Performance analysis of TCP enhancements for
congested reliable wireless links

Pasi Sarolahti

Master’s Thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department

Science Department of Computer Science

Tekija — Forfattare — Author

Pasi Sarolahti

Ty6n nimi — Arbetets titel — Title

Performance analysis of TCP enhancements for congested reliable wireless links

Oppiaine — Lirodmne — Subject

Computer Science

Ty6n laji — Arbetets art — Level Aika — Datum — Month and year Sivum&édrd — Sidoantal — Number of page

M.Sc. Thesis December 2000 80 p. + Appx.

Tiivistelmd — Referat — Abstract

In this thesis we present a performance analysis of using TCP over a slow wireless link with
a persistently reliable link layer protocol. A last-hop router with a limited buffer space is
located between the wireless link and the fixed network. A real-time software emulator is
used for modelling the wireless link and the last-hop router. By using the emulator we can
have the control over the link characteristics and use a real protocol stack of the operating
system in the performance tests. We present the related work and the main problems
observed with the reliable wireless links, which are spurious retransmission timeouts and
the congestion at the last-hop router. We compare the performance of the selected baseline
TCP implementation with the SACK TCP and a TCP with increased initial congestion
window size. Additionally, the performance implications of using a RED queue management
algorithm at the last-hop router is studied. A detailed analysis is presented to explain the
benefits and the problems of the baseline TCP and the different TCP enhancements. We
introduce a mechanism for limiting the number of outstanding packets in the network
by defining an upper limit for the TCP advertised window size and sharing the available
advertised window space between the parallel TCP connections over the wireless link. By
using the shared advertised window promising performance improvements are achieved in

our environment.

Computing Reviews Classification:
C.2.2 (Network protocols)
C.4 (Performance of Systems)

Avainsanat — Nyckelord — Keywords
Wireless communication, mobile computing, performance, TCP, congestion

Sailytyspaikka — Forvaringsstéille — Where deposited

Library of the Dept. of Computer Science, Report C-2001-

Muita tietoja — Ovriga uppgifter — Additional information

Contents
1 Introduction

2 Wireless Communication Environment
2.1 Network architecture

2.2 Properties of the wireless link

3 TCP over Slow Wireless Links
3.1 TCP basics . . .« v v i e e e e e
3.2 Effect of variable delays oL
3.3 Effect of congestion at the last-hop router
3.4 Effect of parallel TCP connections on the bottleneck link

3.5 Suggested improvements 0oL o

4 Test Arrangements
4.1 Methodology L
4.2 Modelling the target environment
4.3 Metrics
4.4 Selected test cases L e

4.5 Discussion of the model

5 Analysis of the Baseline TCP
5.1 Single unidirectional connection Lo
5.2 Multiple parallel unidirectional connections

5.3 Summary of the baseline tests L.

6 Analysis of the TCP Enhancements
6.1 Results of the SACK tests
6.2 Results of the tests with larger initial congestion window
6.3 Results of the tests with shared advertised window
6.4 Results of the baseline TCP tests through a RED router

6.5 Summary
7 Conclusion

References

Appendexes

A Summary of the test results

16
16
18
22
25
30

33
33
44
49

51
o1
56
58
64
67

73

75

81

81

B Transmission Control Protocol 96

B.1 General Overview 96
B.2 Congestion control L 99
B.2.1 Background L 100
B.2.2 Slow-Start and Congestion Avoidance 100
B.2.3 Recovery from Retransmission Timeout 102
B.2.4 Fast Retransmit/Fast Recovery 104
B.2.5 NewReno TCP modification 105

C Baseline TCP 108
C.1 TCP parameters, options and settings 108
C.1.1 NewReno TCP modification 108
C.1.2 Recovery from RTO, 109
C.1.3 RTO calculation 109
C.1.4 Delayed acknowledgments 109
C.1.5 Receiver’s advertised window Lo 110
C.1.6 Disabling control block interdependence 110

C.2 Implementation issues 110
C.2.1 New TCPoptions ittt 110
C.22 Bugfixes e 113

D TCP Enhancements 115
D.1 TCP Control Parameters. 115
D.1.1 Increasing initial congestion window 115
D.1.2 Receiver’s advertised windowo 116
D.1.3 Maximum segment sizeo 116

D.2 TCP Optimizations 117
D.2.1 Selective Acknowledgments 117

D.3 Active Queue Management 118
E Test arrangements 120
E.1 Seawind emulator oL 120
E.1.1 General overviewo e 120
E.1.2 Emulation parameters 123
E.1.3 Discussion oo 128

E2 Testsetup o o e 128
E.2.1 Emulation environmento 128
E22 Logging e 129

E.2.3 Workload generation L. 130

1 INTRODUCTION 1

1 Introduction

Internet has traditionally been a combination of fixed local area subnetworks. These
networks provide transfer rates of several Megabits per second and reliable, low-delay
transport. As the Internet has become more popular, the subnetworks have operated
relatively well, but the congested routers have become critical points. Therefore, conges-
tion control was adopted as the main principle in the design of the Transmission Control
Protocol (TCP) [Pos81, APS99] which is used by most of the networking applications in
the Internet. TCP is an end-to-end protocol, offering the connected host a simple virtual
connection to the destination. The TCP endpoints have very limited mechanisms to get
information about the connection path between the endpoints. Therefore TCP makes
some assumptions about the connection path. One such assumption is that if packets are
dropped along the connection path, it is because a congested router could not process
them. In this situation the TCP sender slows down its sending rate to help the congested

router recover.

Lately the number of wireless hosts connected to the Internet has been increasing. With
the new packet radio techniques, such as General Packet Radio Service (GPRS) [BW97,
CG97|, the wireless Internet hosts are about to become even more popular. Wireless links
have very different behaviour than fixed, broadcast-based local area networks. Wireless
links are slower than the fixed ones and they are much more vulnerable to the conditions

in the natural environment, causing higher and more variable bit error rates.

In this thesis we concentrate on TCP transmission over slow wireless links with highly
variable delays. In addition to the slow transmission rate and high latency typical to the
slow wireless links, we inspect the length of the packet queue in the last-hop router buffer
between the wireless link and the fixed network. Routers need buffers to tolerate and
smooth the bursts of data arriving from the network. If the router buffer size is exceeded,
packets are dropped and the TCP sender is required to slow down its transmission rate.
Because the fixed network delivers the packets at a higher rate to the last-hop router than
what the router can transmit to the slow wireless link, the router is prone to congestion

and usually several packets are dropped because the router buffer overflows.

