conclusions derived. 

4.1 Test Methodology 

The main aim of this thesis is to analyse how the RED algorithm can solve problems 

related to TCP congestion and provide improved performance especially if deployed in a QoS 

architecture. The main result are based on a comparative study of performance when RED or 

traditional Tail Drop mechanism are employed. In the first phase we study the enhancements 

introduced by the application of the RED algorithm, as a mechanism of congestion control, and 

in the second one of RED applied in a QoS-enabled environment. 

To evaluate TCP performance we have used a small testbed of hosts handling packets. 

The advantage of using testbeds involving real hosts, connected to a small network, instead of 

simulators, is that we do not use an abstract TCP implementation, but code found in real 

operating systems. Simulations sometimes make assumptions that preserve the TCP tests from 

inconveniences that may be encountered in the real world. On the other hand, in experiments 

using real implementations we have to take into account several aspects not related to TCP 

working, but to the operating system or to the application protocol, which may condition the 

results. For example, the reason why a TCP data transfer may be slow can be related to the TCP 

mechanism, but also to the application level or the operating system. In a testbed, real TCP 

implementations are applied to real networks since effects such as scheduler delays and router 

packet processing time can be studied. 
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According to the requirements defined in Section 2 and what is suggested by IETF, we 

have used a TCP implementation with the most common and widely deployed features. We 

refer here and after to this as the Baseline TCP. The parameters involved in this TCP 

implementation are: 

• Basic Congestion Control: Slow Start and Congestion Avoidance algorithms as defined 

in RFC 2581 [APS99]. 

• Congestion Control: Fast Retransmit and Fast Recovery such as proposed by New 

Reno congestion control defined in RFC 2582 [FH99]. 

• Initial Window Size: 2 segments. (TCP enhancement =4MSS) 

• Selective Acknowledgements: ON. 

• MSS=1460 bytes. 

• Delayed Acknowledgements: ON. 

• Timestamps: OFF. 

• ECN: OFF. 

 

The TCP implementation we use to run the tests is based on Linux Kernel version 2.4.17. 

The New Reno TCP [FH99] improves TCP’s ability to recover from multiple lost packets in a 

window of data without relying on retransmission timeout. The Larger Initial Window is an 

enhancement that needs more evaluation. The congestion control specifications require the TCP 

implementations to use an initial window (IW) of one or two segments [APS99]. Since using an 

IW of one segment, the slow start phase is time-consuming, we have chosen an Initial Window 

of 2 segments. The SACK option is a widely deployed algorithm today and it has been shown 

that the SACK algorithm performs better than several non-SACK based recovery algorithms 

when more than one packet is lost from a window of data [MMFR96]. Due to the fact that the 

TCP acknowledgements are cumulative, there is no way to acknowledge separate blocks of 

segments that have been correctly received, but out-of-order. The SACK option gives the 

possibility for the TCP receiver to inform the data sender which segments have been received. 

The Baseline TCP described is applied in two different experimental scenarios. We study 

the performance of a TCP connection when a simple Tail Drop algorithm is deployed and 

afterwards we analyse the expected improvements carried out by the application of the RED 

algorithm. It is expected to solve problems related to congestion losses, such as over-buffering 

and fair sharing of resources. 
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4.1.1 Parameter Tuning for RED 

The performance of the RED algorithm is strongly dependent of its parameters and it is 

difficult to find the appropriate values that will enable RED to perform equally well, under 

different congestion scenarios. When the parameters of RED are not correctly set for the given 

scenario, the performance can approach that of the traditional Tail Drop. 

  

Table 4-1. The RED Parameters  

Considering in part what was suggested by Floyd in [Flo97] and the observations carried 

out by several studies conducted on RED’s performance and dependability on its parameter, 

such as [Larry02], we have decided to fix RED’s parameters used to set router configuration 

following the guidelines given in Table 4-1. They are subject to variations according to the 

number of TCP flows considered and eventually the load carried by UDP traffic. The buffer-

size parameter is set on the basis of the studied scenario. As regard the minth and maxth 

parameters the proposed setting is subject to modifications since they depend on the buffer-size 

dimension even if the relation is not explicitly expressed. In addition the parameters must be 

varied according to which performance metrics are more important in the considered 

application. For example, to achieve high performance in terms of TCP throughput, minth must 

be increased and maxth must be set quite near to the buffer size, but on the other hand, in order 

to guarantee a low buffer occupation, min th should be kept low.  

Parameter Description Suggested Value  Value 

buffer-size 
(bytes) 

Physical buffer queue 
size free depending on traffic 

condition  

minth  (bytes) 
Lower threshold below 

which no packet is 
dropped 

3 up to 5 packets or 3 
up to 5 times avpkt 5 packets 

maxth (bytes) 
Upper threshold above 

which all incoming 
packets are dropped 

3 or 4 times minth 3,5 times minth 

avpkt (bytes) The average number of 
bytes in a packet free 1000 

burst (packets) 
The number of 

average-sized packets 
allowed to burst 3*avpkt

maxminmin ththth ++
 

3*avpkt
maxminmin ththth ++

 

maxp (float) 
Maximum drop 

probability 0,1 0,1 
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The parameters we used in our experiments are quite near to the default ones. As regards 

maxth we have chosen a higher value in order to keep the percentage of discarded packets low 

and to have a wide range maxth-minth. This choice guarantees high link utilization and excellent 

throughput. Finally we set maxp as suggested by default. With such a value the RED gateway 

marks around 1/5th of the incoming packets when the average queue size is close to maxth. 

4.2 Experimentation Environment 

The testbed network used for experiments consists of two hosts communicating via a 

point-to-point wired link and two routers (Figure 4-1). All four machines are Intel Pentium III 1 

GHz running the Linux Operating System (kernel version 2.4.17). The first link, between 

Kemi-1 and Kemi-2, is 100Base-Tethernet, while the other two are 10Base-TEthernet. Through 

this topology and setting appropriately the parameters in the router configuration, the designed 

network may present, for example between Kemi-3 and Kemi-4, a bottleneck link, where 

packet drops and congestion occur. This allows us to analyse how different congestion controls 

perform when implemented in the router. In our study, in the first router the simple Tail Drop 

discipline is in use, while in the second one the Tail Drop or RED algorithm can be deployed. 

All the links in this model belong to an isolated LAN and the intent is to represent the wired 

network immediately after a radio access network of high speed. The QoS architecture 

deployed in the second router can be implemented by means of TC tools. [HMVV02].    

Figure 4-1. Topology of testbed network. 

HTB Linux queueing discipline 

Linux kernels offer a wide range of traffic control functions and they are mainly based on four 

conceptual components: queueing disciplined, classes, filters and policing. Each network 

device has a queueing discipline associated with it, which regulates how packets enqueued on 

that device are processed. They can use filters to distinguish among different classes of packets 

Source 

Kemi-2                            Kemi-3 

Kemi-4 

100Mbit/s  10Mbit/s

Tail Drop 
Router  

Tail Drop/RED 
Router  

bottleneck 

10Mbit/s 

Destination 
 

Kemi-1 Kemi-4 
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and treat each class in a specific way, for example specifying one class priority over other 

classes. Queueing disciplines and classes are closely tied together. By queueing disciplines we 

can determine the way in which data is sent and note that we can only shape data that we 

transmit. Generally we do not have direct control (and especially with the Internet) on the 

amount and type of data sent. Typically each class owns one queue, but it is in principle also 

possible that several classes share the same queue or even that a single queue is used by all 

classes of the respective queueing discipline [ASK99]. Figure 4-2 shows an example of 

queueing discipline.  

 

Figure 4-2. A simple queueing discipline with multiple classes. [ASK99] 

In order to control the outbound bandwidth on the last link the workload generated can 

be classified into different classes by HTB (Hierarchical Token Bucket) queueing discipline. 

HTB is a packet scheduler and it is currently included in stock Linux kernels. Class Based 

Queueing (CBQ) is the most known and also complex qdisc deployed. When traffic enters a 

CBQ qdisc is classified and the so-called “filters” are consulted. They return an answer that 

indicates to the qdisc where to enqueue the packet, that is into which class. HTB qdisc works 

just like CBQ, but is more understandable and intuitive. In a HTB queue a prior ity can be 

assigned to each class. By placing different kinds of traffic in several classes and then assigning 

to these classes different priorities, we can control the order in which packets are dequeued and 

sent. In addition to this, HTB also has another nice property. It ensures that the amount of 

service provided to each class is at least the minimum of the amount it requests and the amount 

assigned to it. Thus it makes it possible to avoid starvation of any one class, since we are able 

to specify a minimum guaranteed rate for each class When a class requests less than the amount 

assigned, the remaining (excess) bandwidth is distributed to other classes which request 

service. For each class it is possible to specify the rate (the assigned bandwidth) and the ceil 

(the maximum bandwidth that can be assigned) parameters. The Priorizing traffic option is also 

available. It affects how the excess bandwidth is re-distributed. When the priorities are not 

specified or they are all of the same value, the excess bandwidth is distributed according to the 

rate ratios. Otherwise, when they are specified, the classes with higher priority are offered 
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excess bandwidth first, but always guaranteeing the respect of the rate and ceil rule. Once the 

classes have been decided, we set up the filters to place traffic in classes. There are several 

ways to do this and the filters can be based for instance on the destination and source address or 

on the TOS value, depending on the application. 

 

Figure 4-3. Example of HTB queueing discipline. 

Considering our network topology, a HTB qdisc, in the Kemi-3 router, can separate the 

EF priority class from the AF one based on TOS value or also permit to distinguish the flows 

directed to Kemi-4 according to the port address specified. In this way the total available 

bandwidth of 10 Mbit/s of the second link is divided between the different classes of service. 

For example in the second router (kemi-3) an allocation of this kind may occur: 100Kbit/s for 

TCP traffic with destination Kemi-4, 4 Mbit/s for AF traffic and 5 Mbit/s for EF flows, always 

directed to Kemi-4. In this way HTB qdisc makes it possible to vary the bandwidth assigned to 

each classes and consequently cause congestion in the outgoing link. An example is represented 

in Figure 4-3. We have specified the rate value as proposed before and the ceil parameters too. 

When one or more classes are requesting less than the amount assigned, the remaining 

bandwidth is reallocated to the other classes in proportions to their initial allocations. The ceil 

argument specifies the maximum bandwidth that a class can use and limits the bandwidth a 

class can borrow form the others. For AF traffic the rate and ceil are the same and this means 

that it will always receive a maximum amount of bandwidth of 4 Mbits. For TCP traffic the 

maximum amount of bandwidth will be 140Kbit/s and for the EF traffic 10 Mbits/s. Thus, with 

this configuration, it is easy to cause congestion and study the TCP congestion control’s 

performance through sending one or more TCP flows that can saturate the available bandwidth 

of 100Kbits or of 140Kbits, in case of small CBR traffic.  

AF traffic 
directed to 
Kemi-3 or 
Kemi-4  

EF traffic 
directed to 
Kemi-3 or 
Kemi-4  

Main 
Link 

rate=100Kbit/s 
ceil=140Kbit/s 

rate=5Mbit/s 
ceil=10Mbit/s 

Bandwidth=10Mbit/s 

TCP traffic 
directed to 

Kemi-4  

rate=4Mbit/s 
ceil=4Mbit/s 
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4.3 Workload Models 

The definition of the Workload Models is extremely important in order to obtain results of 

acceptable confidence. Our study being mainly focused on RED performance applied in a QoS 

enabled architecture, we have chosen to test them in a dynamic environment with competing 

traffic flows. Generally the type of workload used is classified on the basis of the individual 

connections involved, the number of contemporary flows and their position in time. 

An individual connection may carry different kinds of traffic, TCP and non-TCP traffic, 

such as UDP. For more details regarding the UDP protocol see Section 8.2. Having several 

parallel TCP connections is a common situation in the Internet. It could be the case of a user 

who is browsing web pages while active ftp transfer is running in the background. In a common 

TCP connection between two hosts, two single data flows are possible, from one host to the 

other one or vice versa. Anyway in most real applications the flows are unidirectional since 

data are sent in one direction and acknowledgments are received in the opposite one. In our 

tests we use single unidirectional bulk transfers consisting of a continuous flow of data packets 

of the maximum size allowed by the network. It is essential for our study based on a QoS 

enabled architecture to define several traffic classes that require different services from the 

network according to their priorities. For some of them delay may be essential and for other 

throughput can be much more relevant.  

The workload source and sink computers use the proposed Baseline TCP. The traffic was 

generated using two different types of traffic generator: JTG (Jugi’s Traffic Generator, version 

1.12) for the UDP flows, and TTCP (TCP test utility) for TCP flows. TTCP is a benchmarking 

tool for determining TCP (and UDP) performance between two systems when sending a high 

volume of data over the network [Sti90]. We have employed a modified TTCP tool. It is the 

original version, available from [TTCP98], with some improvements made by the Department 

of Computer Science at the University of Helsinki. We further made some extensions to this to 

make it more suitable to our needs. In particular we have used it in a QoS context and we 

needed the specification of the TOS/DSCP field. JTG is a modification of the classic TTCP 

generator developed by Jukka Manner, at the University of Helsinki. It was used to generate 

real-time traffic towards an IP destination through a script file. The advantage of this traffic 

generator is double: on one hand it allows to generate traffic and assign each flow to the proper 

service class through the specification of the TOS/DSCP field; on the other hand the JTG 

package encloses tools that permit gathering information and log packets in order to calculate 

the desired statistics.  
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Traffic Packet size 
(bytes)* Protocol 

Transmission 
rate 

(packets/sec) 

Transmission 
rate (Kbit/s)* 

Number 
of packets 

VoIP 
(adpcm) 

104 
(104+28=132) 

UDP 61 50,8 
(64,4) 

 

Best Effort  5840 TCP   8 

Best Effort  5840 TCP   50 

Best Effort 5840 TCP   65 

 
* = for UDP packets the first value indicated represents the payload size in bytes or the data transmission 
rate. The value in parenthesis is the final value considering the UDP and IP headers .   

Table 4-2. Network traffic characteristics. 

Finally the Nagle algorithm [Nag84] in TCP says that a TCP connection can have only 

one outstanding small segment that has not yet been acknowledged (“small” means less than 

the segment size). In fact to send 1 byte of data we need to build a 41-byte packets (20 bytes for 

the IP header and 20 bytes for the TCP header). These small packets, called tynigrams, do not 

represent a problem on LANs, but they can add congestion on wide area networks. Referring to 

our tests on a small testbed network this algorithm could disturb our results. Thus in order to 

prevent this, we have set the size of data passed by TTCP to MSS of the connection (1460 

bytes). We have also checked the minimum segment size in all the simulations. Moreover we 

could use a socket option TCP_NODELAY to disable the Nagle algorithm. 

The traffic in each experiment was generally composed by TCP connections with 

different characteristics and sometimes, in addition UDP flows with UDP data packet sizes of 

104 bytes as shown in Table 4-2. The study focuses on TCP connections and marginally on 

UDP flows. In each set of measurements the load changes by varying the number of TCP flows 

and the amount of data sent. The TCP packet size is the MSS size (1460bytes). 

Our study will focus on the effects of RED carried by TCP connections. Generally, TCP 

connections can be modeled as bursty traffic, while UDP-based application as smooth traffic. 

TCP connections have congestion control implemented at the end host and respond to a packet 

drop through retransmission. However, UDP hosts do not take care of packet loss and let the 

upper layer application implementing congestion control. But this does not mean that RED 

algorithms do not have an impact on UPD applications since they are implemented in the router 

and not in the end-hosts. 
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4.4 Metrics 

The performance metrics we have used in our evaluation, in order to compare the performance 

of different experiments include: 

• Elapsed time : the time needed to end the entire transfer of a given size including the 

time to establish and close the connection. It is measured as the time from the first TCP 

SYN segment sent till the receiving ACK for the FIN segment.  

• Data transmit time : the time necessary for the transmission of data, from the first to 

the last data packet. It is calculated from the first packet transmitted to the reception of 

the acknowledgement for the specified amount of data. 

• Three-way handshake phase duration: the time necessary to establish the connection 

between the two hosts. 

• Throughput: measuring it is the most straightforward way to evaluate the TCP 

performance. It represents the amount of user data transferred during the connection 

divided by the connection elapsed time. In the case of entire connection the elapsed 

time is calculated as the time between the moments in which the first TCP SYN 

message is sent (connection setup) and the acknowledgement for the TCP FIN message 

is received (connection tear down). In the case of partial connection it is the time 

between the first packet sent and the reception of the acknowledgement for the last 

packet in the data burst considered.  

• Fairness: it shows the impact a connection has on a competing traffic sharing the 

network path. To measure fairness we use the Jari fairness index [Jai91], defined as: 
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1  where x1, x2, … xn are n instances of the metric of interest (e.g., the 

latency experienced by concurrent hosts). It lies between 0 and 1. If all the users receive 

equal treatment the index is 1, otherwise it may be k/n  indicating that only k  of the n 

users are receiving equal treatment and the other n-k are not served. We use this index 

only for flows carrying the same traffic, of the same duration and starting time. In the 

other cases (connections of different load or different starting points) we use a 

macroscopic definition of fairness comparing only the flows with the same properties.  
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• Number of retransmitted packets: it can be due to a packet drop or to an excessive 

delay and in the second case they are unnecessary retransmissions. The parameter has 

to be compared to the loss rate one. This is an indication of how aggressive the TCP is 

and specifically the RED parameters set in the given test case. This is an essential 

parameter for RED evaluation since one of RED’s objectives is to minimize the loss 

rate. 

• Retransmitted data bytes: the total amount of bytes retransmitted during the transfer. 

• Number of duplicate ACKs received 

• Number of triple ACKs received 

We calculate the first quartile (25% percentile), median (50% percentile), third quartile 

(75% percentile), the average regarding all the test replications, statistics about Min, Max 

values and Standard Deviation of the elapsed time, the data transmission time, the 

throughput, the number of retransmitted packets, the number of DUPACKs and triple 

DUPACKS. Finally, in the test cases involving more than one TCP flow we classify them 

through distinguishing between the fastest and slowest flow on the basis of the elapsed time 

value. 

All the presented metrics were used to evaluate TCP performance. As regard the UDP 

traffic we are not interested in a deep analysis, thus we only introduce a simple, but significant 

metric: the Number of Packet Loss or equivalently the Number of Packet Received. We 

calculate the first quartile, median, third quartile, the average regarding all the test replications, 

statistics about Min, Max values and Standard Deviation like in the UDP analysis. 

4.5 Test Cases 

The tests are divided into two major categories in order to study separately RED’s performance 

in different condition of traffic. First we run tests only with TCP traffic. Afterwards we add 

UDP traffic and we work in QoS-enabled architecture. We describe here the exact features and 

parameters of the tests that are run and we comment on the results in the next section. Each 

scenario is tested with 20 replications in order to obtain more accurate information for 

statistics. 



 61 

4.5.1 Tests with three competing TCP flows 

In these test cases we analyse the performance of 3 TCP flows sent in the network described in 

section 4.2with different loads and several starting times. In the testbed network we have only 

one source and one destination for TCP traffic and two routers. The first router has only to 

forward the packets without any other specific function. In order to avoid packet drops in the 

first two links we have set the bandwidth of the first hop to 100Mbit/s and the buffer size of the 

first router to 4096 packets. It implements a simple Tail Drop discipline. 

Figure 4-4.  Workload model in the Tests run with three TCP competing flows. 

A HTB qdisc, in the second router, allows setting the bandwidth of the third link to a 

much lower value such as 100/140Kbit/s, in order to simulate a bottleneck on the last hop. This 

is realized following the method presented in the workload Section 4.3. We have created two 

classes and set the rate to 100Kbit/s and ceil to 140Kbit/s in both. Then we have added a filter 

whose function is to enqueue all the TCP traffic received in one class and the non-TCP traffic 

in the other. This means that being this first set of experiments without UDP traffic the 

effective bandwidth offered to the TCP class is of 140Kbit/s, as specified by the ceil parameter. 

To the TCP class created the router applies FIFO discipline on the first part of the experiments 

run and RED discipline in the second one. In both cases the router buffer size is 20000 bytes. 

The traffic sent in the described network is shown in Figure 4-4. The workload traffic is 

composed only by TCP flows. Two flows of 292Kbytes are sent simultaneously and the third 

flow of 46.7Kbytes is sent later. The traffic is generated using the TTCP tool [TTCP98], with 

the length and number of buffers specified in Table 4-3. 

The delay of the third flow is varied in order to gain knowledge about the various 

problems it encounters to start and the level of performance it manages to reach. The tests run 

consider these delays for the third flow: 0secs (three simultaneous flows) 0.5secs, 1sec, 2secs, 

3secs, 4secs, 4.5secs, 5secs, 5.5secs, 6secs, 6.5secs and 7secs. This set of delays permit to 

TCP connection 2 

TCP connection 1 

     

 

Src (Kemi-1) Dest (Kemi-4) 

TCP connection 2 

TCP connection 1 

No packets drop  No packets drop  Packets drop 

     

 

Router 2 (Kemi-3) Router 1 (Kemi-2)  

TCP connection 3 TCP connection 3
4096 packets 
 (Tail Drop) 

20 Kbytes 
 (Tail Drop/RED) 

10 Mbit/s 100 Mbit/s 140 Kbit/s 
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analyse which treatment the third flow receives when it is started during the Slow Start phase or 

during the Fast Retransmit phase or the Congestion Avoidance of one or both initial 

connections. The main aim of this way of proceeding is to compare the performance, and 

especially the fairness issue, achieved when the Tail Drop or RED discipline is deployed. 

Table 4-3. Traffic characteristics in the Tests run with 3 TCP competing flows. 

Finally we report the RED parameters we have chosen for this set of experiments in 

Table 4-1. They are quite near to the default values. The minth parameter is set to the maximum 

suggested, 5 times avpkt, and maxth is set to 3.6 times minth. The maxth parameter is set quite 

high in order to reach good performance in terms of throughput. Finally we have decided to use 

a burst parameter of higher value than the one suggested (12 instead of 9 calculated by the 

presented formula). 

 

Parameter Suggested Value  Value 

buffer-size 
(bytes) free 20000  

minth  (bytes) 
3 up to 5 packets or 2 
up to 5 times avpkt 5000  

maxth (bytes) 3 or 4 times minth 18000 

avpkt (bytes) free 1000 

burst (packets) 
3*avpkt

maxminmin ththth ++
 12 

maxp (float) 0.1 0.1 

Table 4-1. The RED Parameters for the Test with 3 TCP competing flows. 