The poor performance of TCP over wireless links is a well known fact [CI94, BPSK96,
KRL197]. Although many of the performance studies inspect the problems caused by the
packet corruption on the link, it is not the concern in our environment, because we assume
the link layer to offer reliable service to the higher protocol layers. Instead, the reliable
link layer causes the packet delays to be variable and unpredictable. Because TCP uses

timers as the basis of doing retransmissions, excessive delay may trigger an unnecessary

1 INTRODUCTION 2

retransmission, which has negative implications on the TCP performance.

A large amount of research has been done on improving the TCP behaviour over
wireless links. Suggested improvements for TCP can be roughly divided in two categories.
An efficient way to improve the TCP performance is to split the TCP connection in a
wireless and a wired part and separate the two sections of the connection path by a
prozy [BKGT00]. However, these solutions might violate the end-to-end principles of TCP
and require changes and TCP-level intervention in the middle of the connection path.

Therefore they are not suggested for general use.

Another approach to improve the TCP performance is to modify the behaviour of TCP
end points without splitting the connection. In this thesis we concentrate on this kind of
improvements and inspect their influence on the TCP performance when transmitting
data over a wireless link. In addition to the selected TCP enhancements, we inspect the

performance implications of using active queue management at the last-hop router.

We present the wireless environment and the characteristics we are assuming for the
wireless link in Section 2. In Section 3 we discuss the known problems of using TCP
over slow wireless links, especially in the presence of congestion and variable delays. We
introduce some of the suggested TCP improvements to overcome the problems presented.
The test arrangements for our performance tests are described in Section 4. We describe
how we use a real-time software emulator for modelling the wireless link and the last-hop
router and discuss the validity of the model we are using. We select a set of test cases to
be tested with the baseline TCP implementation we have chosen and analyse the results
of the test runs in Section 5. After pointing out the problems with the baseline TCP, we
present the performance analysis for the selected TCP enhancements in Section 6. Finally,
we discuss the benefits and the problems caused by the TCP enhancements and conclude

our work in Section 7.

In addition to the main text, we provide a number of appendeces' to give some ad-
ditional information for the reader. In the appendeces we provide the test results of all
performance tests run, description of the state-of-the-art TCP congestion control algo-
rithms, description of the baseline TCP implementation we are using, description of the
TCP enhancements we analyse in our work, and description of the Seawind software em-

ulator we use to model the wireless link and the last-hop router.

!The appendeces are jointly written by Andrei Gurtov, Panu Kuhlberg, and Pasi Sarolahti.

2 WIRELESS COMMUNICATION ENVIRONMENT 3

2 Wireless Communication Environment

In this section we describe the wireless communication environment we are assuming in
this thesis. There are two factors in the wireless environment which need to be considered
separately: the architecture of the wireless access network and the properties of the wireless
link.

2.1 Network architecture

Figure 1 shows the high level view of the network components which are involved when
a mobile host is communicating with a host in a fixed network on the Internet. The
connection path consists of a last-hop wireless link and a number of wired links through
various fixed subnetworks. This kind of organisation is used on wireless local area networks
(W-LANS) and wireless wide area networks (W-WANS, in which category e.g. the widely
used Global System for Mobile communications (GSM) [MP92| belongs). Internet Engi-
neering Task Force (IETF) has considered the problems of the Internet communication in
this kind of environment and propsed a number of solutions for the problems [MDK™00].
The PILC working group in IETF has discussed the impact of different link characteristics
further [DMKMO00, DMK ™00, KFT*00].

fixed host A

mobile host base last-hop

station router

fixed host B

Figure 1: Architectural elements in a system with wireless hosts

The mobile host communicates with the base station through the air interface using a

wireless radio link, which is prone to data corruption. The base station is connected to a

2 WIRELESS COMMUNICATION ENVIRONMENT 4

last-hop router, which is the last network element before the wireless link having buffers
to store the network packets. The actual functionality carried out in the last-hop router
may vary according to the wireless technology used. For example, in the GPRS system
the last-hop router corresponds to the Serving GPRS Support Node (SGSN) [BW9T7].

The last-hop router is connected to the traditional fixed internetwork in which the
fixed host communicating with the mobile host is located. Properties and problems in the
fixed network are drastically different from the ones of the wireless link. Fixed network
usually transfers data at much higher speeds than the wireless link. Unlike with wireless
links, data corruption very seldomly occur in the fixed network. However, because the
traffic characteristics are highly unpredictable in the internetwork, estimating round-trip
time and the other connection parameters might not be easy. Packet losses are also a
frequently seen phenomenon because of congestion at the routers. Because the fixed host
is usually a WWW or ftp server, most of the data is transmitted downlink, from the fixed

server to the mobile client.

The sender may also be located in the same network with the last-hop router. This is a
common case, for example, if an organisation provides a World-Wide Web (WWW) prozy
for the users. As can be seen in Figure 1, the communication path between fixed sender
B and the mobile host is much simplier and involves less intermediate hops than the path
between sender A and the mobile host. Because of the short communication path, the
traffic from sender B arrives at the router at a constant rate, but the traffic from sender
A is likely to be much more unpredictable in terms of delay and packet arrival rate. In
the measurements made in this thesis we assume that the sender is located in the same

network with the last-hop router.

Because the fixed network provides higher transfer rates than the wireless link, the last-
hop router between the fixed and the wireless parts of the connection is a serious bottleneck
in the connection path. We assume that the last-hop router has a limited, separate buffer
space for each user. Hence when packets are received from the fixed network faster than the
router can forward them, the router buffer will overflow before long, causing the packets
to be dropped at the router. This is an extreme form of congestion, therefore resembling
the traditional problem of the internetworks. However, because the congestion is very
severe and it occurs in a known location quite predictably, mechanisms for preventing this

phenomenon are worth inspecting.

In addition to the setup presented in Figure 1, there are different architectures yield-
ing different properties for wireless communication. For example, communicating over
satellite links can be done in various different ways [ADG*00]. Usually satellite communi-

cation involves high, asymmetric bandwidth and large round-trip times over an unreliable

2 WIRELESS COMMUNICATION ENVIRONMENT 5

link [AGS99], for which the problems are different than in the wireless environment de-
scribed in this section. Thus, this thesis is restricted to slow terrestial wireless links having

a high-level architecture as presented in Figure 1.

2.2 Properties of the wireless link

The wireless link between the mobile host and the base station has usually very different
characteristics than a conventional wired link. The available bandwidth on the wireless
link is usually much lower than on a wired link. For example, in W-WAN systems such as
GSM the typical bandwidth is 9600 bps. With enhanced encoding and channel allocation
techniques the bandwidth acquired by the mobile user is somewhat higher, being around
20 - 40 kbps. It is also possible for the bandwidth to be asymmetric, giving more capacity
downlink than uplink. Additionally, transmission through a wireless link takes more time
to propagate to the other end of the link than with a traditional fixed link. This causes
more delay (100-300 ms in W-WAN systems) in the transmission of the packets. The
packets are usually fragmented into smaller frames at the link layer (e.g. the RLP frame
size in GSM is 240 bits [MP92, Section 3.3.3]).

Wireless communication is usually prone to transmission errors because of highly vari-
able conditions in the natural environment. The transmission errors are bursts of distorted
bits causing the transmitted data frame to be useless. In W-WAN systems the average
bit error rate can be as high as 1073 after forward error correction. However, by using
link layer ARQ) retransmissions the bit error rate perceived by the higher protocol layers
can be improved to a magnitude of 1078 [KRLT97|. The transmission errors are usually
perceived as packet losses by the upper protocol layers, hence the sender is required to

retransmit the lost packets.

One of the most important, although optional, tasks of the link layer protocol is to
provide reliable transfer over the link to the upper protocol layers. Therefore a link layer
protocol might provide some retransmission mechanisms (e.g. Radio Link Protocol (RLP)
in GSM [MP92, Section 3.3.3|), possibly maintaining the ordering of packets when deliv-
ering them to the upper protocol layers. In such a case the errors at the airway link do
not necessarily cause packet drops as perceived by the higher protocol layers, but appear
as noticeably long delays, because none of the packets received at the other end of the link
is delivered to the upper layers before the missing packet is succesfully transmitted. Some
higher layer protocols may not perform well, if the ordering of packets is not maintained.
Out-of-order packets may cause unnecessary retransmissions with some protocols, which

needlessly wastes the scarce link capacity.

2 WIRELESS COMMUNICATION ENVIRONMENT 6

One of the design details in a link layer protocol is the persistency of the link layer
retransmissions, i.e. how long the link layer sender should try to retransmit a frame before
it gives up and reports an error to the higher protocol layers. The selected persistency
has effect when the mobile host moves to a location with bad radio link coverage. In this
case several successively transmitted frames are lost and the wireless connection between
the mobile host and the base station is completely unusable for some period of time.
In this thesis we assume that the link layer protocol provides peristent retransmissions,

maintaining the order of the packets.

The new packet-radio technologies such as GPRS are likely to cause the perceived
delays to be highly variable for other reasons than because of link layer retransmis-
sions [LK00]. For example, if the lower level protocols have support for Quality of Service
by providing a priority-based scheduling between the different data flows, the flows with
lower priority are likely to experience highly variable delays, when flows of higher priority

have reserved the link.

3 TCP OVER SLOW WIRELESS LINKS 7

3 TCP over Slow Wireless Links

Although the Transmission Control Protocol (TCP) [Pos81| has been widely used and
tested on the Internet for several years, its behaviour on connection paths with slow and
unreliable links is not ideal. Slow link and transmission errors are likely to cause notable
implications on TCP performance. In this section we briefly describe some of the known
phenomena of TCP when it is used over slow wireless links and briefly present some

suggestions offered for improving the performance of TCP in these environments.

3.1 TCP basics

The reader should be familiar with the basics of the TCP behaviour [Com95, Ste95] in order
to review the performance results presented in this thesis. In particular, the behaviour of
the present state-of-the-art congestion control algorithms [APS99] need to be understood
in detail. In this section we briefly describe the important TCP features related to loss
recovery and congestion control. Appendix B gives a more detailed description of the

algorithms.

A TCP sender must be conservative in the amount of data transmitted to the network
to prevent the network getting congested. Therefore, a congestion window was intro-
duced for the TCP sender to control the number of TCP segments outstanding in the
network [Jac88]. The TCP sender starts with initial congestion window size of one or
two TCP segments and increases its transmission rate exponentially until the congestion
window size reaches a slow start threshold (ssthresh) value. In other words, during the
slow start the sender increases the congestion window size by one segment and transmits
two new segments each time a new acknowledgement arrives. This is called slow start
algorithm. The slow start threshold is initialised to have a arbitrary high value, and it
is set to half of the number of segments outstanding in the network if the TCP sender
notices a packet loss. After the congestion window size reaches the slow start threshold,
the sender continues with the congestion avoidance algorithm during which it increases

the congestion window size by one segment only once per round-trip time.

Traditionally the TCP receiver only acknowledges the highest segment it has success-
fully received in order, and if a segment is lost, there is no way to indicate it to the
sender. In the early versions of TCP the only way to recover from a segment loss was to
wait for retransmission timeout (RTO) to expire. The length of the RTO is determined
from the measured round-trip time (RTT) and the variance of the recent RTT measure-

ments [Jac88, PA00]. The receiver cannot acknowledge new data in case of segment loss

3 TCP OVER SLOW WIRELESS LINKS 8

and hence the sender is not allowed to send new data. Therefore, before the retransmission
timeout expires, there is usually an idle period during which the sender does not transmit

any data, possibly causing the communication path to be underutilised.