4.5.2 Tests with TCP and UDP traffic with services differentiation 

In this set of experiments we study the performance of one TCP flow competing with UDP 

traffic. We have adopted two different kinds of network. Actually the testbed network is the 

Flows Source Destination Start time Bandwidth 
(Kbit/s) 

Data sent 
(bytes) 

Length of 
bufs (bytes) 

Number of 
bufs 

1 TCP Kemi-1 Kemi-4 Simultaneously 292000 5840 50 

2TCP Kemi-1 Kemi-4 Simultaneously 292000 5840 50 

3 TCP Kemi-1 Kemi-4 Delayed 

140 

46720 5840 8 
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same as in the previous tests, but the configuration of the second router differs. In the former 

the router maintains only one queue to serve the incoming traffic and treats all the flows with 

equal priority. In the latter we introduce a simple QoS-enabled architecture. Through the 

Queueing discipline mechanisms we are able to give preferential treatment to UDP packets for 

example by enqueueing them in a separate class of service with a different bandwidth available.  

 

 

 

 

 

 

Figure 4-5.  Class hierarchy of two HTB configurations.  

The key element to understand these tests is the HTB topology implemented [Dev02, 

HMVV02]. We have four different types of configuration, two for RED experiments and two 

for Tail Drop ones. Those referring to Tail Drop implementations are schematised in Figure 

4-5. The rate and ceil parameters are indicated and the dimension of the Tail Drop buffer in the 

router too. Shortly we have a hierarchy of two classes of equal priorities. In the first HTB 

model the TCP and UDP traffics are enqueued by the filters in the class with highest ceil and 

largest buffer size (class 1). In the second one the UDP traffic and TCP traffic are separated and 

sent to two distinct classes. In the RED configurations all the classes implement RED instead of 

Tail Drop. 

 

Parameter Class 1 Class 2 

buffer-size (bytes) 20000  5000  

minth  (bytes) 5000  800  

maxth (bytes) 18000 3500 

avpkt (bytes) 1000 150 

burst (packets) 12 12 

maxp (float) 0.1 0.1 

Table 4-4. The RED parameters for the HTB configurations.  

70/100 Kbit/s 70/140 Kbit/s 

TCP 
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UDP 
traffic 
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140/140 Kbit/s 

Tail Drop  
(limit 20KBytes) 

Tail Drop 
(limit 5KBytes) 

1 2 

140/140 Kbit/s 

70/100 Kbit/s 70/140 Kbit/s 

TCP 
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traffic 
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Tail Drop 
(limit 20KBytes) 

Tail Drop 
(limit 5KBytes) 

1 2 
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In addition, Table 4-4 reports the specific RED parameters used. As regards the RED 

parameters used in class 1, they are the same as in the previous tests run, while for the class 

with smaller buffer (class 2) they are calculated on the basis of the guidelines defined in 

Section 4.1.1 

The experiments are organized in three different test cases depending on the workload 

model used. The combination of TCP and UDP traffics adopted is shown in Table 4-5. Note 

that the packet size indicates the UDP packet payload size for UDP flows and the buffer’s 

length of TCP bulk transfer. This parameter is fixed to the same value in all the scenarios for 

both protocol: the MSS size for the TCP traffic, as in the previous tests, and 132 Bytes for the 

UDP one (104 Bytes represent the payload).  The rate of UDP traffic is roughly 53 Kbit/s for 

all the test cases, while the duration changes. Note that in this way we guarantee that when we 

adopt the second HTB configuration, with separate classes for UDP and TCP traffic, the CBR 

flow finds always enough bandwidth (70 Kbit/s) to complete the transfer without any packet 

loss. Moreover the CBR’s duration varies in order to last more than the TCP connection in the 

first two test cases and to have a shorter duration in the last type of experiment.  

Table 4-5. The workload models for the Test with TCP and UDP traffics. 

According to the HTB discipline when the first type of configuration is used, both with 

Tail Drop and RED, the whole traffic is directed to class 1 and the available bandwidth is 

140Kbit/s, since the ceil parameter enables to borrow bandwidth from the empty class 2. When 

the second HTB topology is employed the available bandwidth for both traffics is 70 Kbit/s. 

Nevertheless when the UDP starts later the TCP traffic will get all the available bandwidth of 

140Kbit/s till the CBR flow starts and decreases this amount at least of the necessary 

Workload 
Model Flows  Source  Dest Start time Data sent 

(Kbytes) 

Packet 
size 

(bytes) 

Duration 
(sec) 

TCP Kemi-1 Kemi-4 0 391,3 5840 - 
1 

UDP Kemi-1 Kemi-4 after 0, 1, 2, 3 seconds 264,1 132 
(104) 

40 

TCP Kemi-1 Kemi-4 0 46,7 5840 - 
2 

UDP Kemi-1 Kemi-4 after 0, 0.5, 1, 1.5, 2 
seconds 

39,7 132 
(104) 

6 

TCP Kemi-1 Kemi-4 0 391,3 5840 - 
3 

UDP Kemi-1 Kemi-4 after 0, 2, 7, 12, 16, 18 
seconds 

33,1 132 
(104) 

5 
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bandwidth to transfer the specified amount of data. When the CBR transfer is complete, the 

TCP flow, if it still needs, will borrow bandwidth again.  

Before proceeding to the test analysis we can observe that, generally speaking, a single 

set of tests using the same testing methods, testbed in our case, is not enough to conclude that 

our enhancements and it must be widely implemented and the TCP changed. More simulation 

and emulation are needed to confirm our thesis. 
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 5 Test Results and Analysis 

This section presents the results of the tests that are outlined in Section 4.5. The tests are 

analysed and the reasoning for the benefits or drawbacks introduced by the use of RED 

algorithm instead of simple Tail Drop discipline is explained for the each Test Case. The main 

result is a comparative study and analysis of RED and Tail Drop. 

5.1 Tests with three competing TCP flows   

We compare the simulation results for the Tail Drop discipline and RED algorithm obtained 

using the workload model described in section 4.5.1. First we have studied the results of Tail 

Drop and we have evaluated the behaviour of TCP traffic for different starting points of the last 

flow. We have identified the most interesting scenarios. We have repeated the selected tests 

with the same specifications and conditions under RED. Then we have compared the 

performance of Tail Drop and RED for these critical points. It is not necessary to run the RED 

experiments for all the starting points considered with Tail Drop in order to make a reliable 

comparison between the two disciplines. The test results are introduced by first reporting the 

results with the Tail Drop discipline and then the performance achieved when RED is 

employed. 

5.1.1 Tests with Tail Drop 

Table 5-1 shows for all the tests run, with 12 different starting points of the third flow, the 

results achieved by each connection in terms of Elapsed Time and Throughput. The statistics 

are calculated on the basis of 20 replications. The column entitled Number of Exceptions 

reports how many times the third flow’s duration has been longer than that of the initial flows. 

We consider these cases as exceptions since they represent situations in which the third flow 

does not manage to start till the initial flows are close to tear down their connections. In most of 

these scenarios, as shown later, the interference of the third flow is minimal and the behaviour 

of the initial flows is comparable to the study of two single simultaneous TCP connections.  
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Scenario
Throughput 

(Bytes/s)
Throughput' 

(Bytes/s)

after: Min Max 25%Perc. Median 75%Perc Average Stdev Average Min Max Median Average

0 sec 29,45 36,74 34,03 35,85 36,38 33,15 2,53 8436,70 0 29,45 36,74 35,85 8436,70
 0,5 sec 29,71 36,58 33,98 35,06 35,72 33,83 1,71 8160,10 1 29,71 36,58 35,11 8428,21
 1 sec 25,08 36,62 33,12 34,66 34,99 33,50 2,62 8321,80 0 25,08 36,62 34,66 8321,80
2 sec 28,21 36,53 31,02 32,93 35,05 32,02 2,67 8637,30 4 28,21 36,53 33,60 8731,75
3 secs 28,77 36,52 31,05 34,11 34,68 32,16 2,53 8593,95 0 28,77 36,52 34,11 8593,95
4 secs 29,21 36,71 32,68 34,70 35,84 32,97 2,28 8375,65 2 29,21 36,71 35,00 8556,72
4,5 sec 31,31 36,19 33,11 34,02 35,28 33,20 1,31 8288,55 1 31,31 36,19 34,20 8556,42
 5 sec 24,11 36,56 33,55 34,27 35,72 32,77 2,86 8456,00 1 30,01 36,56 34,34 8513,63

 5,5 sec 28,63 36,61 32,05 33,17 35,99 32,61 2,64 8513,65 0 28,63 36,61 33,17 8513,65
 6 sec 25,26 35,60 29,59 32,82 34,61 31,26 2,81 8861,65 1 29,29 35,60 32,92 9011,53

 6,5 sec 28,51 36,67 30,95 33,97 35,55 32,25 2,67 8571,45 0 28,51 36,67 33,97 8571,45
7 sec 28,26 36,68 32,31 34,05 35,00 33,00 2,20 8392,75 3 28,26 36,68 34,66 8611,35

Elapsed Time' 
(seconds)Num 

Excep

Elapsed Time (seconds)

Statistics of the fastest flow (data sent=292 Kbytes)

 

Scenario
Throughput 

(Bytes/s)
Throughput' 

(Bytes/s)

after: Min Max 25%Perc. Median 75%Perc Average Stdev Average Min Max Median Average

0 sec 36,55 38,18 36,59 36,67 36,70 36,45 0,44 8030,60 0 36,55 38,18 36,67 8030,60
 0,5 sec 36,55 37,72 36,58 36,65 36,67 36,66 0,33 7965,85 1 36,55 37,72 36,64 7946,47
 1 sec 36,55 38,56 36,58 36,66 36,69 36,77 0,48 7942,20 0 36,55 38,56 36,66 7942,20
2 sec 33,95 36,84 36,59 36,62 36,64 36,24 0,60 8066,80 4 36,58 36,84 36,62 7970,25
3 secs 35,04 36,69 36,57 36,65 36,66 36,43 0,36 8018,85 0 35,04 36,69 36,65 8018,85
4 secs 33,93 37,39 36,55 36,61 36,67 36,42 0,88 8022,25 2 33,94 37,39 36,63 7991,67
4,5 sec 33,82 36,82 36,64 36,66 36,68 36,30 0,66 8050,35 1 35,70 36,82 36,66 7975,32
 5 sec 34,37 37,42 36,56 36,58 36,63 36,37 0,54 8034,35 1 36,53 37,42 36,58 7971,95

 5,5 sec 36,54 37,30 36,59 36,64 36,66 36,37 0,25 8048,35 0 36,54 37,30 36,64 8048,35
 6 sec 33,94 36,83 36,58 36,63 36,66 36,02 0,99 8117,20 1 33,94 36,69 36,63 8070,84

 6,5 sec 36,56 37,96 36,61 36,65 36,68 36,74 0,44 7948,40 0 36,56 37,96 36,65 7948,40
7 sec 33,93 37,90 36,59 36,66 36,69 36,40 1,11 8029,65 3 36,57 37,90 36,67 7920,29

Elapsed Time' 
(seconds)Num 

Excep

Elapsed Time (seconds)

Statistics of the slowest flow (data sent=292Kbytes)

 

Scenario
Throughput 

(Bytes/s)

after: Min Max 25%Perc. Median 75%Perc Average Stdev Average Min' Max' Median'

0 sec 6,43 19,43 9,91 12,53 14,33 12,65 6,42 3997,90 0 6,43 19,43 12,53 3997,90
 0,5 sec 10,99 36,14 11,93 14,25 19,84 16,99 8,17 3076,90 1 10,99 36,14 14,25 3170,79
 1 sec 10,76 32,69 12,98 14,56 17,28 16,41 7,21 3105,35 0 10,76 32,69 14,56 3105,35
2 sec 10,39 39,66 17,88 23,35 26,42 22,99 7,93 2267,25 4 10,39 31,34 21,78 2475,88
3 secs 11,89 33,66 13,77 15,60 20,26 18,11 7,79 2834,35 0 11,89 33,66 15,60 2834,35
4 secs 11,42 37,46 14,47 15,65 20,08 19,13 9,01 2777,50 2 11,42 37,46 15,37 2851,72
4,5 sec 14,18 45,71 15,00 16,89 21,86 19,62 8,49 2603,85 1 14,18 32,18 16,26 2687,11
 5 sec 7,50 31,83 11,06 14,44 17,32 14,94 7,58 3576,30 1 7,50 24,89 14,43 3687,26

 5,5 sec 9,92 25,99 11,04 12,03 14,14 13,89 6,93 3645,45 0 9,92 25,99 12,03 3645,45
 6 sec 9,33 30,58 11,06 13,19 18,26 16,52 8,58 3307,40 1 9,33 30,58 12,60 3394,74

 6,5 sec 10,27 26,39 11,45 12,09 16,22 14,38 6,71 3493,05 0 10,27 26,39 12,09 3493,05
7 sec 9,50 34,46 12,27 14,12 19,72 17,39 8,93 3132,35 3 9,50 25,74 13,17 3439,94

Statistics of the third flow (data sent=46,7Kbytes)

Throughput' 
(Bytes/s)

Elapsed Time' (seconds)Num 
Excep

Elapsed Time (seconds)

 

Table 5-1. Statistics for the 20 replications of the TCP connections when Tail Drop is 

employed. 
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We also report the statistics regarding the maximum, minimum and median values 

calculated with the exclusion of these particular unfair situations. However, these anomalous 

replications affect only few scenarios and the variations introduced in the results mostly regard 

the third flow. 

In the first two tables, presenting the results of the fastest and the slowest flows, we 

observe that the performance achieved is quite similar in all the scenarios and the variance is 

limited. Considering the 12 scenarios the values oscillate roughly around an average throughput 

of 8469,7 Bytes/s, corresponding to 48% of the entire bandwidth. The same is true for the 

statistics of the slowest flow and the average throughput realized is roughly 8023 Bytes/s, 

corresponding to 46% of the total bandwidth. On the other hand analysing the last table, 

referring to the third flow’s statistics, we observe that its results are affected by a large variance 

as its starting point varies. The median elapsed time varies from 6.43 seconds up to 14.18 

seconds and the average throughput from 2267.25 Bytes/s up to 3997.90 Bytes/s, 

corresponding respectively to 13% and 23% of the available bandwidth. Note that these 

estimated bandwidth utilizations are not directly comparable since the elapsed times of the 

connections differ. The last connection makes use of the bandwidth during a time that is one 

third of the elapsed time of the initial flows. 

In spite of the variability of the third flow’s results we can find an explanation to this 

behaviour. When the third flow’s starting time is quite close to that of the simultaneous flows 

(corresponding to a delay between 0 and 4 seconds) the best chance for the third flow to reach 

high performance is represented by the case in which it is started simultaneously with the initial 

connections. In fact all the statistics regarding the elapsed time of the third flow present their 

minimum in this scenario, except the median and the 75% percentile values that are anyway 

quite close to the absolute minimum. This conclusion is quite obvious if we think of how the 

TCP protocol is implemented. The first phase of the Slow Start is in general the most 

aggressive part of the entire connection, in which the flows attempt to occupy most of the 

available bandwidth and in which the Congestion Window is easily increased to high values. If 

a connection is started later it will have to compete much more to earn a part of the bandwidth 

and as later it is much more damaged it is. But the table also shows an interesting result. After 

4.5 seconds of delay the third flow manages still to reach good performance similar and 

sometimes better than the first experiment with three simultaneous connections. The minimum 

median elapsed time occurs for a delay of 5.5 seconds, approximately the time at which the 

Slow Start phases of the initial flows have ended. Moreover we point out another attractive 

scenario in which the performance reaches the worst level and presents large unfairness. In the 

scenario after 2 seconds the elapsed time reaches high values and consequently the throughput 
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greatly decreases. For this delay the average throughput realizes its minimum reaching the 

value of 2267,25 Bytes/s, corresponding roughly to 13% of the total bandwidth (140Kbit/s).  
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Figure 5-1. The Elapsed Time of the three competing flows for 12 third flow’s start times 

(median values based on 20 replications). 
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Figure 5-2. The Throughput of the three competing flows for 12 third flow’s start times 

(median values based on 20 replications). 

Max Throughput 
(3883,5 Bytes/s) 

Min Throughput 
(2002 Bytes/s) 

Max Elapsed Time 
(23,35 sec) 

Min Elapsed Time 
(12,03 sec) 
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Figure 5-1 and Figure 5-2 outline the results described above graphically and show 

statistics related to the median values of the elapsed time and the throughput respectively. Note 

that the values reported for the three flows are not directly comparable. The initial flows always 

start at the same time and transfer the same data load, but the third one differs in the starting 

point and in the amount of data sent. Its traffic is 4/25 of that of the others. On one hand this 

implies that as regards the elapsed time realized and consequently the calculation of the 

throughput, the connection set-up and tear down phases have a largest impact on the short flow 

than on the longer ones. On the other hand considering that in our testbed the round trip time is 

quite small and consequently the 3-way handshake phase is short its influence is restricted 

anyway. The elapsed time experienced by the third flow increases slowly as the start time of 

the last flow grows. It reaches the maximum for the scenario after 2 seconds and afterwards it 

decreases and stabilizes, fluctuating around the initial values. The throughput graph follows a 

similar behaviour, reaching the minimum for 2 seconds and the maximum around 5.5 seconds. 

This tendency can be explained after a detailed analysis of the 20 replications that compose 

each scenario. In fact the third flow‘s statistics, as we have noticed before always show large 

variance and we need to better identify which the most recurring behaviour for different 

starting points are. 

Analysis of the most interesting scenarios 

It is quite obvious that when the third flow is started after a short time (from 0 up to 2 seconds) 

most of the replications will show the case of a third flow started when the first two 

connections are still in the Slow Start phase. Increasing the delay (from 2 up to 5 seconds) the 

third flow starts more often when both or one of the initial flows are close to end the Slow Start 

phase or to enter the Congestion Avoidance phase (after cwnd has reached the ssthresh) or Fast 

Retransmit (after the reception of three DUPACKs) or a new phase of Slow Start (after the first 

retransmitted packets for timeout expiration). After 5 seconds the last flow begins to transmit 

when at least one of the other flows have yet experienced some packet loss and congestion. In 

order to better understand this behaviour we go on to analyse into details of what happens in 

the three scenarios outlined above:  

• the scenario after 0 seconds; 

• the scenario after 2 seconds; 

• the scenario after 5.5 seconds. 

The graphs used in this section to study the flows performance show the activity on the 

connection as the TCP sender sees it, since they are taken from the sender side tcpdump. The 
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Y-axis shows the sequence number space of the connection, the X-axis gives the time that those 

segments were active (sent/acked). The black arrows represent the segments sent and the upper 

and lower limit of arrows gives the sequence number of the first and last byte in the segment. 

The green line tracks the ACKs returned by the receiver, the little green ticks below it indicate 

duplicate ACKs and the number 3 locates the triple duplicate ACKs. The yellow line is the 

receive window advertised by the receiver and the little yellow ticks above it mean that the 

receive window advertisement is the same as the previous advertisement. Finally the red letters 

R are places where a retransmission took place and the SYNs and FINs are respectively the syn 

and fin segment sent to open and close the connection. In general, for the longer flows, only the 

first 20 seconds of transmission are represented and for the third one the whole transfer. The 

details regarding the Test Cases examined are reported in Section  7.  

Scenario after 0 seconds 

In the scenario after 0 seconds (the statistics are reported in Table 5-2 and the details regarding 

the 20 replications in Table 8-1 in the Appendix) the three connections begin the transfer at the 

same time. This means that all the flows have in theory the same chance to achieve the best 

performance. Indeed the third flow never experiences long three-way handshake phases and 

never lasts more than the bigger flows. 

 
Data xmit 
time (sec)

Elapsed 
time (sec)

Throughput 
(Bytes/s)

Retx data 
packets

Retx Data 
bytes

Duplicate 
acks

Triple 
dupacks

Min 28,62 29,45 7947 4 5792 25 3
Max 36,06 36,74 9914 8 11584 43 5

25%Perc. 33,32 34,03 8026,25 4,75 6878 29 4
Median 34,78 35,85 8144,50 5 7240 35 4

75%Perc 35,26 36,38 8585,75 6 8194,75 39 5
Average 32,16 33,15 8436,70 5 7136,95 32,20 4

Stdev 2,48 2,53 682,83 1,07 1456,28 5,39 0,64
Min 35,34 36,55 7648 5 6897 28 4
Max 38,17 38,18 7990 18 24073 44 6

25%Perc. 35,63 36,59 7956,75 6 8200,25 32,25 5
Median 35,71 36,67 7964 6 8688 35,50 5

75%Perc 35,95 36,70 7980,25 7 10136 37 5
Average 35,70 36,45 8030,60 6,8 9506,60 34,85 4,85

Stdev 0,79 0,44 92,62 2,74 3637,52 4,18 0,55
Min 5,26 6,43 2405 0 0 1 0
Max 18,25 19,43 7266 5 7240 14 2

25%Perc. 8,83 9,91 3271,25 2 2896 5 1
Median 10,95 12,53 3728,50 4 4729 7 1,5

75%Perc 13,16 14,33 4716,50 4,25 5888,25 8 2
Average 11,42 12,65 3997,90 3,35 4478,75 6,75 1,45

Stdev 3,63 6,42 1498,06 1,54 2084,55 7,11 0,99
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Table 5-2. Statistics for the scenario after 0 seconds, based on 20 replications.  
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This is the scenario in which we have observed the highest percentage of fairness cases 

between the fastest and slowest flow (around 50%). As regards the fairness between the three 

flows the third flow is not directly comparable to the performance of the initial ones, since the 

data transmitted are roughly less than a fifth of the biggest load. But we can evidence that only 

in the 20% of all replications the initial flows show fairness and the third flow’s throughput 

reaches performance between the median and third quartile values. Moreover, consider Figure 

5-3, in which we propose an example of this last behaviour. This represents one case of highest 

“fairness” when Tail Drop is employed. The throughput of the smallest flow is 4124 Bytes/s 

and that of the others are 8106 Bytes/s and 7962 Bytes/s. The Jari fairness index [Jai91] 

referred to the initial connections as 0.9999 for the Throughput and for the Elapsed Time too. 