A mechanism for passing negative acknowledgements was introduced with the Reno
congestion control algorithm, which later became basis for the standards track RFC2 [APS99).
Reno congestion control allows the sender to retransmit a segment when it receives three
successive duplicate acknowledgements (ACKs). Duplicate ACK is an acknowledgement
which acknowledges exactly the same octet as the previous segment. The receiver gener-
ates a duplicate ACK when it receives an out-of-order segment. The algorithm for sending
a retransmission on the third duplicate ACK is called fast retransmit. Additionally, the
congestion control specification also improves the TCP performance by allowing the sender
to transmit a new segment each time an additional duplicate ACK arrives after the fast
retransmit, if the TCP congestion window and receive window allow that. This is based
on the judgement that each duplicate ACK is an indication of a packet that has arrived at
the receiver, meaning that the network load was reduced by one packet. This is called the
packet conservation rule [Jac88|, which requires that the number of outstanding segments
in the network is maintained during the fast recovery. However, as the packet loss is pos-
sibly a notification of congestion, the sender has to wait for the number of outstanding
segments to be halved before new segments can be transmitted. The algorithm following
the fast retransmit is called fast recovery, and it is finished after the first acknowledgement

for new data arrives to the sender.

It was observed, that Reno does not work well if there are several packets dropped
during a single round-trip [Hoe96|, and therefore NewReno [FH99| was introduced as
an experimental RFC. In contrast to Reno, NewReno does not exit the fast recovery
algorithm if a partial acknowledgement is received. Partial acknowledgement is an ACK
which acknowledges new data, but not all of the data that was sent before the sender
received the third duplicate ACK. When the sender receives a partial ACK, it retransmits
the first unacknowledged segment and then continues the fast recovery as defined for the
Reno algorithm. It is not clearly specified whether the sender should transmit new data
with the retransmitted segment when it receives the partial ACK. Literally the specification
would allow it, but on the other hand, it would then violate the packet conservation
rule described above and gradually increase the amount of data in the network. The
TCP implementation we use in the performance tests transmits a new segment with the

retransmitted segment.

2 Request For Comments (RFC) are specifications and recommendations used by Internet Engineering
Task Force (IETF) to define the functionality of Internet protocols and applications.

3 TCP OVER SLOW WIRELESS LINKS 9

3.2 Effect of variable delays

If the link layer provides persistent retransmissions to recover from corrupted frames, the
TCP receiver perceives only an additional delay when there are transmission errors on the
link. In this thesis we assume that no TCP segments are lost because of data corruption,
and the only anomaly caused by the link layer are the additional delays because of link

layer retransmissions.

The variable delays may trigger unnecessary retransmission timeouts, because the TCP
round-trip time calculation algorithm determining the RTO value has no way to predict
such delays. We call a retransmission timeout triggered by an excessive delay a spurious
retransmission timeout. Because the purpose of RT'Os is to help the sender to recover from
segment losses which are not recovered by fast retransmit and fast recovery algorithms,
the sender reacts to the timeout by retransmitting the first unacknowledged segment. Ad-
ditionally, the TCP sender resets the congestion window to one segment and restarts the
transmission from the retransmitted segment. From this point on the TCP sender proceeds
with slow start, increasing the congestion window and retransmitting two packets for each
incoming new ACK until the congestion window size reaches the slow start threshold. The
slow start threshold was set to half of the number of outstanding packets when the retrans-
mission timeout occured. This behaviour is also followed by the TCP implementation of
widely used 4.4BSD Unix [WS95| and it is called go-back-N behaviour.

If the TCP retransmission timeout expired because of the excessive delay caused by link
layer retransmissions, several segments may get unnecessarily retransmitted, although no
segments were dropped. The unnecessary retransmissions are shown in Figure 2. The TCP
sender retransmits the segments, because it is not able to distinguish the acknowledgements
from the original transmissions from the acknowledgements of the retransmissions. This
problem is called retransmission ambiguity [KP87, LK00]. If no packet losses occured
before the retransmission timeout, the number of unnecessary retransmitted segments
is equal to the congestion window size at the moment when the retransmission timeout
occured. During the unnecessary retransmissions no useful data is transferred over the
link.

The unnecessary retransmissions may cause further problems for the communicating
TCP endpoints, because the unnecessary retransmissions made by the TCP sender are
considered to be out-of-order segments at the receiver. Some suggestions have been given
for the TCP implementation to minimize the bad effects caused by a spurious retrans-
mission timeout [FH99|, but the exact actions to be taken after a spurious retransmission

timeout depends on the TCP implementation. We discuss these features in more detail in

3 TCP OVER SLOW WIRELESS LINKS 10

12000 B

10000 - b

unnecessary
retransmissions

8000 -

6000 [~

RTO expires

(N ————

|

Sequence number, bytes

IN

o

S

=]
T

2000 i .

== data sent
~——— ack rcvd

1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Figure 2: A spurious timeout triggered by an additional delay of 6 seconds.

the baseline TCP analysis in Section 5.

3.3 Effect of congestion at the last-hop router

Because the packets transmitted from the fixed network often arrive to the last-hop router
at a higher rate than the router can forward them to the wireless link, the router must
queue the packets until it can forward them. Queueing causes additional delay on pack-
ets, affecting the measured round-trip times. The problem of queueing delays is also
noticed in the studies on using TCP over a GSM link [KRLT97, LRK"99]. The queueing
delay is problematic because it inflates the calculated RTO based on round-trip time es-
timations [LRK199]. This is harmful if a lost segment should be retransmitted and fast

retransmit is unusable for some reason.

The last-hop router has a limited amount of buffer space, which will eventually overflow,
because the TCP congestion control algorithms allow the number of packets in the network
to increase gradually (during congestion avoidance) or rapidly (during slow start). This
causes some of the packets to be dropped at the router, and the TCP sender will eventually
notice this from the duplicate ACKs generated by the receiver. However, the duplicate
ACKs arrive to the sender roughly one round-trip time later from the buffer overflow,

that is, after the segments transmitted before the buffer overflow are acknowledged. The

3 TCP OVER SLOW WIRELESS LINKS 11

larger the TCP congestion window, the more new acknowledgements are still arriving at
the sender after the buffer overflow. If the sender is in slow start, it transmits two new
segments for each acknowledgement arriving before the duplicate ACKs. Some of these
segments are likely to be dropped also, because they arrive to a full queue. This behaviour

is called slow start overshooting [MM96] and it is illustrated in Figure 3.

x10°
T

; —

every othe| .
segment P \ Lok

dropped
| aron fﬁ\
0.5~j

Figure 3: Packet losses caused by slow start overshooting. A router buffer size of 7 packets

Sequence number, bytes
=
o
T

fast recover

packet droppedl

fast retransmit| =————= data sent

ack rcvd

I I I I I
10 15 20 25
Time, s

o Flx
(5]

is used.

Slow start overshooting causes the most serious problems at the beginning of a TCP
connection. This is because the slow start threshold is initialised to an arbitrary high
value and the sender stays in slow start until the first packet drop is signalled back to the
sender. When the duplicate ACKs caused by the first packet drop arrive to the sender, the
congestion window size has increased to be notably larger than what the actual network
capacity is, hence several packets have been dropped at the last-hop router. The larger the
last-hop router buffer, the more packets are in flight at the moment the first router buffer
overflow occurs and the more severe the first slow start overshooting is. After the initial
buffer overflow, slow start threshold gets assigned a proper value, causing the sending rate
to be slowed down by the congestion avoidance algorithm. Therefore the following buffer

overflows are less harmful and usually cause only a single retransmission.

Choosing the optimal buffer size in the last-hop router (or in the mobile host) is one

of the main problems in our work. The problem of having too large a link interface

3 TCP OVER SLOW WIRELESS LINKS 12

buffer is also identified in related research [LRK*99], in which a link interface buffer size
of 8 kilobytes (approx. 16 packets, as they use MTU of 512 bytes) was selected. It
has been suggested that the buffer size should be large enough to hold link bandwidth *
delay® product’s worth of data for each TCP connection on the link [KFT*00]. In our
performance tests we have a link bandwidth of 9600 bps and the round-trip delay on the
link is approximately 700 ms, for which at least 840 bytes (i.e. 2 full-sized packets of 296
bytes) of buffer space would need to be allocated according to the suggestion. However,
this buffer size would not be large enough for the fast retransmit algorithm to work, as it

requires three duplicate ACKs for triggering a retransmission.

3.4 Effect of parallel TCP connections on the bottleneck link

When multiple parallel TCP connections are involved, the queueing delay is expected to
affect the behaviour of TCP even more than what it does for a single connection. It
has been reported that multiple parallel connections start to interfere with each other,
because the queueing delay increases and becomes more unpredictable [KRLT97]. If one
connection gets its packets in the router, the other connections suffer from an unexpectedly

long queueing delay.

It has been reported that the packets of multiple TCP connections running in parallel
over a bottleneck link are separated into groups of segments belonging to a particular TCP
connection [SZC90|. Each of the TCP senders transmits one window’s worth of packets to
the network, which arrive at the receiving host successively. No packets belonging to the
other TCP connections are mixed between the burst of packets sent by one of the TCP
senders. Each of the senders transmits a burst of packets, because the acknowledgements
for the previous window transmitted arrive successively to the sender. After sending a
window of data, the sender will have to wait for a longer time, because the packets sent
by the other TCP senders are in the router queue, delaying the new packets transmitted.
This behaviour is a result of making the new packet transmissions clocked by the incoming
acknowledgements. The incoming acknowledgements for a particular TCP connection
arrive successively, because every time the TCP sender increases the congestion window,
it transmits two or more segments successively on the link. This behaviour is called

separation of packets.

The number of dropped packets due to buffer overflows is expected to be higher when
several parallel TCP connections are in transit, because the last-hop router is likely to

be more congested. It has been observed that when the router buffer is full, packets

3bandwidth * delay product determines the amount of data that can be outstanding on the link at once.
Bandwidth is the link bandwidth and delay is the round-trip delay for the packets on the link.

3 TCP OVER SLOW WIRELESS LINKS 13

from several parallel connections are usually dropped [FJ93, p. 4]. This causes all the
TCP connections that suffered from packet loss to decrease their congestion window at
the same time, which causes a sudden decrease in the amount of traffic outstanding in
the network until the congestion window for different TCP connections is increased again.

This phenomenon is called global synchronization.

If one of the parallel TCP connections ceases transmitting, the other TCP connections
will use the available bandwidth on the link and fill the router buffer with their packets.
When the idle TCP sender starts transmitting again, it is possible that there is not enough
space in the router buffer, and the router drops the packet transmitted by the TCP sender.
If the TCP sender did not transmit enough data to trigger fast retransmit, it will have to
wait for the retransmission timeout, after which it may retransmit the dropped segment.
By doing this, the TCP sender allows the other connections to continue using the available
capacity of the link and the router buffer. When the retransmission timer expires, the
router buffer may still be occupied by the packets of other the TCP connections and the
retransmission triggered by the retransmission timeout is dropped at the router. Therefore,
the TCP sender will have to wait for another retransmission timeout in order to retransmit
the segment again. If the TCP sender is unfortunate, the above presented events may
be repeated several times. This is called lock-out behaviour [BCC198|, which causes

substantial unfairness among the parallel TCP connections.

Another possible reason for unfairness is the nature of TCP congestion control. When
a packet is dropped in one of the two parallel TCP connections, the sender deflates its
congestion window, i.e. reduces its transmission rate. The other connection which did
not have its packet dropped will benefit of this and get a larger share of the available
bandwidth. If the packet loss can not be recovered using fast retransmit, the sender has
to wait for the retransmission timeout. This allows the link capacity to be used by the

competing TCP connections and might lead to the lock-out behaviour described above.

3.5 Suggested improvements

Balakrishnan makes a distinction between three different approaches on improving the
TCP performance, when there are corruption-related losses in addition to congestion-
related losses [BPSK96]. Implications of link-layer protocols, split-connection approaches
and end-to-end solutions for improving the performance are compared in the study. The
best performance was gained by using a reliable link layer protocol. The study suggested
that end-to-end solutions should be favored, because by using proper TCP enhancements
a relatively good performance could be achieved without having support from the inter-

mediate network nodes.

3 TCP OVER SLOW WIRELESS LINKS 14

A reliable link layer protocol suggested above is used in the wireless networking envi-
ronment assumed in our performance analysis. We consider the link layer to do retrans-
missions persistently, which is also recommended in a recent study [Lud00]. If the link
layer does a small number of retransmissions and then gives up as a result of link outage,
the TCP sender will have to retransmit the segment in the same way it would have done
without any link layer error recovery method. Additionally, when the maximum number
of link layer retransmissions has been made, the link layer protocol may reset its state and
flush the transmission and receive buffers, causing several packets to be dropped. This
is done, for example, in the GSM RLP protocol. Therefore, use of persistent link layer
retransmissions may result in better performance at the transport layer. However, high
persistency on link layer retransmissions may cause competing error recovery between the
transport layer and link layer, i.e. spurious TCP retransmission timeouts because of the
additional delays caused by the link layer retransmissions. Moreover, when a packet is
retransmitted at the link layer, the following packets of all TCP connections using the
wireless link are blocked, thus the additional delay is experienced in all TCP connections

using the wireless link.