The third flow’s performance also in this “best” case is relatively poor since the throughput of 

the last flow is about the half of the fastest flow one and we are far from the ideal fairness 

between the three flows. 

 

 

Figure 5-3. Example of fairness between the biggest flows and high performance of the 

third one in the scenario after 0 seconds. 

The fact to have fairness between the biggest flows has no influence on the performance 

of the shortest connection. In fact, in this scenario, 6 replications out of 20 the smallest flow 
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manage to achieve the performance of the 75% percentile, but generally it is not favoured by 

the fairness or no-fairness of the other flows. For example we can consider the experiment in 

which the small flow carries out the maximum throughput. This is not only the maximum 

throughput achieved in the scenario after 0 seconds, but also the absolute maximum throughput 

out of 240 Tail Drop replications run. We will refer to this as the optimum achieved by Tail 

Drop. The relative Time Sequence (Figure 5-4) graph shows how the small flow starts to 

transmit soon and competes with the other to gain bandwidth. It manages to achieve a better 

performance than the other as confirmed by the number of packets retransmitted (0) and the 

number of duplicate ACKs (1) (Table 5-3).  

 

 Data xmit 
time (sec) 

Elapsed 
time (sec) 

Throughput 
(Bytes/s) 

Retx data 
packets 

Duplicate 
acks 

Triple 
dupacks 

fastest 31.613 32.63397 8948 5 39 5 
slowest 35.628 36.6409 7969 7 29 4 
3rd flow 5.259 6.430064 7266 0 1 0 

Table 5-3. The performance achieved in the case of third flow’s maximum throughput 

(scenario after 0 seconds). 

 

Figure 5-4. The case of Maximum Throughput of the third flow up to all the experiments 

run under Tail Drop (the third flow’s optimum  with Tail Drop). 

They experience 
congestion at the 

same moment 

0 packets drop and 
maximum throughput 
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Scenario after 2 seconds 

The scenario after 2 seconds (in Section 8.1 we report the table of results) is the most critical 

set of experiments as regards the performance of the third flow. When the last connection starts 

after 2 seconds the other flows are generally in the first stage of the Slow Start phase and they 

are competing to gain the biggest share of bandwidth that is possible. The last flow usually 

manages to establish the connection quite soon, but then it can gain only a small part of the 

bandwidth realizing s long data transmit time. Even though the three-way handshake phase is 

short the data transmit time heavily influences the elapsed time and consequently the final 

throughput. This explains why in this scenario we have found the maximum number of cases in 

which the “shortest” flow lasts longer than the “longest” ones. This happens because the last 

flow is delayed in starting the data transfer and has to retransmit the first packet several times 

in order to have it acknowledged. Actually the data transmission begins when the initial flows 

are close to end their connection.  

 

 

Figure 5-5. The minimum throughput of the third flow in the scenario after 2 seconds.  

A clarifying example of this behaviour is shown in Figure 5-5, where the first packet sent 

by the third flow is retransmitted three times before being acknowledged. The exponential 

retransmit back-off rule typically doubles the retransmit timer value when a retransmitted 

packet is lost. This means that the loss of successive retransmissions results in very long delays. 

This is a clear instance of unfairness: the first flow manages to monopolize most of the 

bandwidth completing the transfer in a very short time, only 29.5 seconds and denies the last 

The retransmit Time Out 
is doubled twice. 

Long Slow Start phase 

Elapsed time=29.5s Elapsed time=34s 

Elapsed time=39.7s 
Data Transmit time=38s 

Throughput=1178Bytes/s 
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connection the possibility to find place in the router buffer. The long Slow Start phase confirms 

its superiority. Furthermore it achieves a throughput of 9905 Bytes/sec, corresponding to more 

than half of the total bandwidth available. What we have observed is the so-called phenomenon 

of Lock-Out.  

 

 

Figure 5-6. The maximum throughput for the 3rd flow in the scenario after 2 seconds 

(Throughput=4497 Bytes/s, Elapsed Time=10.4sec and Data Transmit Time=8.7sec).  

The higher performance in this kind of scenario is reached in two different situations, as 

shown in Figure 5-6 and Figure 5-7. In the first case the third flow manages to gain bandwidth 

without experiencing any data packet loss during the connection. The three-way handshake 

phase is short and it sends the first packet when the other connections are in the second part of 

the Slow Start phase. Generally the performance observed when the third flow starts in the 

Slow Start phase of the initial flows is quite unsatisfactory, but in this case the flow starts at the 

end of the Slow Start when the connections are close to enter Fast Retransmit after the 

reception of three DUPACKs. This means that the network is congested and some packets have 

been dropped. The second instance shows a recurring situation found in Tail Drop experiments, 

but not so common in this scenario. We observe that the third flow, after a long three-way 

handshake phase, manages to start and realizes the minimum data transmit time. It takes 

advantage of the idle period of the network, due to the congestion experienced by the initial 

connections. In fact it starts to transmit when the other flows have received duplicate ACKs and 

No data packet retransmitted 
during the transfer 
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they have just retransmitted the packet loss. They are starting again to increase the congestion 

window and the conditions are similar to the ones at the beginning of the first Slow Start phase. 

In this scenario an analogous situation recurs only another time, but it is more frequent with 

bigger delay in the starting point of the third flow. This is the key aspect that justifies good 

results in a scenario such as that after 5.5 seconds, as explain later. 

 

 

Figure 5-7. Minimum Data Transmit Time for the scenario after 2 seconds 

(Throughput=3907 Bytes/s, Elapsed Time=12 sec and Data Transmit Time=6.8 sec). 

Moreover, taking a closer look to Figure 5-7 we observe a typical behaviour we have 

encountered often in this first set of experiments that is one of the major drawbacks of Tail 

Drop: the problem of synchronization. The TCP connections are frequently reducing their rates 

at the same moment, as is shown by the fact that the packets are often retransmitted in the same 

instant. This means that in most of the simulations two or all the connections are experiencing 

congestion at the same moment and this behaviour can heavily damage the final performance. 

At the same time the third flow may take advantages of this behaviour as we have seen in 

Figure 5-4, where the third flow realizes the optimum throughput under Tail Drop. The initial 

connections experience congestion at the same time and retransmit packets at the same 

moment. This means that they are reducing their transmission rates simultaneously and for this 

reason the third flow manages to start and finish its transmission in such a short time. 

 

Long three-way 
handshake phase 

They retransmit at the 
same moment 
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Figure 5-8. The third flow starts in the last part of the Slow Start phase of the initial flow 

in the scenario after 2 seconds (3rd flow: Throughput=2937Bytes/s,  Elapsed Time=16sec).  

 

Figure 5-9. The third flow starts in the middle part of the Slow Start phase of the initial 

flow (3rd flow: Throughput=2206 Bytes/s, Elapsed Time=21.2sec). 
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Figure 5-10. The third flow starts at the beginning of the Slow Start phase of the initial 

flow in the scenario after 2 seconds (3rd flow: Throughput=1872Bytes/s, Elapsed 

Time=25sec). 

Finally we examine shortly three other cases to evidence how three connections started at 

the same moment and encountering the same conditions in the transfer of the two biggest flows, 

can reach quite different performance depending on the length of the Slow Start phase of one of 

the initial flow. We compare three examples (Figure 5-8-Figure 5-10) in which the third flow 

starts the transfer at the same moment and, after quite similar three-way handshake phases it 

encounters the same conditions regarding one of the biggest flows in transmissions. Indeed in 

all three cases the last flow establishes the connection 2 seconds later than the initial flows and 

it sends the first data packet after 1 second of connection. This instant corresponds to the third 

second of transmission of the initial flows as indicated by the red circles. The red circles in the 

left panel of each figure indicate that the starting point of the last flow falls in all the three 

situations in the second part of the Slow Start phase of one of the initial flows depicted. On the 

other hand, considering the right panel reporting the behaviour of the other initial flow we 

identify three different situations. In the first case the starting point coincides with the Fast 

Retransmit phase of the initial flow, after it has received three DUPACKs. In the second one it 

falls in the middle part of the Slow Start phase. Finally in the last one it corresponds to the 

beginning of the Slow Start phase. Studying the elapsed time and throughput values achieved in 
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each case we conclude that the third flow’s performance decreases as the length of the initial 

flow’s Slow Start increases. Moreover the third connection seems to be particularly favoured 

when it starts the transfer near to a period of congestion experienced by one of the initial flows. 

This is quite obvious if we think that when the network is congested the initial flow is receiving 

duplicated ACKs and it is not transmitting. The third flow can take advantage of this idle 

period to gain bandwidth. On the other hand, when one of the initial flows manages to realize a 

long Slow Start phase it means that few resources are currently available for the third flow. 

Scenario after 5.5 seconds. 

The previous discussion can help to understand what happens in the scenario after 5.5 seconds 

(for the tables of results see Section 88.1). We have noticed before that the performance of the 

third flow here shows a visible improvement, reaching values for Throughput and Elapsed 

Time sometimes bigger than in the scenario after 0 seconds. For a delay longer than 5.5 

seconds till 7 seconds the performance became quite stable around a value lightly inferior to the 

early results. The study of all the 20 replications for this scenario shows a similar behaviour to 

what was observed in the scenario after 0 seconds, when the third flow was started during the 

Slow Start phase of the initial flows. In fact after a packet loss is detected by receiving three 

DUPACKs, the sender is subject to enter Fast Retransmit and after that a new Slow Start phase 

if cwnd<ssthresh or Congestion Avoidance mechanism if cwnd>ssthresh. If the packet loss is 

detected by timeout expiration the connection enters the Slow Start phase starting to retransmit 

from the packet lost. We have observed that in most of the replications the packet loss is 

generally detected by the reception of three DUPACKs and cwnd is usually inferior to ssthresh. 

Thus after Fast Retransmit a new phase of Slow Start is triggered. This implies that if the third 

flow is started in these critical points it encounters the same, or occasionally better, conditions 

of the early scenario, in which it was at beginning of the first Slow Start.  

The three-way handshake phases are generally shorter and we have not found any 

“anomalous” situations: in all the replications the third flow has a shorter duration than both 

initial connections. In 7 cases out of 20 there is fairness between the initial flows and in 5 cases 

out of 20 there is fairness between the first two connections and the third one achieves optimal 

performance. Only in 4 cases the third connection experiences a long three-way handshake 

phase and the performance degrades seriously. 
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 Figure 5-11. Example of great performance of the fastest flow (Throughput=9914 Bytes/s 

and Elapsed Time=29.5sec) to the detriment of the third one (Throughput=3370 Bytes/s 

and Elapsed Time=13.9sec). 

 
Figure 5-12. The third flow achieves the Max Throughput (4709 Bytes/s) and the 

performance of the fastest flow degrades (Throughput=8814 Bytes/s). 
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We report only two examples to show a case in which the fastest flow reaches the best 

performance (Figure 5-11) and, on the contrary, a case in which the third connection 

accomplishes the Max Throughput (Figure 5-12). In this second replication the third flow is 

prevailing on the initial ones as shown by the fact that the flow in the upper-left enters the 

second Slow Start phase and losses another packet quite soon while the third flow transmits till 

the end experiencing only one loss packet.  Both the initial connections lose five packets during 

the entire transfer. In the replication of Figure 5-11 the fastest flow and the last one lose the 

same number of packets, even if the duration of the fastest flow is more than double of the third 

one. 

5.1.2 Comparison of Tail Drop and RED performance 

The RED tests were run only for the five scenarios of most interest: after 0 sec, 2 sec, 4 sec, 5 

sec and 5.5 sec with the parameters described in Section 4.1.1. Figure 5-13 shows some 

statistics about the performance of the third flow, while Figure 5-14 refers to the Elapsed Time 

and the Number of Retransmitted Packets of the initial flows. The median value for all the 

statistics presented is plotted and the Min, Max, 25%Perc and 75%Perc as regards the elapsed 

time of the third flow. They are based on 20 replications. 

First of all we observe that in most of the graphs reported the statistics of RED show 

small variability as the third flow’s starting point changes, since moving on the x-axis they are 

almost constant. On the contrary, when Tail drop is employed the variation range is generally 

wide. Moreover, the results reached by RED are not only more stable, but also indicate higher 

performance. The improvements introduced regard especially the third connection, while the 

initial flows’ results are not far from the Tail Drop’s one. This fact means that RED provides 

higher fairness between the three flows sent and much more guarantee to the third flow for 

achieving good performance. Furthermore RED assures to the last flow sent performance less 

dependent on its starting point than Tail Drop does.  

RED outperforms Tail Drop’s performance of the third flow as regards the Elapsed 

Time, the Data Transmit Time and consequently the Throughput. Especially in the scenario 

after 2 seconds we note the improvements carried by the introduction of RED. Now the third 

flow is only lightly degraded by the initial flows’ aggressive Slow Start phase, while  the Tail 

Drop performance examined was very poor and unfair. 

We first analyse the Elapsed Time graphs of the third flow. We have plotted the 

behaviour of five different statistics in order to define how large is the variation range. 
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Considering the range delimitated by the 25% and 75% Percentiles we notice that it is quite 

large in the case of Tail Drop, roughly 5.6 seconds, and more restricted with RED, around 3.6 

seconds. Tail Drop is subject to the maximum variability (8.5 seconds) in the scenario after 2 

seconds while as regards RED the major variance (4.4 seconds) is reached in the scenario after 

4 seconds.  The behaviour of the Minimum does not move so far away from the 25% Percentile 

while the Maximum is more irregular. Especially in the Tail Drop experiments it reaches high 

values as confirmed by the number of abnormal cases studied in the previous section, in which 

the third flow lasts longer than the initial connections that manage to achieve optimal results. In 

the RED experiments we have only one situation, in the scenario after 4 seconds, in which the 

elapsed time of the last flow reaches a high value (33 seconds), but the initial flows are longer 

than it (36.1 and 36.6 seconds) anyway. 

The three-way handshake graph shows an interesting result: in the first two scenarios the 

values realized by the two queueing disciplines are quite the same, while around 4 seconds 

RED outperforms Tail Drop and the results greatly differ (the median values are 0.57 seconds 

for RED and 3.81 seconds for Tail Drop). Examining now the Data Transmit graph we see how 

the data transfer durations for both disciplines are generally similar, but they differ significantly 

around 2 seconds, where the transmission time for Tail Drop is more than the double of that 

realized with RED (9.88 seconds for RED and 20.82 seconds for Tail Drop). Thus comparing 

the Three-way Handshake and the Data Transmission Time behaviours we observe an 

interesting aspect when the Tail Drop discipline is deployed. The most critical time interval for 

the third connection is the range around 4 seconds (referred to the time scale of the initial 

flows), where the performance of the third flow is seriously damaged by the longest 

connections. In fact, when the third flow is started after 2 seconds the connection set-up phase 

is quite short (about 1.05 seconds), but the data transmission time is quite long (about 20.8 

seconds). This indicates that after the connection has been established it is blocked by the 

biggest connections when they are around the 4th second of transmission. However, when the 

last flow starts after 4 seconds it is more damaged in the three-way handshake (about 3.8 

seconds) than in the data transmission phase (roughly 10.6 seconds). In both scenarios the 

critical point is around 4 seconds, which corresponds to the Slow Start’s second phase of one or 

both initial flows. This was the conclusion we arrived at in the first session and it finds 

confirmation here: the most crucial interval for the third flow’s performance falls in the second 

part of the Slow Start phase of the initial flows. Obviously the resulting elapsed time is more 

influenced by the data transmission time rather than the connection set-up phase and this 

explains why the minimal performance is for the scenario after 2 seconds. The Throughput 

behaviour and the number of Retransmitted Packets confirm this tendency: the worst 
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performance is for the scenario after 2 seconds, where the two graphs reach a minimum and a 

maximum respectively.  
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Figure 5-13. Comparison between Tail Drop and RED perfomance for the third flow 

(data sent=46.7Kbytes). 
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Figure 5-14. The Elapsed Time and the Numbe r of Retransmitted packets of the fastest 

and slowest flow (data sent=292Kbytes). 

 

Figure 5-15. Example of RED fairness in the scenario after 5.5 seconds. The throughput of 

the fastest and the slowest flows  are 8062 Bytes/s and 7988 Bytes/s respectively. The 

throughput of the third flow is 7190 Bytes/s. 
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Scenario
Throughput 

(Bytes/s)

after: Min Max 25%Perc. Median 75%Perc Average Stdev Average

0 sec 28,13 36,55 32,19 33,56 34,75 32,26 2,24 8596,70 0
2 sec 29,18 36,48 31,28 33,22 34,61 31,96 2,30 8664,80 0

4 secs 30,99 36,64 32,86 35,01 36,07 33,08 1,85 8350,20 0
 5 sec 31,58 36,57 33,19 34,23 34,99 33,21 1,48 8286,20 0

 5,5 sec 21,57 36,88 31,46 34,60 35,97 31,92 3,66 8870,75 0

Num 
Excep

Elapsed Time (seconds)

Statistics of the fastest flow (data sent=292Kbytes)

 
 

Scenario
Throughput 

(Bytes/s)

after: Min Max 25%Perc. Median 75%Perc Average Stdev Average

0 sec 36,52 38,29 36,58 36,64 36,67 36,57 0,43 7992,55 0

2 sec 36,53 37,49 36,60 36,66 36,72 36,47 0,27 8015,75 0

4 secs 36,55 37,34 36,60 36,66 36,71 36,51 0,21 8002,40 0

 5 sec 36,55 37,43 36,58 36,63 36,67 36,57 0,23 7986,45 0
 5,5 sec 36,54 37,53 36,57 36,63 36,73 36,77 0,34 7942,25 0

Num 
Excep

Elapsed Time (seconds)

Statistics of the slowest flow (data sent=292Kbytes)

 
 

Scenario
Throughput 

(Bytes/s)

after: Min Max 25%Perc. Median 75%Perc Average Stdev Average

0 sec 6,94 20,00 8,36 10,51 12,55 11,12 6,40 4545,00 0
2 sec 7,30 16,54 9,49 11,51 12,42 11,38 6,20 4307,85 0

4 secs 6,07 15,53 8,47 9,52 12,02 9,85 6,46 5081,90 0
 5 sec 5,52 33,02 8,74 11,34 13,13 12,19 8,22 4505,00 0

 5,5 sec 5,70 15,86 7,67 9,37 11,48 9,78 6,75 5147,95 0

Num 
Excep

Elapsed Time (seconds)

Statistics of the third flow (data sent=46,7Kbytes)

 
 

Table 5-4. Statistics of the Elapsed Time when the RED algorithm is employed (20 

replications). 

 Data xmit 
time (sec) 

Elapsed 
time (sec) 

Throughput 
(Bytes/s) 

Retx data 
packets 

Duplicate 
acks 

Triple 
dupacks 

fastest flow 33,988 34,658388 8425 14 46 8 
slowest flow 35,8 36,635197 7970 14 47 7 

3rd flow 4.56 5.518792 8466 1 8 1 

Table 5-5. The statistics of the optimum in the RED tests (Max Throughput and min 

Elapsed Time).  

When RED is employed as regards the third flow’s performance, the disparity between 

the scenario after 2 seconds and that after 4 seconds is not so relevant as with Tail Drop. RED 

outperforms Tail Drop in all the scenarios and in particular in these critical ones. In Table 5-4 

we have highlighted some values that have to be compared with the previous ones, presented in 

Table 5-1. Around 2 seconds the median elapsed time is 11.51 seconds for RED and 23.35 

seconds for Tail Drop: the latter is more than the double of the former. These are also the 
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maximum median elapsed times. Both minimum median elapsed times fall in the scenario after 

5.5 seconds: 9.37 seconds for RED ad 12.03 for Tail Drop. Even though they differ, now the 

gap is more narrow.. 

As regards the elapsed time trend of the initial flows the RED and Tail Drop’s results do 

not disagree significantly. The slowest flow’s behaviours for the two disciplines are quite close 

to each other and the maximum gap is roughly 0.5 seconds. However, the fastest flow’s graphs 

vary over a wider range. The two disciplines differ at most by 2.3 seconds (in the case after 0 

seconds), while in the central scenarios they are quite similar. Comparing the RED elapsed time 

graphs of the fastest flow and of the third flow, we notice that the behaviours are nearly 

complementary. When the fastest connection lasts more, correspondingly the third flow 

duration decreases. The better performance of the third flow achieved when RED is in use 

explains why in some cases the Tail Drop discipline allows to reach higher performance as 

regards the fastest flow. This is done to the detriment of the last connection.  

Finally we note how the number of retransmitted packets of the third flow is generally 

slightly lower with RED than with Tail Drop: it decreases in the scenario after 2 and 4 seconds, 

but later the behaviours of the two disciplines are the same. This is due to the fact that RED 

attempts to keep the average queue size low in order to accommodate bursty traffic and 

transient congestion. On the other hand Tail Drop detects congestion only after a packet has 

been discarded and this occurs just when the queue router is full. Tail Drop allows queues to 

reach a full status and to persist in this steady state for long. RED does not wait to have a full 

queue to start discarding packets and consequently starts to drop packets before Tail Drop does, 

as demonstrated by the short Slow Start phases depicted in the RED graphs. 

What is important to point out is not only the number of retransmitted packets, but also 

the ratio between the packets dropped by the initial flows and the third transfer. When RED is 

deployed the initial connections retransmit roughly the double number of packets compared to 

the Tail Drop case. That is why RED tends to discard packets from each connection in 

proportion to the transmission rate the flow has on the output link. Therefore the connection 

with the largest data rate will have the highest drop percentage among total discarded packets. 

In fact, the ratio between the initial flows’ discarded packets and the third flow’s varies from 

2.5 up to 4.3 for RED and from 1.1 up to 1.9 for Tail Drop (they are calculated considering the 

median value of the number of retransmitted packets). Being the smallest flow 4/25th of the 

other ones, we conclude that RED also from this point of view manages to serve the TCP traffic 

with more fairness that Tail Drop does.  
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5.1.3 RED Parameters 

Parameter choice in RED seems to be hard since the inventors themselves periodically change 

their recommended RED parameters. The ones used in our experiments were chosen following 

some generic guidelines, but they do not pretend to be optimal and the best in all 

circumstances. We have run some additional tests varying some RED parameters and we have 

investigated how the performance could be improved over the Tail Drop’s one.  