The Eifel algorithm was introduced to avoid the retransmission ambiguity caused by
spurious timeouts [LK00]. It uses the TCP timestamp option [BBJ92| to distinguish
the retransmissions from the original transmissions. If the TCP sender notices from the
timestamp information that a spurious retransmission has been made, it starts sending new
data instead of retransmissions. While this is a promising improvement, the use of TCP
timestamps inflicts a disadvantage: TCP timestamp adds 10 bytes of overhead in every
TCP segment, timestamps being not supported by the traditional header compression
methods [DMKMO0].

Improving the retransmission timer in order to reduce the number of spurious timeouts
has also been a subject of research. Eifel Retransmission Timer [LS00] tries to achieve more
accurate RTO calculations in occasions where the traditional RTO calculation algorithm
fails. Traditional RTO calculation depends heavily on the variance of RT'T measurements,
and the RTO value increases significantly if round-trip times are suddenly decreased for
some reason. The Eifel retransmission timer avoids inflation of RTO in cases when RTT
drops. Additionally, the Eifel timer uses different weight constants from the traditional
algorithm for RTT and RTO calculation in order to balance the effects of sudden changes in
RTT. The Eifel retransmission timer collaborates with the Eifel algorithm mentioned above

and adapts the timer to be less aggressive if the sender has done a spurious retransmission.

The effect of link layer error recovery has also been inspected by generating an analyt-

ical model of the environment in which there are link layer retransmission and bounded

3 TCP OVER SLOW WIRELESS LINKS 15

buffer size [CLM99]. Although using an analytical model to analyse TCP performance is
difficult due to various approximations that have to be made, it was concluded after the
analysis that link layer retransmissions do improve performance. The same result has also

been achieved by the experimental research described above.

There have been a number of suggestions to use a prozy in an intermediate node be-
tween the wireless link and the fixed network [BKG100]. A proxy can be transparent
to the TCP endpoints [BSK95], in which case the retransmissions made by the proxy
do not break the end-to-end semantics of TCP. Some proxies may break the end-to-end
semantics of TCP, which causes problems concerning the TCP reliability. For example,
if a proxy maintains state for different TCP connections, a sudden failure on the proxy
can make the TCP connections maintained by it unusable. If end-to-end IP level security
(IPsec) [KA98] is used, the proxy at intermediate node may not be able to parse the TCP
headers and operate correctly. In the most extreme case, a proxy may totally split the
TCP connection in two separate TCP connections, as done in the I-TCP protocol [BB95].
However, use of the proxies have been reported to improve the throughput between con-
nection endpoints [KRL197|. Because of the various disadvantages of using a proxy, an

end-to-end solution for improving the TCP performance is usually favored over using a

proxy.

Authors of NetReno identified too small a congestion window to be a potential rea-
son for retransmission timeouts when a packet drop occurs, for example, due to con-
gestion [LK98]. They suggested that the sender should send new packets for the first
two duplicate ACKs in order to avoid the problem. IETF has also suggested this ap-
proach [ABF01].

Alternative queue management algorithms for the bottleneck routers have been sug-
gested to avoid the congestion-related problems, such as the lock-out behaviour and the
resulting unfairness. Authors of the Random Early Detection (RED) [FJ93] algorithm
suggest that by dropping the packet randomly at the router before the router queue is
exhausted instead of the traditional tail-drop algorithm would alleviate the congestion-
related problems. We test the effect of RED on the TCP performance, and describe the
algorithm in more detail in Appendix D. FEzplicit Congestion Notification (ECN) [FR99]
has been suggested to be used with RED. If congested, an ECN capable router makes a
congestion mark in the IP header instead of dropping the packet. When the receiver gets
the marked packet, it provides feedback to sender in the TCP header, which then slows
down its transmission rate. As a result, the number of packet losses at the router should

be reduced.

4 TEST ARRANGEMENTS 16

4 Test Arrangements

In this section we describe the test methodology and objectives we are trying to attain with
our performance measurements. We describe the environment and arrangements used in
the performance measurements, such as the exact test parameters, workload models and
the TCP features to be used. Finally, we discuss the validity and possible inaccuracies in
the selected test model.

4.1 Methodology

The purpose of this study is to evaluate the performance of the current state-of-the-art
TCP in a wireless environment with properties described in Section 2 and compare the
effect of selected TCP enhancements on the TCP performance. We do the performance
tests for the test cases defined in this section and in case we observe suboptimal perfor-
mance, we identify the reason for the unwanted behaviour and try to estimate alternatives

which could be used to avoid the problematic behaviour.

We use a real-time software emulator for modelling the target environment. Using
software to emulate the environment has some benefits over measuring the performance in
the natural environment. With the emulator we can control the behaviour and properties
of the link and the emulated network architecture under TCP. For example, if we observe
an interesting TCP behaviour with a certain pattern of events on the link, exactly the
same pattern can be repeated with an alternative TCP implementation, which makes it
easier to compare the different TCP implementations. With the software emulator we may
also run predefined test configurations automatically, which makes the execution of the

performance measurements more convenient.

The weakness of using emulation for the performance tests is that the method is vul-
nerable to the errors caused by inaccurate approximations made in the emulation model.
Attaining the exact model of the target environment is usually very difficult and therefore
some approximations have to be made in the emulator. Before deciding on which details
are irrelevant to be modelled in the emulation, we must identify the objectives we want to
achieve with the measurements, and evaluate whether the approximations have significant
effect on the test results. We describe the possible inaccuracies in our software emulator
in Section 4.5, and discuss their significance on the measurement results.