 

Elapsed Time varying some RED parameters (minth, maxth, burst)  
maxp=0.1; buffer size=20000; avpkt=1000 

                                                         RED 
        Parameters 

       Scenario 

5000 
18000 

12 

5000 
18000 

9 

4000 
16000 

11 

5000 
15000 

8 

5000 
15000 

12 

after 2 sec 11.51 8,96 12,36 9,86 10,34 

after 5.5 sec 9,37 9,91 9,91 11,20 9,43 

Table 5-6. Additional tests oriented to study the tuning of RED parameters (Median value 

of the 3rd flow’s elapsed time, based on 20 replications). 

In Table 5-6 we report some additional tests run tuning the minth, maxth and burst parameters 

and only for most interesting scenarios: after 2 and 5.5 seconds. The first column presents the 

results for our parameters. We see that a significant improvement, especially in terms of 

fairness, can be achieved by decreasing the burst parameter (second column). Moreover, also 

diminishing maxth the elapsed time decreases appreciably for the scenario after 2 seconds. This 

is reasonable since keeping the maxth low the buffer queue is also kept low and consequently it 

can easily absorb a new incoming flow (fourth and fifth columns).  

We conclude that the RED parameters selected in our test are not the optimal ones at 

least for the third flow’s performance and as regards the two scenarios investigated, but since 

our study is intended to carry out a comparison between the traditional Tail Drop queueing 

discipline and the RED, basing our conclusions on common RED parameters makes them more 

general and trustable. 

5.1.4 Summary 

A major drawback of Tail Drop is the phenomenon of Lock-Out. The Tail Drop mechanism 

allows a monopolization of queue resources by one or both in itial flows, denying to the third 

connection the possibility to find place in the router buffer. RED avoids this unfair distribution 
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of the network resources as partly demonstrated by the absence of abnormal tests, in which the 

third flow lasts more than the biggest connections. In all the RED tests run (100 replications) 

we have never encountered situations in which the “shortest” flow‘s duration is longer than the 

“longest” flow’s one. On the contrary we have shown before how these exceptions were 

affecting the results of Tail Drop. 

The theoretical behaviour of RED finds confirmation in these results since the third flow 

is obviously favoured in the second set of experiments and its results oscillate slightly as its 

starting point varies. All the simulation results presented in this section show the nice RED 

property of fairness. It is a double fairness. There is fairness between the different scenarios for 

each starting point and between the three flows too. The limited range in which the graphs are 

contained proves the first type of fairness. Actually as regards the second kind we did not 

calculate any fairness index to demonstrate that, but comparing the results of RED and Tail 

Drop we notice how the third flow generally reaches higher performance when RED is 

employed. This means that even though we cannot properly speak of fairness between the three 

flows and demonstrate it, we can affirm that RED generally offers more changes to the third 

flow to start and reach improved performance. There are some replications in which all the 

flows achieve the same throughput. Even if this is not a very common case, with Tail Drop we 

never encountered situations of such level of equality (Figure 5-15). 

Moreover, another objective of RED was to minimize the number of packets dropped in 

the router. Unfortunately as regards this last point RED seems to be quite unsatisfactory. The 

kind of traffic workload utilized in these tests is partly responsible for the high portion of 

packets retransmitted. Repeating the tests increasing the number of TCP connections and their 

data load may actually show a different behaviour from what we observed.  However, even if 

RED discards more than Tail Drop, the high number of packets retransmitted does not degrade 

the performance, resulting on the contrary in an increased throughput for the network, as the 

results show. Thus RED provides a lower delay on the link thanks to the reduced size of the 

buffer queue. The final result is better performance in terms of throughput, elapsed time and 

fairness.  

However, as observed before RED’s objective is not only to drop few packets, but also to 

discard packets from each flow in proportion to the amount of bandwidth the flow uses on the 

output link. Therefore the connection with the largest input rate will have the biggest drop 

percentage among total dropped packets. Considering the results shown RED fully carries out 

this issue.  
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Finally another RED issue is to avoid the connections synchronization giving the 

possibility to the three TCP flows to reduce their sending rate at different moments and not all 

at the same instant. We have found cases of Tail Drop synchronization as the replication in 

Figure 5-4 and Figure 5-7 shown, where the packets loss and the retransmissions were 

occurring always in the same moments, as well of RED synchronization, such as the example 

shown in Figure 5-15. It is quite difficult to make an evaluation regarding this aspect 

considering the kind of workload utilized. Two connections are started simultaneously and the 

third one quite soon. The transfer durations are at most of 40 seconds. Thus it is quite 

reasonable that the initial congestion start to retransmit packets at the same moment and 

consequently reduce their rate almost together.  

 

5.2 Tests with TCP and UDP traffic with services 

differentiation 

The purpose of these tests is first to examine the impact of UDP traffic on a TCP connection’s 

performance when they are sharing the same bottleneck link. Second our goal is to investigate 

the benefits introduced by differentiating the traffic through the use of specific classes of 

service, instead of one general class. Indeed the incoming UDP traffic can be enqueued into the 

same class of service used by the TCP flow, (first kind of HTB topology) or be treated as traffic 

of higher priority. In this case it is directed to another class of service where it has enough 

bandwidth to complete the transfer without experiencing any packet loss (second type of HTB 

configuration). The details about the HTB configurations deployed in these tests have been 

given in Section 4.5.2. Additionally, we provide a simple and limited study of the UDP 

performance only when the first kind of configuration is adopted, since in the second one, the 

CBR traffic always completes the transfer without any packet loss. In order to accomplish a 

complete analysis the same experiment was repeated several times, depending on the TCP 

traffic load, varying each time the CBR flow’s starting point. Finally the two possible HTB 

configurations are tested in combination with the traditional Tail Drop discipline or RED 

algorithm, thus to enable a comparison between them. 

We have run tests for three different test cases. They are classified on the basis of the 

TCP and UDP traffic’s dimension and duration. Each of them consists of several scenarios 

depending on the number of CBR flow starting points considered. Each scenario is tested with 

20 replications. The tables of results for the three scenarios are reported in Section 8. The three 

test cases are: 
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1. Long TCP transfer competing with UDP traffic for the entire connection. 

2. Short TCP transfer competing with UDP traffic for the entire connection. 

3. Long TCP transfer competing with TCP traffic for a short time 

5.2.1 Test Case 1: long TCP transfer competing with UDP traffic 

The traffic scenario is as follows: 

s A single bulk TCP transfer of long duration (roughly 391.3 Kbytes) 

s One CBR flow long enough to cover the entire TCP connection’s transfer (about 264.1 

Kbytes sent in 40 seconds). 

The test case includes four scenarios corresponding to a delay in the CBR’s start time of 0, 1, 2 

or 3 seconds. The starting points are fixed in such a way to analyse the TCP performance when 

the CBR flow starts during the Slow Start phase of the initial connection. Slow Start is overly 

aggressive in probing for bandwidth because of the way it handles congestion window increase. 

Thus we examine in which way and how much the competing traffic can influence and 

especially damage the TCP connection.   
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Figure 5-16. Statistics of the Test Case 1: long TCP transfer competing with UDP traffic 

(median values of 20 replications). 
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Figure 5-16 illustrates the results regarding the TCP flow’s elapsed time and number of 

retransmitted data packets and the number of UDP packets received correctly as a function of 

the CBR flow’s starting point. Each point on the plots is calculated as the median of 20 

replications. In each scenario the four colours indicate the performance achieved when a 

particular HTB configuration is applied. “Tail Drop” and “RED” refer to the first kind of HTB 

typology with the respective disciplines deployed. All the traffic is enqueued in the same 

service class implementing one of the two queueing disciplines. Under this condition Tail Drop 

manages to ensure faster TCP transfer than RED does, but unfortunately it discards roughly 

15% of CBR traffic. On the contrary, RED favours CBR traffic dropping only about 6% of its 

packets and provides larger TCP elapsed times. The TCP performance slightly improves for 

both disciplines as the CBR delay increases since TCP traffic is affected for less time by the 

competing UDP flow. Similarly the CBR flow improves its performance as it starts later even 

though the number of packets received increases slowly and only when RED is deployed. It is 

mostly due to this phenomenon the fact that as the CBR delay raises the UDP traffic may 

compete with the TCP connection when it is in the advanced part or at the end of the Slow Start 

stage. When RED is in use the Slow Start lasts from 2 up to 3 seconds while under Tail Drop it 

can reach even 8 seconds. Hence, considering that the maximum delay studied is two seconds, 

one soon realizes that with RED the CBR flow has more chances to begin the transfer when the 

TCP connection is near to end the Slow Start phase or at least to experience some packet drops. 

Slow Start may be very aggressive in probing for bandwidth and this leads to discarding big 

portions of CBR packets when Tail Drop is implemented. RED accepts the incoming flow 

providing more fairness. 

Considering again Figure 5-16 the label “Tail Drop + DS” and “RED +DS” denote the 

results achieved when the two service classes configuration discussed before is implemented in 

combination with the respective discipline. The CBR traffic has sufficient bandwidth to serve 

the data traffic for the whole transfer duration (in fact no packet drop occurs). The introduction 

of two classes of service makes the TCP performance degrade for both disciplines since the 

available bandwidth is reduced, but its effect is mostly evident for the elapsed time achieved 

when the router deploys Tail Drop. In this case the results differ roughly 4 seconds from the 

previous configuration with only one class of service, while RED reports a transfer time raised 

with 2 seconds. This means that RED is treating the competing flows with more fairness than 

Tail Drop does. 

In confirmation of RED fairness we have analysed the bandwidth utilization percentages, 

reported in Table 5-7. The case under study is the scenario after 0 seconds, when the traffic is 

served by a unique class of service. Note that the results for TCP and CBR traffic are not 
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directly comparable since the elapsed time of the corresponding flows are different. The CBR 

has fixed duration and can also last 6,5 seconds more than the TCP one. Hence it has available 

in this time interval the whole bottleneck bandwidth with the opportunity to improve its 

performance in the last phase. For this reason adding together the two median utilizations we 

obtain utilizations around 97-99%, which is quite unrealistic. The results for TCP and CBR 

must be analysed separately. The TCP and UDP data load sent correspond respectively to the 

60% and 40% of the entire traffic. First we notice that Tail Drop usually presents slightly wider 

variation range than RED. Second the RED bandwidth utilizations are usually closer to the 

effective data load proportion than the Tail Drop ones. Tail Drop tends to favour the TCP 

traffic. 

 

Bandwidth 
Utilization Discipline Min Max 25%Perc Median 75%Perc Average 

Elap.Time 
(sec) 

 median 

Tail Drop 0,65 0,71 0,66 0,67 0,68 0,67 33,47 
TCP flow 

RED 0,61 0,64 0,62 0,63 0,63 0,62 35,69 

Tail Drop 0,30 0,33 0,31 0,32 0,33 0,30 40,00 
CBR flow 

RED 0,34 0,38 0,35 0,35 0,35 0,35 40,00 

Table 5-7. Bandwidth Utilizations  in the scenario after 0 sec of the Test Case 1 (long TCP 

transfer competing with UDP traffic). 

Furthermore in Figure 5-16 we have reported the results of two tests run sending only 

one TCP flow of the same dimension as before (391,3 Kbytes), but decreasing the bottleneck 

link capacity of the amount of bandwidth necessary to serve the CBR traffic (the reduction is 

roughly 53Kbytes/s, considering that the total number of CBR packets sent in 40 seconds is 

2001 we have estimated the consumed bandwidth). Independently of the queueing discipline 

adopted the TCP flow completes the transfer in less time compared to the tests with two service 

classes (the difference is quite small, about 1,3 seconds). Studying the Sequence Number traces 

we have noticed that when two service classes are deployed the Slow Start phase is usually 

shorter than in the case with one TCP flow, even if the number of retransmitted packets is the 

same. The difference is generally around 1 second. This means that the TCP performance 

increases because it is less affected by the CBR interference even though in theory the available 

bandwidth is the same. 

The results of these experiments point out also the huge number of TCP data packets 

retransmitted when RED is deployed (roughly 5 times higher than in Tail Drop). This is due to 

the attempt of RED to keep the average queue size low. Consequently starting to drop packets 
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early, the TCP connection always experiences a short Slow Start phase (approximately half of 

Tail Drop’s).  

 

 

                  

Figure 5-17. Analysis of the scenario after 3 seconds of the Test Case 1. 

In order to understand why RED can achieve the same performance as Tail Drop in spite 

of the high number of packets discarded we take a closer look at four test replications, one for 

each type of possible HTB configuration. They are presented in Figure 5-17 and refer to the 

scenario after 3 seconds. The performance realized by each of them is quite close to the median 

values of the whole test as regards both the elapsed time and the number of retransmitted 

packets. On the left there are the Tail Drop graphs and on the right the RED ones. The number 

of retransmitted packets is quite elevated for RED in both configurations, but even though it is 

high the retransmissions are equally distributed along the whole transfer, especially when the 

two service classes configuration is deployed. Moreover if we analyse carefully the graphs at 

the bottom we see that the implementation of RED helps to recover quickly after a packet loss. 

The recovery phase in RED is shorter because the average queue in the router buffer is kept 

low and the congestion is more easily solved than in Tail Drop. Moreover the congestion 

window in the RED case is generally quite small. In fact in RED the black arrows’ trend, 

Tail Drop: El. Time=32,3sec 
Retx Data Pkts=3  

RED:El. Time=33,4sec 
Retx Data Pkts=15 

 

Tail Drop+DS:  
El. Time=35,9sec 
Retx. Data Pkts=1  

RED+DS:  
EL.Time=35,8sec 
Retx Data Pkts=7  

The Recovery phase with Tail Drop is 
roughly the double of the RED’s one. 
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representing the data segments sent, follows the green line closely, which tracks the ACKs 

returned by the receiver. In Tail Drop the number of outstanding packets, not yet 

acknowledged, is much more larger and that is why when the congestion occurs it can involve 

several packets dropped. However, even though the two disciplines behave in different ways, 

from the results of these experiments it is fair to conclude that when the router selects the two 

service classes architecture, the TCP connections experience the same transfer. 

5.2.2 Test Case 2: short TCP transfer competing with UDP traffic 

The second set of experiments presents the same structure as the previous one, but the traffic 

load is reduced thus to accomplish a deeper analysis and capture some transient phenomena 

caused by the CBR flow arising. It is characterized as follows: 

s One small TCP flow (roughly 46.7 Kbytes) 

s One CBR flow that lasts for the whole duration of the TCP flow’s transfer (about 39.7 

Kbytes sent in 6 seconds). 

The test case consists of five scenarios corresponding to the following CBR flow’s starting 

time: after 0 sec, 0.5 sec, 1 sec, 1.5 sec or 2 sec.  

 

TCP Flow's Elapsed Time (46,7Kbytes)

2,5

3,5

4,5

5,5

6,5

7,5

8,5

9,5

0 0,5 1 1,5 2
CBR flow's start time (sec)

E
la

ps
ed

 T
im

e 
(s

ec
)

Tail Drop RED
Tail Drop + DS RED + DS
OnlyTCP (Tail Drop) Only TCP (RED)

TCP Retransmitted Data packets

3

4

5

6

7

8

9

0 0,5 1 1,5 2
CBR flow's start time (sec)

R
et

x 
da

ta
 p

ac
ke

ts

Tail Drop RED
Tail Drop + DS RED + DS
Only TCP (Tail Drop) Only TCP (RED)

 
Num of Received CBR Pkts (39,7Kbytes,6sec)

260
265
270
275
280
285
290
295
300
305

0 0,5 1 1,5 2

CBR flow's start time (sec)

N
um

be
r 

of
 R

ec
v 

P
kt

s

Tail Drop RED
Tail Drop + DS RED + DS

  

Figure 5-18. Statistics of the Test Case 2: short TCP transfer competing with UDP traffic 

(median values of 20 replications). 
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Figure 5-18 illustrates the relative statistics. Differently from the previous experiments 

the number of retransmitted packets observed is quite the same for both the disciplines, with the 

exception of the early scenarios. Being the Slow Start phases of similar duration, when the 

CBR flow begins the transfer it encounters analogous traffic conditions in both Tail Drop and 

RED tests. The length of the Slow Start phase generally varies from 2 up to 3 seconds.  

When the same service class accommodates both TCP and UDP traffics (in the graph it 

corresponds to “Tail Drop” and “RED” curves) as regards the TCP results Tail Drop 

outperforms RED in the early scenarios. Tail Drop tends to favour TCP traffic when UDP 

traffic starts quite soon; otherwise when the CBR flow starts after 1.5 second or later the TCP 

elapsed time abruptly passes from 3.6 seconds to 5 seconds, thus reaching the RED 

performance. Concerning RED’s elapsed time trend, it is quite stable if we exclude the scenario 

after 0 seconds, where the connection has proved to be extraordinarily fast. The CBR 

performance improves as the starting point is delayed, since it is less affected by the 

competition with the TCP flow. 

 

 

Figure 5-19. Test Case 2: examples of TCP connections taken from the scenario after 1.5 

seconds (on the left) and from the scenario after 0 second (on the right). 

We have studied thoroughly the Tail Drop behaviour through two significant scenarios 

and we have noticed an interesting phenomenon. Figure 5-19 illustrates the TCP sequence 

number graphs. On the right we report the situations mostly encountered in the scenario after 0 

seconds and on the left after 1.5 seconds. We observe that in both the first packet lost is usually 

retransmitted after the 2nd second of connection. Both flows transmit the entire data load in a 

short time (roughly 1 second), but the acknowledgments of the last packets sent encounter 

some difficulties to arrive. In the trend on the right the sequence number of the first 

retransmitted segment indicates that more than half of the total packets sent have been 

acknowledged while, in the other graph, at the same instant, almost all the data packets have 

been correctly received. This is quite obvious since in the scenario after 1.5 seconds the TCP 

after 1.5 seconds after 0 seconds 
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connection can fully exploit all the link bandwidth in the early seconds, but after the CBR 

starts, the end of the connection becomes critical and the final packets are slowly 

acknowledged. The network becomes congested and the last packets are discarded. Four 

packets must be retransmitted and are acknowledged in a long time. Unlike in the scenario after 

0 seconds the CBR traffic is competing from the beginning to gain bandwidth, hence the TCP 

connection starts to drop packets before, as demonstrated by the sequence number of the first 

packet retransmitted, quite lower than the previous one. In total, 6 packets are retransmitted. 

The connection manages to recover faster from the congestion and that is why it completes the 

whole transfer in a shorter time (3.7 seconds against 5 seconds of the scenario after 1.5 

seconds).  

What we have observed is the so-called phenomenon of Slow Start overshoot. Slow Start 

is overly aggressive in probing for bandwidth because of the way it handles congestion window 

increasing. The problem is that due to the exponential increase in the window size, it is possible 

to overshoot the congestion window and short flows, which transfer most of their data during 

Slow Start, can really suffer from this inefficiency. TCP fills up network buffers until packet 

loss occurs. Packet loss is followed by a period of idle time, and possibly severe reduction of 

the sending window. Such loss and the time needed for recovery typically do not significantly 

affect the long-term average throughput of a large transfer, but can be determinant on the final 

performance of a short transfer.  

In our test we have considered quite a small TCP transfer, but the presence of CBR 

traffic helps TCP Slow Start to avoid overshoot or at least to alleviate its effect. That is why the 

results are better when UDP traffic is sent from the beginning. This fact also finds confirmation 

in the huge number of retransmitted packets carried over in the first two scenarios. However it 

is important to point out that the congestion occurs during the flow end phase. It is common 

knowledge that the recovery phase is poorly efficient in the last part of the connection. Like in 

this case the sender finishes transmitting data quite soon. The detection of a packet loss is slow, 

since no DUPACKs are received (this happens because the sender has completed the transfer 

and no new packets are sent) and the timeout expiration may take a long time. Retransmissions 

caused by timeout expiration are costly and degrade the final performance. 

The same observation can partly explain why also RED achieves the best performance in 

the scenario after 0 seconds and retransmits such a high number of packets. At any rate, RED is 

smoothly influenced by the phenomenon and generally it suffers packets loss with fewer 

consequences in the last part of the connection and it is not subjected to serious Slow Start 

overshoot. The reason resides in the algorithm mechanism: RED starts discarding packets soon 
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thus to avoid timeout expiration and a long recovery phase. Sometimes this behaviour implies 

long TCP transfer, but performance more stable to changes in the external environment. Tail 

Drop discards fewer packets and maintains the buffer queue full. It can be faster, but it is more 

exposed to incoming traffic behaviour and its performance is strongly dependent on its 

characteristics, such as data load, duration and starting point. 

As regards the behaviour of the UDP traffic when one class of service is utilized we 

observe that the CBR performance increases as the flow starts later. Tail Drop tends to discard 

a smaller portion of packets than RED, but the difference is quite contained, from 4 to 9 

packets out of 301 packets.  

When TCP and UDP traffics are enqueued in different service classes we notice a heavy 

degeneration in the TCP performance of both disciplines, due the reduction in the available 

bandwidth. As observed in the previous test case the worsening is more serious in Tail Drop’s 

results. The elapsed time trend decreases as the CBR starts later since the TCP connection is 

affected for less time by the competing flow. If we take a closer look at the scenario after 0.5 

second, where the Tail Drop performance is greatly unsatisfactory, we see that the TCP flow’s 

elapsed time for Tail Drop almost double the RED one. While Tail Drop in combination with 

one class of service deployed reports elapsed times around 3.5 seconds under this second 

configuration it degenerates to a maximum of 8.4 seconds. Afterwards in the last two scenarios 

the Tail Drop results are approximately the same for both types of HTB configuration. 

  

Figure 5-20. Test Case 2-Scenario after 0.5 seconds: Tail Drop + DS (on the left) and RED 

+ DS (on the right). 

To find an explanation to this trend we consider the comparison proposed in Figure 5-20. 

It refers to two TCP connections taken from the scenario after 0.5 seconds. The corresponding 

elapsed times are 8.3 seconds for Tail Drop and 4.9 seconds for RED. In the Tail Drop graph 

(on the left) the timeout expiration occurs: the timeout is re-calculated and a new phase of Slow 

Start is triggered. This happens around the 4th second of transmission and the sequence number 

Tail Drop + DS RED + DS 
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of the retransmitted packets is quite high, hence a few packets have not yet been acknowledged. 

In the RED graph (on the right) the retransmission is caused by the reception of three 

DUPACKs and the sequence number of the first retransmitted packet is much lower than the 

one in Tail Drop’s example. RED starts to discard packets before and manages to recover faster 

from congestion occurrence because the average number of packets in the router buffer is low. 

However we notice that, like in the previous example, independently of the discipline adopted, 

the recovery phase is generally quite critical in a situation like this, in which we are considering 

short transfers and the packets are dropped after all the data have been sent. We also observe 

that Tail Drop tends to discard consecutive packets, while with RED they are distributed over a 

wider sequence number range. This is because Tail Drop starts to discard only when the queue 

is full while RED drops randomly before the queue overflows. This test also offers an example 

of TCP Selective Acknowledgements Options. In RED’s trace the Fast Recovery phase is 

triggered and the connection retransmits only the packets whose sequence number is missing. 

This option is greatly helpful when algorithms such as RED are deployed, since it discards 

packets randomly and may cause on the receiver side the reception of blocks of packets out of 

order, but correct. 

 

The results presented have shown how the incoming UDP traffic may affect the TCP 

connection when it is sharing the same class of service or otherwise when a specific class 

serves it. This also was the topic of the first section of experiments, but unlike it, here we have 

considered traffics of short duration in order to better investigate the presence of transient 

behaviour.  

In both configurations the additional traffic causes congestion and slows down the TCP 

transfer. The impact is more serious as the TCP connection has more outstanding packets not 

yet acknowledged. In our experiments, the TCP flow being quite short, this critical interval 

falls after 1.5 seconds of transmission, as seen in Figure 5-19. Note that when the two service 

classes architecture is implemented the most critical interval is shifted before to 0.5 seconds 

and the reason can be easily found. When the second HTB configuration is deployed, even if 

the CBR flow starts around 0.5 second, the effective reduction of the available bandwidth 

occurs a bit later, since it is regulated by the HTB discipline. We did not make an estimation of 

how much time it can require, but considering some experiments proposed in [Dev02] we can 

assume that an additional delay from 0.5 up to 1 second is an acceptable hypothesis. Moreover, 

as expected, the adverse impact of UDP traffic generally is of minor importance if this starts 

when the TCP connection is near to ending. Finally the results have shown that the TCP 

connection can be partly favoured by the competing CBR traffic if they start simultaneously. 
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This can be helpful to avoid a phenomenon like Slow Start overshoot, especially when Tail 

Drop is deployed.  

A last observation regarding the statistics of this test case refers to the elapsed time 

realized when only one TCP flow is sent on a link whose bandwidth has been reduced by the 

amount necessary to serve the CBR traffic. As indicated by Figure 5-18 under Tail Drop the 

elapsed time remains the same reported when two service classes are deployed. Instead, in RED 

tests the elapsed time is quite reduced. It reaches a median value of 4.56 seconds, but the range 

25%-75%Perc is 4.1-6.8 sec. The variation of the results is related at which point the first 

packet is retransmitted. Later it occurs and the better is the final performance. But as pointed 

out several times in this section this is a very particular case and the results are heavily 

influenced by the time needed to have acknowledged the last packets. Analysing the 

corresponding traces we have seen that in Tail Drop experiments the connection is greatly 

damaged by packets loss in the ending part of the transfer and experiences a long recovery 

phase. RED, as explained before, suffers less from this inefficiency and realizes better elapsed 

time than Tail Drop but only in some cases. However it is difficult to find a general explanation 

since the RED results are quite unsettled. 
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Figure 5-21. Statistics of the additional Test Case: medium TCP traffic competing with 

UDP traffic (median values of 20 replications). 

Finally comparing the results of both test cases we observe that the second set of 

experiments constitutes a critical case since the transfer is very short and the retransmissions 

occurs when the transfer is complete. We have run an additional set of tests involving traffic of 

intermediate duration between the two cases presented (TCP traffic: 116.8Kbytes; UDP traffic: 

79.3Kbytes in 12 seconds). Briefly we notice that the statistics resemble what we observed in 

the first test case with the exception of the scenario after 0 seconds.  We have found again the 

phenomenon encountered with the small transfers. When the CBR transfer starts 

simultaneously with the TCP connection the elapsed time realized under Tail Drop decreases 
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and the number of packets dropped is quite huge (13 packets retransmitted with Tail Drop and 

5 with RED).  RED presents stable trends, similar to the first test case. 

5.2.3 Test Case 3: long TCP transfer competing with UDP traffic for 

a short time. 

Finally the third set of experiments was intended to provide a study of TCP performance when 

UDP competing traffic starts the transfer during the Fast Retransmit or the Congestion 

Avoidance phases of the TCP flow. The router buffer size fixed to 20000 Bytes in order to 

trigger packets lost in the TCP connection and start the CBR flow right now we have selected 

this kind of traffic:  

s A single bulk TCP transfer of long duration (roughly 391.2 Kbytes sent) 

s One short CBR flow ending before the TCP connection finishes (about 33.1 Kbytes 

sent in 5 seconds). 

We consider several scenarios although only in the last ones we realize the desire starting 

condition. The scenarios of which we report the results are: after 0 sec, 2 sec, 7 sec, 12 sec, 16 

sec and 18 sec. Figure 5-22 illustrates the performance achieved by TCP and CBR traffic. 
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Figure 5-22. Statistics of the Test Case 3: long TCP transfer competing with UDP traffic 

of short duration (median values of 20 replications). 
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When only one class of service implementing the Tail Drop discipline is in use the trend 

of TCP elapsed time is rather irregular and spaces out quite a large range. In the first two 

scenarios the performance is poor, it improves for the median starting points and finally it 

worsens again for the last scenarios. The graphs of TCP and CBR follow the same trend. For 

example where the TCP elapsed time decreases 0.5 seconds the number of CBR packets 

correctly received increases with 100 packets. Differently, when RED is deployed the TCP 

elapsed time is quite steady around 24.5 seconds as well as the number of CBR packets 

received, roughly 230 packets out of 251 transmitted. The CBR flow’s starting point seriously 

influences the TCP performance when the router adopts the Tail Drop discipline, while when 

RED is deployed the trend resembles a constant line. The difference between the maximum and 

minimum median elapsed times is 1.8 seconds for Tail Drop and 0.5 seconds for RED. The 

same observation is valid for the CBR traffic. This implies that RED can assure a more 

constant service to both traffics and even of higher performance in some cases. RED 

outperforms Tail Drop in serving the TCP connection in the early scenarios, but after 7 seconds 

of delay Tail Drop manages to complete the TCP transfer in minor time to the detriment of the 

CBR traffic that suffers large portions of packet losses. These results demonstrate again that 

there is an effective guarantee by deploying RED to achieve fair performance when traffics are 

sharing a bottleneck link. In particular we observe how RED is able to guarantee an optimal 

service to the CBR traffic since almost all the packets sent are correctly received. 

 

 

Figure 5-23. Test Case3: Sequence Number graphs when Tail Drop is deployed in the 

scenario after 0 seconds (left), after 7 seconds (middle) and after 18 seconds (right). 

The trend followed by the Tail Drop statistics presented above can be summarized 

through three recurring situations. Figure 5-23 shows the trends of three TCP connections 

belonging to different scenarios. In the graph on the left the UDP traffic starts at 0 seconds and 

then after 5 seconds congestion is detected. The competing traffic achieves mediocre results 

(181 packets received out of 251). In the second panel the CBR flow starts after 7 seconds. The 

TCP El. Time=25.5s 
CBR Rec Pkts=181 

TCP El. Time=23,7s 
CBR Rec Pkts=127 

El. Time=24.5s 
CBR Rec Pkts=224 
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TCP connection is less damaged than before by the competing traffic, as confirmed by the low 

number of UDP packets received. Finally in the last graph the CBR flow starts when the TCP 

congestion has already experienced the first packet loss. The performance is quite good and fair 

for both traffics. The TCP can complete in a short time (intermedia te between the previous 

cases) and the CBR flow takes advantage from starting the transfer when the TCP connection is 

going out from the congestion state and is not transmitting packets so intensely as in the first 

Slow Start phase. 

When both the classes of service are in use, Tail Drop outperforms RED slightly, but the 

difference in the elapsed times realized, is around 0.2 seconds. We also observe that the TCP 

performance achieved with this HTB configuration resembles the results of RED in the 

previous topology. This means that RED is less influenced than Tail Drop by the arrival of a 

competing traffic of higher priority, as the CBR can be considered. Anyway note that in this 

test case the CBR flow lasts only for 5 seconds and this partly influences the similarity between 

the RED results. In the first test case where the CBR lasts for 40 seconds and also in the second 

ones, where both traffics are quite small, the degradation introduced by the class differentiation 

on the TCP flow’s performance is more pronounced.  

5.2.4 Summary  

The results presented in this second part of experiments cannot be evaluated leaving out of 

consideration the kind of traffic workload through which they are generated. The first and the 

last test cases offer a macroscopic view of the interference between TCP and UDP traffic when 

they are competing to gain bandwidth on the same bottleneck link. However the second set of 

experiments is characterized by shorter flows and provides a microscopic view of the 

mechanisms underlying the discipline behaviour, thus allowing a detailed study of transient 

phenomena.  

When the network is loaded with a huge bulk TCP transfer, RED guarantees more 

enhanced performance to the competing CBR flow than Tail Drop does, especially when this is 

of brief duration. Moreover RED provides stable results to both traffics, independently of the 

UDP traffic’s starting time. This fact demonstrates that RED is more available to serve a new 

incoming traffic, apart from its data load and moment of arrival and it can absorb traffic with 

variable characteristics with more agility. RED never falls in situations of extreme unfairness in 

which one flow is able to monopolize the available bandwidth stifling the emerging flow. Its 

experimental results are always closer than the Tail Drop’s ones to the performance achieved 
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when two service classes are employed and the CBR traffic of higher priority is wholly 

satisfied. Even though in some scenarios Tail Drop outperforms RED, particularly as regards 

the TCP transfer, this is achieved involving a heavy detriment of the other traffic. Especially in 

the last test case Tail Drop behaves in an unstable way spacing over a wide performance range. 

Finally in these experiments with huge TCP traffic the introduction of such differentiation in 

the service classes causes an obvious degradation in the TCP connection’s performance, since 

the available bandwidth is reduced in order to serve the higher priority CBR traffic, but leads 

the two disciplines to report the same results and also helps Tail Drop to stabilize its trend.  

Therefore we can conclude that RED’s fairness issue finds confirmation also in this 

second section of experiments. There is fairness for two reasons. Firstly the RED performance 

generally does not present great variance as the CBR flow’s starting point changes. Secondly 

the bandwidth utilizations realized with RED are quite close to the data load ratios. RED 

guarantees fair sharing of the available bandwidth while Tail Drop tends to favour the TCP 

traffic, especially if it is of huge dimension, to the detriment of UDP performance. 

The microscopic view offered by the second test case points out the key principle on 

which RED is based and in a sense determines its success. RED drops packets before the queue 

buffer overfills keeping the buffer occupancy low. This allows it to absorb transient congestion, 

as the one caused by a competing flow (in our case the CBR traffic when only one class of 

service is deployed) or by a drastic reduction in the available bandwidth due to the arrival of a 

flow of higher priority (in this test case the CBR traffic when two service classes are deployed).  

In the first set of experiments, in which only one class of service is employed, the 

adverse impact of UDP traffic on the TCP performance is mitigated by delaying the CBR 

arrival. On the other hand, in this second test case we have observed the opposite phenomenon. 

The CBR flow improves the TCP performance if it starts early since it causes some packet 

drops earlier than usual. It prevents the Slow Start phase from being excessively aggressive 

thus to avoid phenomena such as Slow Start overshoot and severe states of congestion. 

Otherwise arriving later it can heavily damage the TCP performance and eventually cause a 

burst of data to be discarded. It is known that TCP recovers easier from a single packet than a 

burst of packets dropped. Hence RED, by keeping the buffer queue low, can generally avoid 

consecutive packet drops thus to faster recover from congestion occurrence. When the traffic is 

accommodated through two service classes the occurrence of the bandwidth reduction seriously 

hurts the TCP performance in Tail Drop tests and the performance is greatly unsatisfactory.  
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Finally the results of this section point out another issue related to RED implementation. 

The number of packets retransmitted is still much higher than with Tail Drop. Also in the 

previous section of experiments we have criticized this behaviour, but what we have found out 

here, especially in the second test case, is that it is thanks to this behaviour that RED can 

guarantee good performance and prevent congestion collapse. As discussed previously a 

limitation of our approach resides in the simplicity of the traffic workload implemented since 

the number of flows and the data load are limited. Considering more complex scenarios with 

transfers of longer duration we could provide more complete evaluation as regards this RED 

issue. 
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 6 Conclusions 

In the present thesis we have analysed the RED active queue management algorithm and 

verified how much effective mechanism is for congestion avoidance at the gateway. The 

expected benefits derived from its employment have been evaluated by observing the effects 

produced on TCP and marginally UDP service performance. Essentially our analysis is based 

on a comparative study between Tail Drop and RED mechanisms. We have explored how well 

the state -of-the-art TCP performs when Tail Drop is deployed, determined the possible 

improvements carried out by RED introduction and identified the key reasons behind the 

ameliorated or worsened behaviour. Further, we have studied the application of RED to a QoS-

enabled architecture, in which the traffic (TCP and UDP) is classified according to the 

belonging class of service and thereby receives the specific treatment. The main problem the 

TCP and UDP traffic have to face up to in such an environment is the heavy congestion 

simulated on the last-hop router where the bandwidth is strictly limited. 

We have surveyed the existing work on TCP, thus to select in the Linux TCP 

implementation adopted in our tests, the most common specifications and recommended 

improvements, such as Selective Acknowledgement option and New Reno algorithm. We have 

presented the RED algorithm and derived some guidelines in tuning its parameters. We have 

made an overview of Active Queue Management scheme mentioning several related studies 

and suggested improvements to RED mechanisms in order to outline the main drawbacks 

deriving from its deployment. In particular we have introduced ECN as one of the most 

promising techniques to be employed in combination with RED.  

We have made experimental tests using a simple testbed wired network of four 

components. Two fixed hosts are connected via two routers and the last-hop router alternatively 

employs the Tail Drop or RED discipline. The router buffer size is fixed for both to 20Kbytes. 

Through Linux Traffic Control we have generated a bottleneck link on the last-hop link in 

order to produce congestion and analyze how the two disciplines are able to prevent or at le ast 

recover from its occurrence. The data communication uses the TCP or in some cases UDP 

protocol. Further we have experimented with RED by introducing services differentiation. The 

traffic control framework available in the Linux kernel has enabled us to adopt a queueing 

discipline that maps the traffic to different service classes through the use of appropriate filters. 
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We have not implemented a complex Differentiated Services architecture since our intent is 

just to produce a differentiation in the traffic service to study how high priority traffic can 

impact on the performance of low priority traffic. Moreover, we note that even though our 

experiments are not conducted in a wireless environment, being characterized by slow wired 

links our results can be extended to a more general environment consisting of slow links as the 

wireless case is. 

The empirical tests have been run in two major categories that mostly differ for the kind 

of workload used. The first category focuses on a study of TCP services performance. It 

consists of three TCP competing flows carrying different data loads and starting at variable 

times. Two flows are sent simultaneously while the third one of smaller data load is delayed. 

The main issue investigated is how much fairness RED or Tail Drop can assure when the TCP 

connections share the same bottleneck link capacity and which level of performance can be 

guaranteed. The second category involves both TCP and UDP traffic and it is articulated in 

three phases. First, we observe the impact of UDP traffic on TCP performance when they 

compete to gain bandwidth over the same link of limited capacity. Second we repeat the same 

experiments giving higher priority to UDP traffic through the introduction of a queueing 

discipline in the last-hop router, which allows the specification of several classes of service. 

Third we compare the results of the first and second case and examine the effects introduced by 

services differentiation on TCP performance. 

The first relevant result of our tests concerns the expected nice RED property of fairness. 

Our experiments demonstrate that RED guarantees fair sharing of the bottleneck link capacity 

while Tail Drop tends to favour one or more connections over the whole traffic. In the first 

category of experiments, involving three TCP competing connections, RED shows a “double” 

fairness. First, RED results present stability as the third flow‘s starting time varies while when 

Tail Drop is deployed only two seconds of difference in the arrival time of the third flow makes 

its elapsed time double. Indeed the Tail Drop results are heavily influenced by the third flow’s 

start time. When it starts in coincidence of the initial flows’ Slow Start it is adversely affected; 

otherwise if it finds them in congestion avoidance or fast retransmit phase it manages to gain 

much more bandwidth. Second, RED does not penalize the last flow like Tail Drop does. It 

provides to it high performance, without hurting the Tail Drop results concerning the initial 

connections. In some cases the three flows’ results reach quite close values. As regards the 

second test category, RED similarly demonstrates to be more available to serve new incoming 

traffic, such as the UDP one, apart from its data load and arrival time. It guarantees steady 

results to both TCP and UDP traffic and most of all when TCP and UDP traffic share the same 
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bandwidth capacity, the corresponding bandwidth utilizations are quite close to the relative data 

load ratios. 

The second relevant result in support of RED fairness is that RED has never fallen in 

situations of extreme unfairness and do not allow phenomena such as Lock-Out, in which one 

source may be able to monopolize the queue resources denying to the other connections the 

possibility to find place in the router buffer. RED generally offers more changes to the 

incoming flow (TCP or UDP) to start and reach high results than Tail Drop does. When we 

considered three TCP competing flows occasionally the last flow was not able to start the 

connection and the corresponding source was throttled until the initial flows completed the 

entire data transfer.  

The third result concerns the RED issue of minimizing the number of packets dropped in 

the router. As regards this aspect, RED fails since all our RED tests experience high rates of 

retransmitted packets. However the results show that even if RED discards more than Tail 

Drop, the large number of packets retransmitted does not degrade the performance, resulting on 

the contrary in improved throughputs for the network. In the second category of experiments 

we have proposed a detailed analysis or RED mechanism in order to investigate why such a 

high number of dropped packets does not adversely affect the performance. We have observed 

that by starting to discard packets before the buffer queue overfills, RED prevents severe 

congestion states. It manages to absorb transient congestion, such the one caused by competing 

flows or by drastic reduction in the available bandwidth due to the arrival of higher priority 

traffic (in our test it was represented by UDP traffic). The RED recovery phase has proved to 

be fast even though multiple segments are dropped. Especially if packets are lost in some 

critical moments, such as the connection ending, after all data load has been transmitted, Tail 

Drop has shown to be quite unsatisfactory. Packets are discarded in bursts and the recovery 

phase takes a long time. RED starts to discard early and randomly. The retransmitted packets 

are quickly acknowledged and avail of the SACK option. 

Examining the high rates of retransmitted packets in the RED tests, we note a quite 

important result. Indeed RED’s objective not only concerns to drop few packets, but also to 

discard packets from each flow in proportion to the amount of bandwidth the flow uses on the 

output link. Therefore the connection with the largest input rate will have the biggest drop 

percentage among total dropped packets. When the three TCP connections share the same 

bottleneck link RED fully carries out this issue by guaranteeing to each flow a retransmitted 

packet rate roughly proportional to the data load sent into the network.  
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From the results of these experiments it is fair to conclude that RED at least with this 

kind of workloads is not as concerned to minimize the number of packets dropped, as to avoid 

unnecessary packet drops at the gateway. We have demonstrated that by providing advance 

warning of incipient congestion and consequently starting to drop packets early, it manages to 

achieve high performance and guarantee fair treatment to all the traffic sources.  

Tail Drop tends to drop fewer packets, but achieves lower performance and in some 

particular cases it suffers from phenomenon such as Slow Start overshoot, especially if with 

small TCP traffic. We have noticed an interesting and unexpected behaviour considering TCP 

and UDP transfer that compete to gain bandwidth on the same bottleneck link and employing 

the Tail Drop discipline in the router. The UDP traffic lasts for the entire TCP connection and 

is started at different times. When the traffics are quite large the TCP performance improves 

slightly as the UDP flow is delayed since the interference between them is reduced. 

Considering small transfers instead we have observed the opposite phenomenon. The UDP 

flow helps to improve the TCP results if it starts early since it causes some packet drops earlier 

than usual. It prevents the Slow Start phase from being excessively aggressive thus to avoid 

phenomena such as Slow Start overshoot and severe congestion states. Otherwise by arriving 

later the UDP load can heavily hurt the TCP performance and eventually cause a burst of data 

to be discarded. 

 Finally, as regards the results achieved with the introduction of services differentiation 

Tail Drop and RED performs in a similar way, except in some cases, such as the one explained 

above, in which Tail Drop is heavily hurt by the higher priority traffic. The UDP flow 

represents the higher priority flow and its class of service has enough bandwidth to serve it 

without any packet loss. Independently of the discipline employed the TCP traffic is adversely 

affected by the arrival of the UDP traffic since the available bandwidth is reduced. But we have 

noticed that the degradation in TCP performance caused by the introduction of two classes of 

service to the respect of the configuration with one is usually more serious under Tail Drop. On 

the other hand under this router configuration Tail Drop’s results become more stable and the 

number of retransmitted packets decreases.  

Most of the theoretical properties of RED have found confirmation in our results, even 

though we note that the methodology according to which the experiments have been organized 

has a direct impact on the relevance and utility of the results obtained and the conclusions 

derived. Hence the simulation approach may be appropriate for conducting further examination 

on several aspects. For instance in most of our tests a huge number of retransmitted packets 

characterizes the TCP connections. We believe that the traffic workload utilized in these tests is 
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partly responsible for this. Repeating the tests, increasing the number of TCP connections and 

their data load may help to carry out more promising results and important observations 

regarding the problem of connection synchronization. 

Moreover, although much research effort has been focused on understanding and 

utilizing the RED algorithm, some interesting topics are yet to be investigated in more detail in 

future. First of all RED’s performance is highly dependent on the setting of its parameters. No 

firm guidelines exist on configuring RED parameters and current suggestions fail to provide the 

desired performance scalability. In developing this study we have encountered several 

problems in setting the RED parameters correctly since the available literature is not clear and 

precise about this aspect. We have derived some guidelines on setting RED parameters but they 

need to be tested under huge and several types of traffic workload. The problem is that it is 

hard to find parameters that are optimal in all the possible circumstances. They depend on the 

traffic characteristics and for this reason adaptive approaches will be addressed in future studies 

more extensively.  