We have chosen a relatively modern TCP implementation used in Linux kernel version
2.3.99-pre9 as the baseline to be used in our performance measurements, after modifying

it to conform the TCP specifications. Our baseline TCP implements NewReno congestion

4 TEST ARRANGEMENTS 17

control [FH99] which is an experimental TCP fast recovery algorithm suggested by IETF,
but which is likely to become (if not already) widely deployed in the TCP implementations
of various operating systems. It has been suggested that the implementation selected
as the baseline should be likely to be the state-of-the-art implementation of the near
future [AF99|, and we believe this is the case with our baseline. The details of our baseline

TCP implementation and the bug fixes we made to it are described in Appendix C.

Certain topics are of special interest in our performance tests. We are interested in
the performance implications of the excessive delays at the link layer. For example, by
studying delays which are long enough to cause a spurious retransmission timeout, we can
see what happens at the TCP level when the link layer error recovery and the transport
layer error recovery interact. By observing the effect of short delay which does not cause
spurious TCP retransmission timeout, we can see the effect of successful link layer error

recovery on the TCP performance.

There are various reasons (see Section 2) for the excessive delays to occur on the link.
Therefore we want to inspect the effect of excessive delays in general, although the delay
behaviour we are modelling resembles the one caused by the link layer retransmissions.
Throughout the analysis we use term additional delay when referring to the excessive
erratic link layer delay, which might have occured, for example, because of the link layer

retransmissions.

Another topic of interest is the effect of congestion at the last-hop router when the
bandwidth of the outgoing link is low and there are highly variable delays on the link.
Although the congestion effects can be observed already with one connection transferring
bulk data, we also study the behaviour of several parallel TCP connections to see whether
the interactions between the connections described in Section 3.4 are present when the
outgoing link from the last-hop router is significantly slower than the incoming link. We
analyse the congestion effects in the presence of excessive delays with small, medium and
large router buffer sizes to see how the selected router buffer size affects on the TCP

behaviour.

We evaluate the significance of certain implementation details which are left unspecified
in the TCP specifications. In particular, the NewReno fast recovery algorithm has different
variants which may have effect on the TCP performance when packet losses and excessive
delays are present. Finally, we evaluate the effect of various TCP enhancements on the

TCP behaviour when there are additional delays present on the slow link.

4 TEST ARRANGEMENTS 18

4.2 Modelling the target environment

The target environment consists of a mobile host which communicates with a fixed host
via a point-to-point wireless link and a last-hop router. We ignore the problems of the
global Internet in our tests and concentrate on the behaviour of the TCP on the wireless
link combined with a LAN. The bandwidth of the wireless link is 9600 bps. The sender
attached to the LAN is assumed to be able to provide traffic significantly faster than what
the wireless link can carry. We do not specify the exact rate at which the data arrives
from the LAN to the last-hop router, but consider it to be several magnitudes faster than
the bandwidth of the wireless link. The bandwidth of the LAN is 10 Megabits, of which

a small fraction is used for traffic not destined to the mobile host.

The upper section of Figure 4 illustrates the elements which are emulated from the
target environment. The last-hop router has a limited buffer size to hold 3 - 20 packets
transmitted downlink. The router buffer is dedicated to the wireless link, hence the traffic
destined to other mobile hosts does not have any effect on the performance of the TCP flows
under study. This is how ISPs usually configure their buffers in their last-hop routers for
the dial-up connections [LRK*99]. The uplink router buffer is not subject to congestion,
because it is not likely to be filled as the packets arriving in it from the slow wireless link
are immediately transmitted to the LAN having a significantly higher bandwidth than the
wireless link. Uplink and downlink packet flows are handled independently and they do

not interfere with each other in any way.

In addition to the router buffer, there are link send buffer (LSB) and link receive buffer
(LRB) at the both sides of the wireless link. The link buffers are needed to provide
a reliable service to the higher protocol layers using link layer retransmissions over the
unreliable link. When a link layer frame is lost because of the data corruption, the receiving
end of the link has to hold the following frames in the link receive buffer to deliver them in
order to the higher protocol layers. After the missing frame has been received, all data in
the link receive buffer is delivered to the higher protocol layers at once. After the sending
end of the link has received an acknowledgement of the successful transfer, it can release
the data from the link send buffer.

The bottom section of Figure 4 illustrates the emulation environment and its asso-
ciation to the target environment. We use Seawind software [AGKM98]| to emulate the
wireless link, link buffers and the router buffer shown in Figure 4. Seawind is a soft real-
time network emulator and it is described in more detail in Appendix E. The performance
tests were made using three Celeron class Pentium machines located on a private LAN with

a bandwidth of 10 Mbps. The network hosts were running the Linux operating system.

4 TEST ARRANGEMENTS 19

- data flow ‘ target environment ‘
ACK flow
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
Mobile host Last-hop router Fixed host

TCP connection 1 TCP connection 1
%QE‘%OO bps 22 M
D — variable <
TCP connection 2 delays Zolnstant TCP connection 2
elay

link buffers

Mobile host Emulation host Fixed host
LRB LSB input queue
. - IS ([0 ([10~--{-----
receiver 1D D [T sender
LSB delays LRB

private 10 Mbps LAN

emulation environment

GUI
file server

Figure 4: Network elements to be emulated and the arrangement of the emulation.

One of the hosts is the emulation host, taking care of the emulation of the wireless link
and the last-hop router. The Mobile host and the Fized host are the endpoints commu-
nicating with each other using one or several TCP connections. The TCP enhancements
that are used in the performance tests need to be implemented only in the endpoint hosts,
and the host running the emulator can run any operating system supported by Seawind.
Finally, the user controls the emulation by using a Graphical User Interface (GUI) located
in one of the hosts in the private LAN. This host gathers the log information generated
by Seawind.

The slow link is emulated by issuing appropriate transmission delay and propagation
delay for each packet. Link layer retransmissions are emulated by causing an error delay
for a packet. During the error delay no packets are released from the link receive buffer.
After the error delay all packets in the link receive buffer are forwarded to the receiving
host and they are removed from the link receive buffer and the link send buffer maintained

by Seawind.

The last-hop router queue is emulated using the input queue maintained by Seawind.
The traditional first-in-first-out scheduling is used on the input queue. If there is no room

for incoming packet in the input queue, Seawind discards the packet, similarly to what

4 TEST ARRANGEMENTS 20

the emulated last-hop router would do. Additionally, RED active queue management
algorithm described in Section 3.5 is available for handling the input queue. If there is

room in the link send buffer, packets are moved to it from the head of the input queue.