Future research is also needed to determine the optimum average queue size for 

maximizing throughput and minimizing delay for different network and traffic conditions. In 

our study we did not consider as performance metric the router queue length. It could be useful 

to develop a study to evaluate how aggressive the RED algorithm is and how much it is able to 

absorb and accommodate packets burst.  

Finally we can conclude that a deployment of the Explicit Congestion Notification 

(ECN) could make RED more attractive, because ECN avoids congestion-related losses. By 

following this path of evolution RED will be able to provide advance warning of incipient 

congestion more efficiently and with less waste of resources. 



 110 

References 

 

[ABF01] Allman. M., Balakrishnan H. and Floyd S., Enhancing TCP’s Loss Recovery 

Using Limited Transmit, RFC 3042, January 2001. 

[AF99] Allman M. and Falk A., On the Effective Evaluation of TCP, ACM Computer 

Communication Review, 5 (29), October 1999. Also available from: 

http://www.acm.org/sigcomm/ccr/archive/1999/oct99/allman2.pdf. 

[AFP98] Allman M., Floyd S. and Partridge C., Increasing TCP’s Initial Window, RFC   

2414, September 1998. 

[APS99] Allman M., Paxson V. and Stevens W., TCP Congestion Control, RFC 2581, 

April 1999. 

[ASK99] Alemesberger W., Salim J. H. and Kuznetsov A., Differentiated Service on 

Linux, June 1999.  

[BBCD98] Blake S., Black D., Carlson M., Davies E., Wang Z.  and Weiss W.,  An 

Architecture for Differentiated Services, RFC 2475, December 1998. 

[BCCD98] Braden R., Clark D., Crowcroft J., Davie B., Deering S., Estrin D., Floyd S., 

Jacobson V., Minshall G., Partridge C., Peterson L., Ramakrishnan K., Shenker 

S., Wroclawski J. and L. Zhang, Recommendations on Queue Management and 

Congestion Avoidance in the Internet, RFC 2309, April 1998. 

[BCS94] Braden R., Clark D. and Shenker S., Integrated Services in the Internet 

Architecture: an Overview, RFC 1633, June 1994 

[BK98] Balakrishnan H. and Katz R. H., Explicit Loss Notification and Wireless Web 

Performance, Proceeding IEEE Globecom Internet Mini-Conference,     

Sydney, Australia, November, 1998. Also available from: 

http://nms.lcs.mit.edu/~hari/papers/globecom98. 



 111 

[BKGM01] Border J., Kojo M., Griner J., Montenegro G. and Shelby Z., Performance 

Enhancing Proxies Intended to Mitigate Link -Related Degradations, RFC 

3135, June 2001. 

[BPSK96] Balakrishnan H., Padmanabham V. N., Seshan A. and Katz R. H, A 

Comparison of Mechanism for Improving TCP Performance over Wireless 

Links, ACM SIGCOMM ’96, Stanford CA, August 1996. Also available from: 

http://daedalus.cs.berkeley.edu/publications/sigcomm96.pdf. 

[BSK95]     Balakrishnan H.,  Seshan S.  and  Katz R.H.,  Improving Reliable Transport 

and Handoff Performance in Cellular Wireless Networks,  ACM Wireless 

Networks, December 1995. Also available from: 

http://citeseer.nj.nec.com/balakrishnan95improving.html. 

[BVE99] Bettstetter C.,  Vögel H. J. and  Eberspächer J.,  GSM Phase 2 + General 

Packet Radio Service GPRS: Architecture, Protocol and Air Interface, IEEE 

Communications Surveys, 1999. Also available from: 

http://citeseer.nj.nec.com/bettstetter99gsm.html. 

[CISCO98]  CISCO Systems, Weighted Random Early Detection on the Cisco 12000 Series 

Router, 1998, Release 11.2 GS version of WRED. Also available from: 

http://www.cisco.com/univercd/cc/td/doc/product/software/ios112/ios112p/gsr/

wred_gs.htm#xtocid0. 

[CF98]  Clark D. and Fang W., Explicit Allocation of Best Effort packet delivery 

service, ACM Transactions on Networking, August, 1998. Also available from: 

http://www.cs.princeton.edu/~wfang/papers.html. 

[CEP99] De  Cnodder S.,  Elloumi O. and  Pauwels  K.,  Effect of different packet sizes 

on RED performance, 1999. Also available from: 

http://www.icir.org/floyd/red/Elloumi99.pdf. 

[CJOS02] Christiansen M., Jeffay K., Ott D. and Smith D.,  Tuning  RED  for  Web 

Traffic, SIGCOMM, August 2000. Also available from: 

http://www.cs.unc.edu/~jeffay/talks/Maelardalen-QoS-Survey.pdf 

[Dev02] Devera M., HTB Linux queueing discipline manual-user guide, May 2002. 

Also available from: http://luxik.cdi.cz/~devik/qos/htb/manual/userg.html. 



 112 

[DMKM01] Dawkins S., Montenegro G., Kojo M., Magret V. and Vaidya N., End-to-end 

Performance Implications of Links with Errors, RFC 3155, August 2001. 

[FKSS99]  Feng W., Kandlur D. D., Saha D. and Shin K.G., BLUE: A New Class of Active 

Queue Management Algorithms, 1999. Also available from: 

http://citeseer.nj.nec.com/feng99blue.html. 

[FKSS01]  Feng W., Kandlur D. D., Saha D. and Shin K.G., Stochastic Fair Blue: A 

Queue Management Algorithm for Enforcing Fairness, 2001. Also available 

from: http://citeseer.nj.nec.com/feng01stochastic.html. 

[Flo94]          Floyd S., TCP and Explicit Congestion Notification, 1994. Also available from: 

http://citeseer.nj.nec.com/floyd94tcp.html. 

[Flo97]  Floyd S., Discussion on setting RED parameters, November 1997. Also 

available from: http://www.icir.org/floyd/REDparameters.txt. 

[Flo00]         Floyd S., Congestion Control Principles, RFC 2914, September 2000. 

[FH99]       Floyd S. and Henderson T., The New Reno Modification to TCP’s Fast 

Recovery Algorithm, RFC 2582, April 1999. 

[FJ93]     Floyd S. and Jacobson V., Random Early Detection gateways for Congestion 

Avoidance, IEEE/ACM Transactions on Networking, V.1 N.4, August 1993, 

pp. 397-413. Also available from: http://ftp.ee.lbl.gov/floyd/red.html. 

[FKSS99]   Feng W.,  Kandlur D., Saha D. and Shin K.,  A Self–Configuring  RED 

Gateway, Infocom, March 1999. Also available from: 

http://citeseer.nj.nec.com/feng99selfconfiguring.html. 

[FGS01]      Floyd S., Gummandi R  and  Shenker S.,  Adaptive RED:  An  Algorithm  for 

Increasing the Robustness of RED’s Active Queue Management, August 2001. 

Also available from: http://citeseer.nj.nec.com/floyd01adaptive.html. 

[FMMP00]  Floyd S. , Mahdavi J., Mathis M. and Podolsky M., An Extension to the 

Selective Acknowledgement (SACK) Options for TCP, RFC 2883, July 2000. 

[GVP01] Geczi C, Varga B and Pilisi I., Differentiated Services – Network Configuration 

and Management (DISCMAN), June 2001. Available from: 

http://www.eurescom.de/~pub-deliverables. 



 113 

[Hus00]      Huston G., Internet Performance Survival Guide (QoS Strategies for 

Multiservice Networks), 2000. 

[HBWW99]  Heinanen J., Baker F., Weiss W. and Wroclawski J., Assured Forwarding PHB 

Group, RFC 2597, June 1999. 

[HMVV02] Hubert B., Maxwell G., Van Mook R., Van Oosterhout M., Schroeder P. and 

Spaans J., Linux Advanced Routing & Traffic Control HOWTO, 2002. Also 

available from: http://www.tldp.org/HOWTO/Adv-Routing-HOWTO/ 

[IMLG02]   Inamura H, Montenegro G., Ludwig R., Gurtov A. and Khafizov F., TCP over 

Second (2.5G) and Third (3G) Generation Wireless Networks, Internet-Draft 

draft-ietf-pilc-2.5g3g-09, June 2002. Also available from: 

http://www.ietf.org/internet-drafts/draft-ietf-pilc-2.5g3g-12.txt. 

[Jac88]       Jacobson  V.,  Congestion  Avoidance  and  control,  in  Proceedings of  ACM 

SIGCOMM 1988, Symposium in Stanford, CA, August 1988.  Also available 

from: http://citeseer.nj.nec.com/jacobson88congestion.html. 

[Jai91]  Jain R., The Art of Computer Systems Performance Analysis: Techniques for 

Experimental Design, Measurements, Simulation and Modeling, Wiley 1991 

(p. 36). 

[JNP99] Jacobson V., Nichols K. and Poduri K., An Expedited Forwarding PHB, RFC 

2598, June 1999. 

[JR88]         Jain R. and Ramakrishnan K.K., Congestion Avoidance in Computer Networks 

with a Connectionless Network Layer: Concepts, Goals and Methodology, 

Proc. IEEE Comp. Networking Symp., Washington D. C., April 1988, pp.134-

142. Also available from: http://www.cis.ohio-state.edu/~jain/papers/cr1.htm. 

[KP87] Karn P. and Partridge C., Improving Round-Trip Time Estimates in Reliable 

Transport Protocols, Computer Communication Review, vol.17. no.5, pp. 2-7, 

August 1987. 

[KRA96]     Kojo M., Raatikainen K. and Alanko T., Connecting mobile workstations to the 

Internet over a digital cellular telephone network, Workshop on Mobile and 

Wireless Information systems MOBIDATA, November 1996, Rutgens Univ. 

NJ. Also available from: http://citeseer.nj.nec.com/kojo94connecting.html. 



 114 

[Larry02] Z. Larry, Adaptation of RED Parameters, Studies on RED Parameters available 

from: http://ee.tamu.edu/~zzlarry/vprm_red.html. 

[Lud99]   Ludwig R.,  A case  for Flow - Adaptive Wireless Links, Technical  Report  

UCB //CSD-99-1053, May 1999. Also available from: 

http://iceberg.cs.berkeley.edu/papers/Ludwig-FlowAdaptive/flowadaptive.pdf. 

[LK00]      Ludwig R. and  Katz R. H.,  The Eifel  Algorithm: Making  TCP Robust  

Against  Spurious  Retransmissions,  ACM  Computer  Communication  

Review, 30(1), January 2000. Also available from: 

http://www.acm.org/sigcomm/ccr/archive/2000/jan00/ccr-200001-ludwig.html. 

[LM97]         Lin D. and Morris R., Dynamics of Random Early Detection, SIGCOMM’97. 

Also available from: http://citeseer.nj.nec.com/lin97dynamics.html. 

[LNO96] Lakshman T. V., Neidhardt A. and Ott T., The Drop From Front Strategy in 

TCP Over ATM and Its Interworking with Other Control Features, Infocom96. 

[LS00]      Ludwig R. and Sklower K., The Eifel Retransmission Timer, July2000.  

(http://www.acm.org/sigcomm/ccr/archive/2000/july00/LudwigFinal.pdf). 

[MDKM00]  Montenegro G., Dawkins S., Kojo M., Magret V., and N. Vaidya, Long Thin 

Networks, RFC 2757, January 2000. 

[MMFR96]  Mathis M., Mahdavi J., Floyd S. and Romanow A., TCP Selective 

Acknowledgments Options, RFC 2018, October 1996. 

[Nag84] J. Nagle, Congestion control in IP/TCP internetworks, RFC 896, January 1984. 

[NBBB98]  Nichols K., Blake S., Baker F. and D. Black, Definition of the Differentiated 

Services Field (DS Field) in  the IPv4 and IPv6 Headers, RFC 2474, December 

1998. 

[OLW99]     Ott T. J. and Lakshman T.V., SRED: Stabilized RED, 1999. Also available 

from: http://citeseer.nj.nec.com/ott99sred.html. 

[Pen00]   Pentikousis K., TCP in Wired-Cum-Wireless Environments, 

IEEECommunications Surveys, Fourth Quarter 2000. Also available from: 

http://www.comsoc.org/pubs/surveys. 



 115 

[Pos80] Postel J., User Datagram Protocol, RFC 768, August 1980. 

[Pos81a]         Postel J. ed., Internet Protocol, RFC 791, September 1981. 

[Pos81b]         Postel J. ed., Transmission Control Protocol, RFC 793, September 1981. 

[PPP00]        Pan R., Prabhakar B. and Psounis K., CHOKe, A stateless active queue 

management scheme for approximating fair bandwidth allocation, IEEE 

INFOCOM, 2000. Available from http://citeseer.nj.nec.com/context/1608007/0 

[RBL99] Rosolen V., Bonaventure O. and Leduc G, A RED discard strategy for ATM 

networks and its performance evaluation with TCP/IP traffic, 1999. Available 

from: http://citeseer.nj.nec.com/rosolen99red.html. 

[RFB01]     Ramakrishnan K., Floyd S. and Black D., The Addition of Explicit Congestion 

Notification (ECN) to IP, RFC 3168, September 2001. 

[Sinha99]  Sinha P. et al., WTCP: A Reliable Transport Protocol for Wireless Wide-area 

Networks,  Proc. ACM MOBICOM 99 Seattle, Washington, Aug. 1999. 

[Sti90]  R. H. Stine, FYI on a network management tool catalog: Tools for monitoring 

and debugging TCP/IP internets and interconnected devices, RFC 1147, April 

1990. 

[SCFJ96] Schulzrinne H., Casner S., Frederick R. and Jacobson V., RTP: A Transport 

Protocol for Real-Time Applications, RFC 1889, January 1996. 

[SL97]  Stamoulis A. and Liebeherr J., GPS: Slow-Start Generalized Processor 

Sharing, 1997. Available from: http://citeseer.nj.nec.com/stamoulis97gps.html. 

[SV94] Shreedehar  M.  and  Varghese G.,  Efficient  Fair  Queuing  using  Deficit 

Round Robin, November 1994. Also available from: 

http://citeseer.nj.nec.com/shreedhar95efficient.html. 

[Tab00] Tabbane S., Handbook of Mobile Radio Networks, Artech House Mobile 

Communications Library, Norwood, MA 2000. 

[Tisal98]  Tisal J., GSM Cellular Radio Telephony, John Wiley & Sons, West Sussex, 

England, 1998. 



 116 

[TB00] Tsaoussidis V. and Badr H., TCP-Probing: Toward an Error Control Schema 

with energy and Throughput Performance Gains, Proc. 8th IEEE Conf. 

Network Protocols, Japan, Nov. 2000. 

[TBV00] Tsaoussidis V., Badr H. and Verma R., Wave and Wait Protocol (WWP): Low 

Energy, High Throughput for Mobile IP Devices, Proc. 8th IEEE Conf. 

Networks, Sept. 2000. 

[TTCP98] TTCP.c (Test TCP connection), May 1998 Also available from 

http://www.netcraftsmen.net/id44.htm. 

[Vai99]       Vaidya N., Tutorial on TCP for Wireless and mobile host, 1999. Also available 

from:http://csweb1.cs.tamu.edu/faculty/vaidya/seminars/tcp-tutorial-aug99.ppt. 

[WAP01] Wireless Application Protocol Forum (www.wapforum.org), April 2001. 

[WW02] Walter U. and Wehrle K., Traffic Priorization and Differentiation with Active 

Queue Management, 2002 Also available from: 

http://www.tm.uka.de/~walter/papers/walter_wehrle_ICTSM2002.pdf. 

[Zhang00]  Zhang Y., The implication of End-to-End IPSEC, Network Working Group 

INTERNET DRAFT, March 2000. 

[ZPBS02] Zhang Y., Breslau L., Paxson V. and S. Shenker, On the Characteristics and 

Origin of Internet Flow Rates, Proceedings of Sigcomm 2002. Available from: 

http://www.research.att.com/projects/T-RAT/index.html. 

 



 117 

 7 Appendix A 

 

Riassunto in Italiano 

In questa Appendice riportiamo un breve estratto in lingua italiana dell’intera tesi. Il presente 

lavoro è stato portato a termine presso l'Università di Helsinki sotto la guida del Prof. Kimmo 

Raatikainen. 

1. Introduzione 

Meccanismi end-to-end di controllo di congestione sono ampiamente impiegati nell’attuale 

Internet col fine di regolare la quantita’ di traffico immessa nella rete e evitare il collasso della 

rete stessa. Gran parte di queste tecniche si basano sul meccanismo di controllo di congestione 

del protocollo TCP [Pos81b] . Il successo di Internet e la sua rapida diffusione sono soprattutto 

dovuti all’efficienza di questi meccanismi, ma una serie di fattori quali la necessita’ di nuovi 

servizi e di migliori performance hanno portato all’introduzione di QoS in Internet e 

l’applicazione di Internet ad ambiente wireless e non piu’ solo wired ha evidenziato 

l’inadeguadezza delle attuali tecniche di controllo di congestione. Il problema principale che 

caratterizza il TCP e’ che lo stato di congestione della rete e’ basato sulla perdita di pachetti: se 

la sorgente rivela perdita di pacchetti riduce il proprio rate di trasmissione al fine di evitare la 

perdita di ulteriori pacchetti. Tuttavia questo meccanismo puo’ richiedere lunghi tempi e molti 

pacchetti possono essere persi. Inoltre i comuni routers utilizzati in Internet impiegano 

discipline quali Tail Drop per controllare l’occupazione della code nel buffer. Quando i 

paccchetti in coda raggiungono una soglia prestabilita i successivi pacchetti vengono scartati. 

Questo modo di procedere consente di mantenere un’elevata occupazione del buffer, ma allo 

stesso tempo introduce lunghi ritardi, tende a scartare burst di pachetti e a risultare in fenomeni 

quali sincronizzazione delle sorgenti. 

Tutti questi problemi hanno condotto l’Internet Engineering Task Force ad ideare nuove 

tecniche per il controllo di congestione come Active Queue Managment (AQM) [BCCD98] e 
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Explicit Congestion Notification (ECN) [RFB01]. L’ obiettivo di AQM e’ rilevare lo stato di 

congestione prima che la coda nel buffer saturi e segnalarlo agli hosts. La notificazione puo’ 

essere fatta scartando pacchetti o marcandoli attraverso il Congestion Experienced (CE) 

codepoint. Un algoritmo di AQM che ha riscosso notevole interesse e’ Random Early Detection 

(RED) [FJ93]. Un RED gateway inizia a scartare pachetti prima che la coda del buffer saturi e 

la decisone se scartare o meni un paccchetto e’ basata essenzialmente sulla lunghezza media 

della coda nel buffer. Piu’ la lunghezza media aumenta piu’ facilmente verranno scartati i 

pachetti in arrivo. 

In questa tesi presentiamo un’analisi delle performance di RED in ambiente wired. E’ 

uno sudio volto principalmente a verificare e criticare gli attesi benefici apportati 

dall’introduzione di RED e i miglioramenti ripetto al tradizionale Tail Drop. Il traffico 

utilizzato e’ prevalentemente TCP e in alcuni test UDP. Inoltre una parte dei test affronta 

l’applicazione di RED ad un ambiente con differenziazione di servizio.  

2. Conoscenza di base 

Il protocollo di controllo della trasmissione (Transmission Control Protocol: TCP) garantisce 

un trasporto affidabile dei dati e la consegna dei pacchetti in ordine e senza errori. L’unita’ di 

traferimento fondamentale impiegata dal TCP e’ il segmento. I segmenti sono utilizzati per 

passare informazioni di controllo,  quali ad esempio instaurazione o chiusura della connessione, 

o dati. Il ricevitore invia risontri (ACK) per confermare l’avvenuta ricezione di un pacchetto. Il 

TCP fornisce controllo d’errore basato sul meccanismo di ritrasmissione go-back-n ed 

implementa il controllo di flusso facendo annunciare al ricevitore la quantita’ di dati che e’ 

disposto ad accettare. Il controllo di congestione e’ window-based. Il transmettitore e’ regolato 

da una congestion window (cwnd) che limita la quantita’ di dati che puo’ avere nella rete e non 

ancora riscontrati. cwnd varia in relazione agli eventi che osserva. Due algoritmi regolano la 

variazione di cwnd e sono noti come Slow Start e Congestion Avoidance.  L’algoritmo Slow 

Start si basa sull’osservazione che il ritmo con cui i pacchetti sono immessi nella rete dovrebbe 

eguagliare quello con cui sono riscontrati dal ricevitore. Nella fase di Slow Start cwnd viene 

incrementata di SMSS (sender maximum segment size) bytes ogni volta che un pacchetto viene 

riscontrato. Lo Slow Start termina in caso venga rilevata congestione e quindi una perdita di 

pacchetto. Se cio’ e’ stato dovuto allo scadere del timeout cwnd e’ settata a 1; se e’ stato 

causato dalla ricezione di tre DUPACKs consecutivi si entra nell fase di Fast Retransmit/ Fast 

Recovery che regola la ritrasmissione dei pacchetti persi. Oppure lo Slow Start puo’ terminare 

quando cwnd raggiunge una soglia massima prefissata. In questo caso si entra nella fase di 
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Congestion Avoidance secondo cui cwnd viene incrementata di SMSS bytes dopo che tutti i 

pacchetti contenuti nella cwnd sono stati riscontrati.  

L’evoluzione di Internet e’ stata acocmpagnata dallo sviluppo di nuove applicazioni 

come quelle basate su audio e video con specifi requisiti. Lo scopo della differenziazione dei 

servizi e’ soddisfare applicazioni eterogenee e provvedere uno specifico livello dei servizi per 

ciascuna. Cio’ ha condotto all’ideazione di due principali architetture: l’ Integrated Services 

Architecture [BCS94] e la Differentiated Services Archtecture [BBCD98]. La prima alloca 

risorse per ogni richiesta di servizio e le mantiene per l’intera durata della connessione. 

Sebbene sia una struttrua accurata non e’ stata poi effettivamente realizzata per la sua eccessiva 

complessita’ e mancanza di scalabilita’. Il secondo tipo di architettura invece affronta la 

complessita’ del problema decomponendolo in singole funzioni piu’ semplici. I due elementi 

base di questa struttura sono un meccanismo che monitora l’ingresso dei pacchetti nella rete e 

uno che cura l’elaborazione dei pacchetti all’interno della rete stessa. Il traffico viene 

classificato e assegnato ad un particolare per-hop-behaviour identificato da un codice contenuto 

nel campo DS dell’header IP. I nodi interni alla rete selezionano il servizio appropriato in base 

al valore contenuto in questo campo. In tal modo l’elaborazione dei pacchetti all’interno della 

rete e’ semplificata e consente una maggiore scalabilita’.  

Il procollo TCP fu inizialmente pensato per reti wired, ma le reti wireless stanno assumendo 

sempre piu’ importanza nel futuro di Internet. Il problema e’ che le reti wireless presentano 

caratteristiche assai differenti da quelle wired come per esempio banda limitata, lunghi tempi di 

propagazione, ritardi variabili, alta probabilita’ d’errore. Il controllo di congestione del TCP is 

basa interamente sulla perdita di pachetti come segnale di congestione. Ogni volta che un 

pacchetto e’ perso il TCP riduce la finestra di trasmissione, ma in presenza di una rete wireless 

la perdita di un pacchetto puo’ essere dovuta a diversi aspetti e soprattutto a probabilita’ di 

errore sul link molto elevate. La riduzione continua della finestra di congestione implica  

throughput ridotti e performance degradate. Per ovviare a cio’ sono state sviluppate soluzioni a 

livello di link o modifiche al procollo TCP (AQM, ECN, ELN [BK98], SACK option 

[FMMP00]...) o proposte di nuovi protocolli di transporto specifici per wireless links. 

3. Active Queue Management 

Tipicamente i router per gestire la lunghezza della coda nei buffer fissano una lunghezza 

massima per ogni coda  e accettano pacchetti fino a che la coda non raggiunge il limite 

massimo; poi rifiutano i successivi pacchetti fino a che la lunghezza della coda non decresce 

dopo la trasmissione di un paccheto nell coda. Tale tecnica e’ conosciuta col nome di Tail 
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Drop. Sebbene sia stata impiegata per anni in Internet presenta due importanti svantaggi: 

permette fenomeni come Lock-Out in cui una sorgente puo’ arrivare a monopolizzare tutte le 

risorse disponibili e tende a mantenere le code piene introducendo cos i’ alti ritardi e riuscendo  

ad accomodare con diffcolta’ traffici a burst. A fronte di cio’ Active Queue Management 

(AQM) e’ stato proposto.  L’idea base e’ che tali problemi possano essere risolti iniziando a 

scartare (o marcare) i pacchetti prima che la  coda nel buffer saturi, nonostante vi sia ancora 

spazio disponibile. In particolare l’IETF ha raccomandato Random Early Detection (RED) 

come forma di AQM da implementare nelle rete [BCCD98]. Il suo obiettivo e’ controllare 

l’occupazione media del buffer cosi’ da garantire i seguenti benefici: 

1. Prevenire la congestione 

2. Minimizzare il numero di pacchetti persi e il ritardo di coda 

3. Evitare fenomeni di sincronizzazione delle sorgenti 

4. Mantenere un’alta utilizzazione del link e massimizzare il throughput 

5. Garantire fairness ed evitare discriminazioni contro traffici a burst 

6. Essere applicabile nelle sitauzioni piu’ svariate, a un numero di connessioni variabile con 

diversi round trip times, carichi e throughput. 

L’algoritmo RED, come spiegato in [FJ93], monitora la lunghzza della coda nel buffer e 

la decisione di scartare un pacchetto in arrivo e’ basata sulla stima della lunghezza media della 

coda, avg: piu’ e’ grande avg e piu’ facilmente verrano scartati pacchetti. Vengono fissate due 

soglie sulla lunghezza della coda, una minima (minth) e una massima (maxth). Fino a che avg si 

mantiene al di sotto della soglia minima i pacchetti vengono accettati. Quando minth viene 

superata RED scarta i pacchetti in maniera probabilistica e infine se avg supera la soglia 

massima tutti i pacchetti in arrivo vengono rifiutati. La probabilita’ di rifiuto e’ tale che se 

recentemente la coda e’ stata prevalentemente vuota diffcilmente verranno scartatiti i pacchetti 

in arrivo. Al contrario se e’ stata per lo piu’ piena, piu’ facilemente RED scartera’ i nuovi 

pacchetti. In questo modo RED puo’ controllare l’occupazione media del buffer e prevenire la 

congestione in maniera piu’ sicura di quanto Tail Drop riesca a fare. Il funzionamento 

dell’algoritmo dipende da alcuni parametri quali ad esempio minth e maxth di cui non esistono 

dei precisi valori di default che possano garantire performance ottimali in ciasun tipo di 

scenario. Per questo motivo e per altre imperferzioni risontrate in RED sono state proposte 

innumerevoli variazioni dell’algoritmo base, anche se spesso si tratta di soluzioni assai 

complicate. Sono ad esempio Adaptive RED [FKSS99], FRED [LM97], CHOKe [PPP00], etc. 

Infine ulteriori miglioramenti potrebbero derivare per RED dall’utilizzo di Explicit Congestion 

Notification (ECN)[RFB01]. Anziche’ scartare pacchetti i routers possono segnalare il pericolo 
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di congestione in modo piu’ efficiente marcando i pacchetti attraverso l’utilizzo del campo 

ECN nell’header IP e evitare cosi’ lo spreco di risorse causato dalla perdita di pacchetti.  

4. Organizzazione dei tests 

Lo scopo dei tests condotti e’ sviluppare un’analisi dell’ algoritmo RED e studiare come possa 

risolvere problemi legati al controllo di congestione del TCP. Utilizziamo un testbed costituito 

da quattro macchine comprendente due hosts comunicanti tramite due routers. Sull’ultimo link 

e’ simulato un collo di bottiglia e il router che lo precede implementa alternativamente Tail 

Drop o RED al fine di permettere un confronto tra le due discipline. Nel secondo router 

utilizziamo una discplina di coda nota come HTB (Hierachical Token Bucket) che permette di 

limitare la banda sul link d’uscita e specificare classi di servizio. La versione del TCP utilizzata 

comprende le raccomandazioni base e in particolare e’ abilitata l’opzione SACK [MMFR96] ed 

implementato l’algoritmo New Reno [FH99]. Le principali metriche utilizzate nella valutazione 

delle performance ottenute comprendono: tempo trascorso, tempo di trasmissione, durata della 

three-way hadshake, throughput, fairness (Jari fariness index [Jai91]) e numero di pacchetti 

ritrasmessi. Ogni test si absa su 20 repliceh e vengono calolate statistiche quali Min, Max, 

Mediana, Media, 25%Perc., 75’%Perc.e Deviazione standard. 

I tests sono suddivisi in due categorie. Nella prima parte utilizziamo tre connessioni TCP. 

Due di queste iniziano a trasmettere simultaneamente e inviano un carico pari a 292Kbytes 

mentre la terza porta un carico di 47.7Kbytes e ha un ritardo variabile, compreso tra 0 e 7 

secondi. Al fine di investigare meglio come l’inizio della terza connessione possa influenzare le 

perfomance dei flussi iniziali abbiamo analizzato differenti scenari di studio che si 

differenziano per il ritardo imposto al terzo flusso. Abbiamo esaminato 12 scenari per Tail 

Drop e di questi i 5 piu’ interessanti sono stati ripetuti nelle medisme condizioni 

implementando RED. I risultati cosi’ ottenuti sono poi stati confrontati. Il last-hop link ha una 

banda di 140Kbits. La seconda categoria di test utilizza una connessione TCP e un flusso UDP. 

Il traffico UDP inizia a trasmettere con un ritardo variabile. Scopo di questi tests e’ indagare 

come le prestazioni della connessione TCP vengano degradate dall’arrivo di un flusso UDP. 

Nella prima fase dei tests il flusso UDP in arrivo viene servito dalla stessa classe di servizio del 

traffico TCP. Nella seconda fase al traffico UDP e’ assegnata una prior ita’ maggiore e 

accomodato in una differente classe di servizio in grado di garantire la consegna del traffico 

UDP senza alcuna perdita di pacchetti. Inoltre utilizziamo tre diversi workloads. I primi due 

convogliano traffci TCP e UDP di pari dimensioni e tali che il traffico UDP duri per l’intera 

connesione TCP. I traffci TCP e UDP inviati sono rispettivamente 391.3Kbytes e 264.1Kbytes 
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nel primo test case e 46.7Kbytes e 39.7Kbytes nel secondo. Infine il terzo test case e’ 

caratterizzato da un flusso TCP di 391.3Kytes e un traffico UDP di 33.1Kbytes di durata assai 

inferiore rispetto alla connesione TCP. Ogni esperimento e’ condotto prima in presenza di Tail 

Drop e poi con RED e i risultati sono poi confrontati. 

5. Analisi dei risultati dei tests 

L’analisi e’ suddivisa in due sezioni. Il primo gurppo di test condotti e’ volto allo studio delle 

performance di tre flussi TCP che competono per acquisire banda sullo stesso link di limitata 

capacita’. I risultati sono presentati in forma di confronto tra le prestazioni realizzate quando 

Tail Drop o RED sono impiegati. 

• RED riesce a garantire maggior fairness ossia le risorse disponibili vengono quasi 

equamente suddivise tra le tre connesioni in competizione, indipendentemente dal loro 

carico e dal loro momento d’arrivo. Tail Drop invece favorisce le connessioni iniziali e a 

volte degenera in fenomeni come Lock-Out in cui si assiste ad una monopolizzazione 

completa delle risorse da parte dei flussi inizali. La terza connesione inizia la trasmissione 

quando i due flussi iniziali stanno chiudendo la connnesione.  

• Per quanto risguarda le prestazioni del terzo flusso RED garantisce risultati migliori e 

soprattutto piu’ stabili e indipendenti dall’istante in cui subentra l’ultimo flusso. Tail Drop 

invece fa registrare prestazioni molto instabili. Il terzo flusso raggiunge i risultati migliori 

quando e’ lanciato simultaneamente alle connesioni iniziali o quando queste sono in Fast 

Retransmit o Fast Recovery. Ossia quando la rete e’ congestionata  e le connesioni sono in 

fase di blocco. Al cotrario quando il terzo flusso inizia a trasmettere e trova i due flussi 

inziali in Slow Start viene fortemente danneggiato e molti dei suoi pacchetti vengono 

scartati. Da notare il fatto che nonostante le prestazioni del terzo flusso sono piu’ 

soddisafcenti quando RED e’ implementato le performance dei flussi inziali sono le stesse 

per entrambe le discipline. 

• Infine un obiettivo di RED spesso citato e’ la minimizzazione dei pacchetti persi nella rete. 

Sorprendentemente nella quasi totalita’ dei test da noi condotti RED ritrasmette piu’ 

paccchettti di quanto Tail Drop faccia. Tuttavia cio’ che e’ importante notare e’ che i tre 

flussi ritrasmettono un numero di pacchetti all’incirca proporzionale al carico di dati che 

immettono nella rete. Con Tail Drop il terzo flusso pur trasportando un carico assai inferiore 

(4/25 di quello delle connessioni iniziali) subisce lo stesso numero di perdite dei flussi 

iniziali a conferma della non-fairess di Tail Drop. 

Il secondo gruppo di test introduce anche traffico UDP e analizza l’applicazione di RED 

ad un ambiente con differenziazione dei servizi. Quando la rete e’ caricata con grandi traffici 
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TCP, RED riesce ad assicurare performance migliori al traffico UDP, specialmente se di breve 

durata. Come gia’ riscontrato prima, al contrario di Tail Drop i risultati di RED per entrambi i 

traffici sono molto piu’ stabili e non influenzati dal momento di arrivo del flusso UDP. Tail 

Drop tende a favorirer il traffico TCP e l’introduzione di differenziazione dei servizi conduce 

ad un evidente degrado delle performance. RED serve i traffici con maggior equita’ e 

l’utilizzazione di banda di ciascuno e’ all’incirca proprozionale al carico di dati immesso nella 

rete. Il numero di pacchetti ritrasmessi con RED e’ ancora molto elevato. Tuttavia in alcuni casi 

particolarmente sfavorevoli, RED iniziando a scartare paccchetti molto prima di quanto Tail 

Drop faccia, riesce a reagire piu’ efficientemente e in tempi assai ridotti alla pedita di pacchetti 

e a situazioni di grave congestione. Inoltre per la stessa ragione il traffico UDP che 

generalmente tende a disturbare il traffico TCP, quando e’ lanciato contemporaneamente alla 

connesione TCP aiuta a migliorare le performance di Tail Drop. Infatti il traffico UDP in 

competizione fin dall’inzio col flusso TCP previene la fase di Slow Start dall’essere 

eccessivamente aggressiva e ad incorrere in fenomeni quali lo Slow Start overshoot. In tal 

modo le perfomance finali sono migliori. 

6. Conclusioni  

Scopo di questa tesi e’ analizzare le performance dell’algortimo di active queue management 

RED e verificare quanto possa essere efficace come meccanismo di controllo di congestione. In 

partcolare e’ nostro intento verificare ed eventualmente criticare i benefici promessi 

dall’impiego si RED rispetto a discipline di coda tradizionali come Tail Drop. Inoltre il nostro 

sudio comprende l’applicazione di RED ad un ambiente con differenziazione di servizio.  

I principali risultati ottenuti sono stati descritti nella sezione precedente. La maggior 

parte delle proprieta’ teoriche di RED hanno trovato conferma nei nostri esperimenti anche se 

occorre notare che la metodologia secondo cui i test sono stati organizzati e condotti ha un 

impatto rilevante sull’utilita’ dei risultati ottenuti e sulle conclusioni derivate. Per esempio 

utilizzando un worlkoad comprendente un numero maggiore di connessioni TCP e 

eventualmente non TCP, con diverse carattesitiche in termini di RTT e throughput potrebbe 

permetterci di investigare meglio alcuni aspetti. In particolare nonostante molta ricerca sia stata 

condotta su RED ancora vi sono punti oscuri e primo fa tutti il settaggio dei parametri di RED. 

Il problema e’ che e’ difficile trovare dei parametri ottimali in ogni circostanza e per ogni tipo 

di traffico. Approci piu’adattativi verranno sempre piu’ presi in considerazione. Inoltre cio’ che 

pare essere particolarmente promettente per il futuro e’ un uso combinato di RED e ECN.  



 124 

 8 Appendix B 

 

Full Test Results 

This appendix describes the summarized test results for some test runs. Each scenario is 

replicated 20 times. The tables reported refer to the two test cases presented: the tests with 

three TCP competing flows and those with TCP and UDP traffic in a DiffServ architecture. 

There are two different kinds of tables, one for each type of test run. 

8.1 Tests with three competing TCP flows 

As regards this set of experiments and reports statistics about the TCP performance: 

Elapsed Time (time elapsed between the SYN message till the ACK FIN message), Data 

Transmit Time (time elapsed between the first data packet sent till the last one), Throughput, 

Number of Retransmit Data expressed in packets and bytes, number of Duplicate ACKs and 

Triple ACKs. We give three different percentiles, first quartile (25% percentile), median (50% 

percentile) and third quartile (75% percentile) and statistics about Min and Max values, 

Average and Standard Deviation. These tables present the results of the scenarios expressed in 

terms of each single replication or classifying the flows as fastest, slowest and third flow and 

reporting the related statistics. The scenarios considered are after 0 seconds, after 2 seconds 

and after 5.5 seconds. They can refer to Tail Drop or Red scenarios. In Table 8-2 we have 

outlined in red the so-called exception, the replication in which the third flow lasts more than 

the initial ones.  
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N. 
Replication 

Data xmit 
time (sec)

Elapsed 
time (sec)

Throughput 
(bytes/s)

Retx data 
packets

Retx Data 
bytes

Duplicate 
acks

Triple 
dupacks

fastest 35,888 36,744319 7947 8 11584 34 4
slowest 36,745 36,906824 7912 18 24073 40 6
3rd flow 9,988 12,461677 3749 5 7240 6 1
fastest 31,613 32,633968 8948 5 7240 39 5
slowest 35,628 36,6409 7969 7 10136 29 4
3rd flow 5,259 6,430064 7266 0 0 1 0
fastest 34,903 36,084212 8092 5 7240 43 5
slowest 35,419 36,551463 7989 5 7240 34 4
3rd flow 18,078 19,428297 2405 5 7240 9 2
fastest 35,243 36,020963 8106 6 8193 37 4
slowest 35,852 36,672244 7962 6 8688 36 5
3rd flow 10,153 11,327991 4124 2 2896 4 1
fastest 28,619 29,461292 9911 4 5792 29 4
slowest 35,712 36,70137 7956 7 10136 30 5
3rd flow 12,478 13,817236 3381 4 4729 8 2
fastest 34,901 36,079692 8093 5 7240 39 5
slowest 35,581 36,562574 7986 8 11584 37 5
3rd flow 7,281 8,627645 5415 2 2896 5 1
fastest 34,205 35,009046 8341 6 8193 28 3
slowest 35,831 36,670533 7963 6 8688 33 5
3rd flow 15,314 16,216206 2881 4 4729 4 1
fastest 33,89 35,247809 8284 4 5792 25 3
slowest 35,9 36,571345 7984 6 8688 44 5
3rd flow 18,249 19,426125 2405 5 7240 9 2
fastest 34,289 35,297612 8273 6 8688 37 4
slowest 36,099 36,60045 7978 6 8688 39 5
3rd flow 10,418 11,42587 4089 2 2896 5 1
fastest 35,409 36,588987 7981 5 7240 29 4
slowest 37,486 37,655179 7755 7 9641 33 4
3rd flow 10,151 11,324617 4126 2 2896 4 1
fastest 36,058 36,556018 7988 6 8688 39 5
slowest 37,514 37,518128 7783 6 6897 34 5
3rd flow 8,977 9,984105 4679 4 4729 8 2
fastest 28,619 29,457231 9913 4 5792 29 4
slowest 35,708 36,697306 7957 7 10136 30 5
3rd flow 12,468 13,813483 3382 4 4729 8 2
fastest 31,277 32,458567 8996 4 5792 35 4
slowest 35,628 36,634624 7971 6 8688 28 5
3rd flow 8,388 9,674002 4829 4 5792 14 2
fastest 35,307 36,487492 8003 5 7240 40 5
slowest 35,339 36,594557 7979 5 7240 36 4
3rd flow 15,208 15,883888 2941 5 6177 8 2
fastest 34,668 35,683463 8183 5 7240 34 4
slowest 35,876 36,547712 7990 6 8688 36 5
3rd flow 12,318 13,662439 3420 3 4344 6 1
fastest 34,998 36,344344 8034 6 8200 40 5
slowest 35,676 36,685059 7960 7 8248 40 6
3rd flow 7,288 8,631765 5413 2 2896 5 1
fastest 35,39 36,532968 7993 5 7240 35 4
slowest 38,174 38,177888 7648 6 8057 37 5
3rd flow 15,209 15,882466 2942 5 6177 8 2
fastest 28,619 29,454218 9914 4 5792 29 4
slowest 35,655 36,674246 7962 7 10136 30 5
3rd flow 12,468 13,8103 3383 4 4729 8 2
fastest 34,901 36,072245 8095 5 7240 39 5
slowest 35,574 36,555105 7988 8 11584 37 5
3rd flow 7,281 8,620205 5420 2 2896 5 1
fastest 34,023 34,494103 8465 7 9553 26 4
slowest 35,649 36,65952 7965 5 7240 35 5
3rd flow 11,488 12,599145 3708 3 4344 10 2
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Table 8-1. 20 Replications of the scenario after 0 seconds. Three TCP competing flows 

when Tail Drop discipline is employed. 
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N. Replication 
Data xmit 
time (sec)

Elapsed 
time (sec)

Throughput 
(bytes/s)

Retx data 
packets

Retx Data 
bytes

Duplicate 
acks

Triple 
dupacks

fastest 31,702 33,803506 8638 17 24616 62 7
slowest 35,997 36,838409 7927 8 11584 31 4
3rd flow 26,774 31,338155 1491 6 6178 11 3
fastest 31,527 32,027654 9117 6 7569 32 4
slowest 35,69 36,694088 7958 5 7240 34 5
3rd flow 14,009 15,909196 2937 4 5792 6 1
fastest 27,937 28,918784 10097 5 7240 32 4
slowest 35,45 36,624408 7973 4 5792 29 4
3rd flow 28,729 30,788402 1517 7 10136 7 2
fastest 27,026 28,207221 10352 3 4344 29 3
slowest 35,42 36,604227 7977 6 8688 25 3
3rd flow 10,75 15,277952 3058 5 4730 5 1
fastest 30,745 31,53635 9259 5 7240 33 4
slowest 35,76 36,613057 7975 5 7240 36 5
3rd flow 14,089 15,967141 2926 4 5792 6 1
fastest 35,687 36,528098 7994 6 8688 35 5
slowest 35,758 36,634575 7971 7 9641 36 4
3rd flow 22,886 24,955195 1872 7 10136 11 3
fastest 27,934 28,915723 10098 5 7240 32 4
slowest 35,58 36,592006 7980 4 5792 30 4
3rd flow 28,729 30,785429 1518 7 10136 7 2
fastest 32,579 33,444718 8731 4 4680 32 4
slowest 35,789 36,63052 7971 6 8688 32 4
3rd flow 20,149 22,374858 2088 5 7240 7 2
fastest 33,569 34,911043 8364 6 8688 27 3
slowest 35,902 36,583513 7982 7 10136 33 4
3rd flow 21,629 23,853282 1959 5 7240 8 2
fastest 34,679 35,509502 8223 6 8193 29 4
slowest 35,822 36,671519 7963 7 10136 32 4
3rd flow 19,179 21,182387 2206 5 7240 10 2
fastest 30,761 31,911468 9150 7 10136 35 4
slowest 35,738 36,579386 7983 7 10136 30 4
3rd flow 16,619 18,521944 2522 5 6177 1 0
fastest 34,25 35,608213 8200 5 7240 35 4
slowest 35,92 36,59134 7980 8 11584 32 4
3rd flow 18,259 22,962404 2035 5 5793 4 1
fastest 28,3 29,480152 9905 4 5792 29 3
slowest 32,929 33,946282 8602 4 5792 30 4
3rd flow 37,959 39,660983 1178 5 7240 1 0
fastest 33,059 33,750153 8652 6 8688 41 5
slowest 35,609 36,616593 7975 6 8688 33 4
3rd flow 8,646 10,390237 4497 1 385 0 0
fastest 31,478 32,449442 8999 5 7240 36 4
slowest 35,66 36,665 7964 6 8688 37 5
3rd flow 22,955 24,969772 1871 6 7625 6 1
fastest 35,057 36,238294 8058 7 10136 35 4
slowest 35,364 36,584929 7981 5 7240 31 4
3rd flow 17,369 19,428886 2405 4 5792 5 1
fastest 34,627 35,467089 8233 6 8688 39 5
slowest 35,752 36,594716 7979 5 7240 42 5
3rd flow 21,499 23,72819 1969 6 8688 9 2
fastest 27,936 28,917879 10098 5 7240 32 4
slowest 35,45 36,623482 7973 4 5792 29 4
3rd flow 28,729 30,787417 1518 7 10136 7 2
fastest 32,625 33,41663 8738 5 7240 36 5
slowest 35,62 36,622707 7973 6 8392 30 4
3rd flow 6,76 11,956918 3907 2 1449 7 1
fastest 31,475 32,445841 9000 5 7240 36 4
slowest 35,66 36,661178 7965 6 8688 37 5
3rd flow 22,959 24,965493 1871 6 7625 6 1
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Table 8-2. Three TCP flows when Tail Drop is employed. The third flow starts after 2 

seconds. 



 127 

Data xmit 
time (sec)

Elapsed 
time (sec)

Throughput 
(bytes/s)

Retx data 
packets

Retx Data 
bytes

Duplicate 
acks

Triple 
dupacks

Min 27,03 28,21 7994 3 4344 27 3
Max 35,69 36,53 10352 17 24616 62 7

25%Perc. 30,13 31,02 8331,25 5,00 7240 32 4
Median 31,61 32,93 8868,50 5 7240 34 4
75%Perc 33,74 35,05 9420,50 6 8688,00 36 4,25
Average 30,95 32,02 8637,30 5,85 8334,50 33,55 4,05
Stdev 2,67 2,67 757,19 2,79 4090,47 7,27 0,89
Min 32,93 33,95 7927 4 5792 25 3
Max 36,00 36,84 8602 8 11584 42 5

25%Perc. 35,55 36,59 7969,50 5 7240,00 30,00 4
Median 35,68 36,62 7974 6 8688 32,00 4
75%Perc 35,77 36,64 7980,00 7 9764,75 34,5 4,25
Average 35,29 36,24 8066,80 5,8 8358,85 32,30 4,15
Stdev 0,64 0,60 141,63 1,28 1832,84 3,76 0,52
Min 6,76 10,39 1178 1 385 0 0
Max 37,96 39,66 4497 7 10136 11 3

25%Perc. 15,99 17,88 1782,75 4,75 5792 5 1
Median 20,82 23,35 2002,00 5 7240 6,5 1
75%Perc 23,91 26,42 2623,00 6,00 7890,75 7,25 2
Average 20,43 22,99 2267,25 5,10 6776,50 6,20 1,40
Stdev 7,63 7,93 1520,23 1,59 2635,68 7,52 1,19
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Table 8-3. The statistics for the scenario after 2 seconds when Tail Drop is in use. 

Data xmit 
time (sec)

Elapsed 
time (sec)

Throughput 
(bytes/s)

Retx data 
packets

Retx Data 
bytes

Duplicate 
acks

Triple 
dupacks

Min 28,50 29,18 8004 8 11097 41 6
Max 35,80 36,48 10007 25 36200 71 11

25%Perc. 30,59 31,28 8437,00 10,00 14480 46,5 7
Median 32,20 33,22 8798,50 10,5 15204 51 8
75%Perc 33,77 34,61 9333,75 12 17376,00 52,75 9
Average 31,13 31,96 8664,80 11,1 16048,45 49,05 7,95
Stdev 2,25 2,30 629,06 3,56 5182,42 7,69 1,40
Min 35,79 36,53 7789 12 17376 41 6
Max 37,32 37,49 7994 19 27512 61 11

25%Perc. 35,96 36,60 7952,25 13 18824,00 46,50 8
Median 36,12 36,66 7965,5 14 20052,5 51,00 9
75%Perc 36,27 36,72 7978,00 15 21720 55 10
Average 35,94 36,47 8015,75 14 20186,85 50,00 8,7
Stdev 0,42 0,27 57,41 1,73 2560,99 5,32 1,33
Min 5,59 7,30 2825 1 1448 3 0
Max 13,74 16,54 6396 7 10136 16 3

25%Perc. 8,34 9,49 3763,50 3 4344 10 2
Median 9,88 11,51 4060,00 4 4393 11 2
75%Perc 10,36 12,42 4925,50 4,00 5792 13,25 3
Average 9,49 11,38 4307,85 3,70 5087,35 11,05 2,10
Stdev 2,06 6,20 1266,07 2,60 3759,65 7,47 1,22
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 Table 8-4. The statistics for the scenario after 2 seconds when RED is in use. 
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N. Replication 
Data xmit 
time (sec)

Elapsed 
time (sec)

Throughput 
(bytes/s)

Retx data 
packets

Retx Data 
bytes

Duplicate 
acks

Triple 
dupacks

fastest 27,152 28,63236 10198 14 20272 51 5
slowest 35,997 36,837938 7927 9 13032 29 4
3rd flow 21,019 25,987692 1798 4 4345 3 0
fastest 29,754 30,786652 9485 6 8688 30 5
slowest 35,49 36,662302 7965 5 7240 26 4
3rd flow 9,969 21,05688 2219 5 4346 9 2
fastest 35,024 36,204573 8065 6 7576 41 5
slowest 35,53 36,651537 7967 6 8688 36 5
3rd flow 7,769 9,996151 4674 2 2896 5 1
fastest 35,095 35,91481 8130 6 8001 35 4
slowest 35,579 36,541871 7991 4 5792 27 3
3rd flow 8,999 11,056031 4226 2 1833 0 0
fastest 28,443 29,453956 9914 3 4344 28 3
slowest 35,49 36,669746 7963 5 7240 30 5
3rd flow 11,599 13,864343 3370 3 4344 8 2
fastest 35,45 36,45008 8011 6 8688 40 5
slowest 36,58 36,583544 7982 7 8097 34 5
3rd flow 10,032 11,713612 3989 3 4344 8 1
fastest 35,93 36,610615 7976 7 10136 37 5
slowest 37,123 37,296092 7829 5 6745 29 4
3rd flow 10,128 12,032767 3883 3 4344 12 2
fastest 32,16 33,171186 8803 6 8688 35 4
slowest 35,709 36,558546 7987 5 7240 37 5
3rd flow 10,07 12,110946 3858 3 4344 9 2
fastest 31,949 33,130365 8814 5 7240 32 4
slowest 35,75 36,597186 7979 5 7240 36 4
3rd flow 8,006 9,921204 4709 1 1448 3 0
fastest 32,158 33,169642 8803 6 8688 35 4
slowest 35,709 36,556989 7988 5 7240 37 5
3rd flow 10,07 12,109387 3858 3 4344 9 2
fastest 33,195 33,987925 8591 8 10705 27 3
slowest 35,467 36,634767 7971 5 7240 24 4
3rd flow 8,44 19,759034 2364 3 1450 6 1
fastest 31,286 32,467048 8994 5 6128 37 4
slowest 35,629 36,633945 7971 5 7240 29 4
3rd flow 9,087 10,988471 4252 2 1833 7 1
fastest 35,925 36,605507 7977 7 10136 37 5
slowest 37,128 37,296158 7829 5 6745 29 4
3rd flow 10,129 12,02778 3884 3 4344 12 2
fastest 29,005 30,025566 9725 5 7240 29 3
slowest 35,488 36,661778 7965 4 5792 25 4
3rd flow 12,009 23,325586 2003 5 4346 9 2
fastest 32,804 33,475526 8723 6 8193 36 5
slowest 35,479 36,650944 7967 4 5792 25 4
3rd flow 10,81 12,725202 3671 4 4729 5 1
fastest 31,283 32,473723 8992 5 6128 37 4
slowest 35,627 36,640442 7969 5 7240 29 4
3rd flow 9,101 10,984994 4253 2 1833 7 1
fastest 31,943 33,123586 8815 5 7240 32 4
slowest 35,75 36,590428 7980 5 7240 36 4
3rd flow 8,003 9,924465 4708 1 1448 3 0
fastest 35,931 36,611222 7976 7 10136 37 5
slowest 37,132 37,296015 7829 5 6745 29 4
3rd flow 10,128 12,023611 3886 3 4344 12 2
fastest 28,54 29,55177 9881 4 5792 34 4
slowest 35,459 36,637594 7970 4 5792 24 4
3rd flow 12,609 14,982194 3118 4 5792 8 2
fastest 34,795 35,410581 8246 7 9497 30 4
slowest 35,709 36,5582 7987 7 10136 38 6
3rd flow 9,285 11,161631 4186 2 1593 7 1
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Table 8-5. Three TCP competing flows when Tail Drop is in use. The third flow starts 

after 5.5 seconds. 
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Data xmit 
time (sec)

Elapsed 
time (sec)

Throughput 
(bytes/s)

Retx data 
packets

Retx Data 
bytes

Duplicate 
acks

Triple 
dupacks

Min 27,15 28,63 7976 3 4344 27 3
Max 35,93 36,61 10198 14 20272 51 5

25%Perc. 30,90 32,05 8113,75 5,00 7240 31,5 4
Median 32,16 33,17 8803,00 6 8440,5 35 4
75%Perc 35,04 35,99 9116,75 7 9656,75 37 5
Average 31,14 32,61 8513,65 6,15 8514,30 33,40 4,1
Stdev 2,78 2,64 716,96 2,17 3193,80 5,41 0,72
Min 35,46 12,11 7829 3 4344 3 0
Max 37,13 37,30 7991 9 13032 41 6

25%Perc. 35,49 36,59 7964,50 5 6745,00 26,75 4
Median 35,67 36,64 7969,5 5 7240 29,00 4
75%Perc 35,81 36,66 7980,50 5 7240 36 5
Average 35,54 36,37 8048,35 5,15 7281,00 30,35 4,2
Stdev 0,59 0,25 54,24 1,21 1673,27 4,78 0,66
Min 7,77 9,92 1798 1 1448 0 0
Max 21,02 25,99 4709 5 5792 12 2

25%Perc. 9,07 11,04 3307,00 2 1833 5 1
Median 10,05 12,03 3883,50 3 4344 7,5 1
75%Perc 10,30 14,14 4232,50 3,25 4344,25 9 2
Average 10,36 13,89 3645,45 2,90 3415,00 7,10 1,25
Stdev 2,82 6,93 1317,07 1,12 1497,02 5,11 0,99
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Table 8-6. The statistics for the scenario after 5.5 seconds when Tail Drop is deployed.  

Data xmit 
time (sec)

Elapsed 
time (sec)

Throughput 
(bytes/s)

Retx data 
packets

Retx Data 
bytes

Duplicate 
acks

Triple 
dupacks

Min 20,89 21,57 7918 7 10136 44 5
Max 36,88 36,88 13539 18 26064 59 10

25%Perc. 30,74 31,46 8118,25 10,75 15566 49,75 8
Median 33,90 34,60 8439,50 12 17376 52,5 8
75%Perc 35,41 35,97 9282,25 13 18824,00 54,25 9
Average 31,26 31,92 8870,75 11,45 16440,90 49,90 7,95
Stdev 3,71 3,66 1270,48 2,38 3463,66 3,54 1,26
Min 35,82 36,54 7781 12 17376 40 6
Max 37,53 37,53 7991 15 21720 60 11

25%Perc. 36,03 36,57 7950,75 13 18824,00 49,75 8
Median 36,15 36,63 7970,5 14 19596,5 52,50 9
75%Perc 36,45 36,73 7985,25 14,25 20296 55 10
Average 36,33 36,77 7942,25 13,6 19547,70 51,70 8,8
Stdev 0,51 0,34 72,92 1,04 1452,37 4,69 1,31
Min 4,56 5,70 2946 1 1448 5 1
Max 12,74 15,86 8200 7 9073 15 3

25%Perc. 6,38 7,67 4073,00 2 2570,25 7 1
Median 8,06 9,37 5005,00 3 4344 9,5 2
75%Perc 10,09 11,48 6091,00 4,00 5792 13 2
Average 8,19 9,78 5147,95 3,20 4462,15 9,95 1,80
Stdev 2,33 6,75 1520,77 3,12 4447,02 9,67 1,97
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Table 8-7. The statistics for the scenario after 5.5 seconds when RED discipline is adopted.  
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8.2 Tests with TCP and UDP traffic with services 

differentiation 

In this second set of experiments we have utilized and analyzed not only TCP, but also UDP 

traffic. Even though TCP and UDP use the same network layer (IP), TCP provides a totally 

different service to the application layer than UDP does. UDP is a simple, datagram-oriented, 

transport layer protocol. RFC 768 [Pos80] is the official specification of UDP. What is 

important to point out for our study is that UDP provides no reliability. It sends the datagrams 

that the application writes to the IP layer, but there is no guarantee that they ever reach their 

destination. The UDP header is generally of 8 bytes and consists of the source and destination 

port number (16bit for each one), the UDP length field and the UDP checksum. 

UDP supplies minimized transmission delay by omitting the connection setup process, 

flow control and retransmission. Thanks to its simplicity, UDP meets the requirements of 

delay-sensitive real-time applications that can implement their own flow control and 

retransmission schemes. Traditionally, on wide area networks (WANs) UDP not TCP has been 

used as a transport layer protocol for real-time applications, such as video and audio. Moreover, 

UDP is able to perform multicast communications, which allows the development of 

applications such as network conferencing.   Meanwhile, more than 80 percent of the WAN 

resources are occupied by TCP traffic. Hence, the quality of service (QoS) of real-time 

applications using UDP is affected by TCP traffic and its flow control mechanism whenever 

TCP and UDP share a bottleneck node. This is because TCP flow control continues to increase 

its window size until packet loss occurs if the advertised window is large enough.  

As regards our experiments we have used Constant Bit rate (CBR) service category. This 

is used by connections that request a static amount of bandwidth that is continuously available 

during the connection lifetime. CBR service is intended to support real-time applications 

requiring tightly constrained delay variation (for instance voice, video…) but is not restricted to 

these applications.  

In our study the only metrics we have introduced to evaluate the UDP performance is the 

number of packets correctly received. When the HTB configuration implementing two classes 

of service is deployed there are no UDP packets dropped since the class of service dedicated to 

UDP flow provides enough bandwidth (70 Kbit/s) to serve the data rate produced (roughly 

53Kbit/s).  
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The tables presented report statistics related to the TCP flow sent and the CBR traffic. As 

regard the TCP performance we report statistics regarding the Elapsed Time (Minimum, 

Maximum, 25%Percentile, Median, 75%Percentile, Average, Standard Deviation) and the 

average Throughput of the TCP transfer. As regards the UDP traffic, it is presented only in the 

number of packets correctly received. The results are classified firstly according to the scenario 

they belong to, which expresses the delay in the CBR’s starting point, and secondly inside each 

scenario according to the HTB topology implemented in the router and the queueing discipline 

under study. The maximum and minimum values among the results of each HTB configuration 

are highlighted. 

 
TCP Flow's 
Throughput 

(Bytes)

UDP 
Packets 

Received
Min Max 25%Perc. Median 75%Perc Average Stdev Average Median

Tail Drop 31,63 34,25 33,10 33,47 33,71 33,33 0,62 11484,50 1694

RED 35,03 36,89 35,56 35,69 36,26 35,82 0,48 12556,20 1864,5

Tail Drop+DS 37,68 37,86 37,69 37,77 37,84 37,77 0,07 11052,05 2001

RED+DS 37,49 39,22 37,64 37,80 37,90 37,90 0,44 11067,15 2001

Tail Drop 30,16 35,44 32,20 32,72 33,18 32,67 1,06 13209,60 1711

RED 34,18 35,67 34,92 35,10 35,17 35,05 0,32 13019,60 1871,5

Tail Drop+DS 37,02 37,28 37,04 37,19 37,27 37,17 0,11 6864,65 2001

RED+DS 36,96 39,19 37,12 37,15 37,27 37,37 0,57 11858,95 2001

Tail Drop 30,91 33,21 31,80 32,28 33,02 32,28 0,70 9844,15 1707

RED 34,08 35,54 34,49 34,57 34,87 34,72 0,42 10622,70 1877,5

Tail Drop+DS 36,34 36,60 36,45 36,45 36,52 36,47 0,07 8719,40 2001

RED+DS 36,16 38,05 36,45 36,57 36,62 36,75 0,53 13010,15 2001

Tail Drop 29,80 47,39 31,47 32,15 33,37 34,20 5,05 10024,15 1683,5

RED 33,50 35,24 33,81 34,01 34,18 34,13 0,50 11971,85 1889

Tail Drop+DS 35,64 36,28 35,78 35,94 36,12 35,95 0,20 10226,50 2001

RED+DS 34,83 38,25 35,70 35,77 35,87 35,89 0,63 14153,70 2001

HTB Config.
TCP Flow's Elapsed Time (sec)

0 sec

1 sec

2 sec

3 sec

Scenario 
after:

 
 

Table 8-8. Statistics for Test Case 1: long TCP transfer competing with UDP traffic. 
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TCP Flow's 
Throughput 

(Bytes)

UDP 
Packets 

Received
Min Max 25%Perc. Median 75%Perc Average Stdev Average Median

Tail Drop 3,66 8,08 3,71 3,74 3,76 4,31 1,31 11484,50 268

RED 3,46 3,95 3,64 3,77 3,84 3,73 0,15 12556,20 287,5

Tail Drop+DS 4,21 4,25 4,22 4,22 4,24 4,23 0,01 11052,05 301

RED+DS 4,04 6,11 4,08 4,21 4,22 4,25 0,44 11067,15 301

Tail Drop 3,44 5,30 3,46 3,46 4,01 3,91 0,79 12329,85 275

RED 3,14 4,95 3,43 4,55 4,83 4,21 0,69 11421,55 269,5

Tail Drop+DS 7,01 9,07 7,47 8,38 8,82 8,15 0,73 5775,45 301

RED+DS 3,60 6,82 3,76 4,82 6,21 5,06 1,24 9796,20 301

Tail Drop 3,34 4,91 3,34 3,36 3,36 3,59 0,51 13209,60 292

RED 2,93 5,02 3,22 3,28 4,33 3,70 0,70 13019,60 283

Tail Drop+DS 6,66 6,84 6,82 6,84 6,84 6,81 0,06 6864,65 301

RED+DS 3,38 6,09 3,54 3,69 3,99 4,09 0,92 11858,95 301

Tail Drop 3,23 9,85 4,54 4,96 5,00 4,97 1,31 9844,15 301

RED 2,86 9,37 3,46 4,87 5,12 4,88 1,75 10622,70 297

Tail Drop+DS 5,32 5,65 5,33 5,33 5,34 5,36 0,09 8719,40 301

RED+DS 3,04 6,91 3,21 3,33 3,72 3,77 1,01 13010,15 301

Tail Drop 4,35 4,80 4,69 4,72 4,72 4,66 0,13 10024,15 301

RED 2,70 4,76 3,82 4,68 4,72 4,12 0,86 11971,85 301

Tail Drop+DS 4,34 4,78 4,55 4,57 4,57 4,57 0,09 10226,50 301

RED+DS 2,70 4,21 2,87 3,12 4,09 3,39 0,59 14153,70 301

Scenario 
after: HTB config.

TCP Flow's Elapsed Time (sec)

0 sec

0,5 sec

1 sec

1,5 sec

2 sec

 

Table 8-9. Statistics for the Test Case 2: Short TCP transfer competing with UDP traffic. 

TCP Flow's 
Throughput

UDP 
Packets 

Received
Min Max 25%Perc. Median 75%Perc Average Stdev Average Median

Tail Drop 23,77 34,79 25,08 25,50 26,33 26,33 2,82 26,33 174
RED 24,18 32,20 24,47 24,62 26,95 26,05 2,54 26,05 232,5

Tail Drop+DS 24,52 24,88 24,56 24,57 24,58 24,58 0,08 15919,95 251
RED+DS 24,52 30,38 24,71 24,74 25,94 25,63 1,63 15320,05 251
Tail Drop 24,12 38,71 25,29 25,31 26,11 27,19 4,23 27,19 188

RED 24,40 44,41 24,45 24,55 25,21 26,00 4,49 26,00 230
Tail Drop+DS 24,55 35,78 24,64 24,74 25,25 26,19 3,16 15110,85 251

RED+DS 24,52 34,43 24,64 24,85 29,49 26,94 3,42 14725,85 251
Tail Drop 22,92 24,60 23,64 23,70 23,90 23,71 0,40 23,71 126,5

RED 24,37 26,34 24,48 24,55 24,61 24,74 0,51 24,74 234,5
Tail Drop+DS 24,52 32,83 24,55 24,55 24,96 25,09 1,83 15657,30 251

RED+DS 24,58 25,46 24,63 24,64 24,77 24,74 0,21 15819,40 251
Tail Drop 23,15 23,87 23,59 23,66 23,67 23,64 0,14 23,64 114

RED 24,39 25,59 24,47 24,54 24,56 24,61 0,28 24,61 232
Tail Drop+DS 24,54 25,24 24,55 24,55 24,67 24,63 0,17 15885,00 251

RED+DS 24,56 25,03 24,64 24,70 24,76 24,73 0,13 15822,40 251
Tail Drop 23,90 24,57 24,14 24,22 24,29 24,23 0,16 24,23 194

RED 24,32 25,30 24,44 24,49 24,53 24,52 0,20 24,52 231
Tail Drop+DS 24,55 24,74 24,56 24,60 24,66 24,62 0,07 15894,65 251

RED+DS 24,52 25,59 24,64 24,68 24,74 24,75 0,26 15807,90 251
Tail Drop 23,64 24,51 24,40 24,49 24,50 24,38 0,22 24,38 225

RED 24,34 25,63 24,46 24,52 24,59 24,64 0,38 24,64 225
Tail Drop+DS 24,55 45,25 24,56 24,57 24,74 26,17 5,01 15290,85 251

RED+DS 24,47 25,72 24,64 24,65 24,73 24,81 0,37 15772,25 251

18

Scenario 
after:

HTB Config.
TCP Flow's Elapsed Time (sec)
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Table 8-10. Statistics for the Test Case 3: long TCP transfer competing with UDP traffic 

for a short time.  