Packets with a specified IP address are transparently forwarded to Seawind at the
mobile and the fixed host. The workload packets are encapsulated within another TCP
connection between the corresponding endpoint and the emulation host. The endpoint
hosts can be used as if the connection was really made over a link with the emulated
parameters. In this way we can see the effects of the slow link in the entire communications

protocol stack all the way from the drivers level to the TCP level.

Because Seawind is designed to operate in real-time, the underlying hosts and network
need to be free from other CPU-intensive applications and heavy network traffic to ensure
as accurate results as possible. Therefore, during the performance tests there were as few
applications as possible on the hosts attached to the private LAN to ensure that most of
the CPU and network capacity were available for Seawind. Seawind itself uses CPU and
I/O requests sparingly (e.g. the 1-minute average CPU load level was below 5 % during
the performance tests). The extra transmission delay of no more than 1 - 2 ms caused by
the 10 Mbps LAN did not have a meaningful effect on the results, because Seawind slows
the TCP transmission rate down to 9600 bps. Additionally, there was a small amount of
Seawind control traffic in the network, but we estimated the network to be very lightly

loaded, allowing the Seawind packets to be transmitted without interference.

The core of Seawind is the Simulation Process (SP) located in the emulation host,
which handles every packet generated by the connection endpoints, delaying and possibly
dropping the packets. SP generates a log of its own in which it reports any delay caused for
a packet, queue status, packet drops and other meaningful events with an exact timestamp.
Analysing these logs together with the trace of packets from both connection endpoints

we can see exactly how each packet was affected during the test.

The accuracy of the different delays used to model the link characteristics is important
in order to obtain valid results. Because the Linux operating system does not guarantee
the accuracy of the timer events, the actual delay length is of special interest. SP prints a
warning message in the log if the requested delay was exceeded by more than 10 ms. In such
a case we evaluated the effect of the excessive delay on the TCP performance separately
and ignored the test result if the delay inaccuracy had effect on the TCP behaviour.
Additionally, we use median in our statistic reports to hide the effects of outliers caused
by the rarely occuring emulation errors. On an average the actual delay length differed
from the requested length by less than 2 ms.

4 TEST ARRANGEMENTS 21

We use Point-to-Point Protocol (PPP) [Sim94] as the link layer protocol between the
mobile and remote host. The IP packets carried in PPP frames have mazximum transfer
unit (MTU) of 296 bytes, which yields the TCP Mazimum Segment Size (MSS)* of 256
bytes. The overhead caused by PPP is 7 bytes for each packet, thus the size of the packets
transmitted through Seawind is 303 bytes. We selected a small packet size, because small
packets are recommended with slow links in order to guarantee reasonable response times
for interactive applications [MDK™'00]. PPP was configured to not compress the protocol
headers or the payload in any way. The compression mechanisms supported by PPP
are disabled primarily because evaluating the link layer compression mechanisms is out
of the scope of this study, although compression is an important topic when a slow link
is used. Furthermore, it is known that some compression mechanisms (e.g. VJ header
compression [Jac90|) are counterproductive if there are errors on the link [KFT00].

Table 1 summarises the default Seawind parameters used for our performance tests. A
detailed list with a description of the Seawind parameters is given in Appendix E (page
123). Summarising the table, SP emulates a static link bandwidth of 9600 bps with a link
propagation delay of 200 ms. A limited input queue is given for downlink traffic at the
SP, emulating the limited buffers at the last-hop router. The queue size limit is defined as
number of packets, but the amount of bytes in the input queue is not limited in any way.
The default policy for handling the packets which do not fit into the queue is ‘tail-drop’,
meaning that if the queue is full when a packet arrives, the packet is dropped, otherwise
it is appended to the queue. For some tests the RED queue management algorithm is also
used (see Section 4.4). In addition to the input queue, SP emulates the link send buffer
and the link receive buffer for holding four full-sized packets. Although the link buffer size
limit is given in bytes, partial packets are not inserted in the link buffers. We selected the
link buffer size appropriately to ensure that exactly four 303-byte packets always fit into
the link buffers.

We do not emulate link layer retransmissions for the uplink traffic. We decided to
do this simplification in order to limit the number of needed test cases and to make the
analysis of random tests easier. We believe that the effect of an additional delay for an
ACK packet does not differ meaningfully from the effect of delaying the corresponding
data packet, when inspecting the TCP behaviour. Some preliminary tests were made to

verify this.

* Mazimum Segment Size (MSS) is the maximum payload size transfered in a single TCP segment.

4 TEST ARRANGEMENTS

22

Table 1: Seawind parameters used in the emulation by default.

Parameter Name

Downlink value

Uplink value

input queue length 3, 7or 20 -
queue overflow handling | drop -
queue drop policy tail-drop -

link send buffer size
link receive buffer size

1220 bytes (4 pkts)
1220 bytes (4 pkts)

1220 bytes (4 pkts)
1220 bytes (4 pkts)

transmission rate 9600 bps 9600 bps
propagation delay 200 ms 200 ms
error handling delay -

error rate type per packet -

error probability varying -

error delay function varying -

NPA: mtu 296 bytes 296 bytes
NPA: mru 296 bytes 296 bytes

4.3 Metrics

As “performance” can be considered a relatively subjective concept, we need to specify
which metrics we want to measure. In this subsection we introduce the metrics we are
interested in our performance evaluation and justify why the particular metric is interesting

to us.

e Throughput is probably the most important metric when measuring the perfor-
mance of bulk data communication, because it is usually the most significant factor
affecting the end-user satisfaction. For the purposes of throughput, we measure the
elapsed time for transferring the data at the sender. When we are measuring the
elapsed time for entire connection, it is the time between sending the first TCP SYN
segment and receiving the acknowledgement for the FIN segment®. When measuring
partial connections, the elapsed time is the time elapsed from the first packet trans-
mitted to the reception of the acknowledgement for the specified amount of data. To
define the throughput, we divide the amount of data transferred by the elapsed time.
We also use the term acknowledged throughput interchangeably to emphasize that

the throughput measurements depend on the arrival rate of the acknowledgements.

STCP segments with a SYN flag are used in the three-way handshake that opens the TCP connection.
TCP segments with a FIN flag are used to indicate that the end-point is willing to close the connection.
Both end-points are required to transmit and acknowledge a FIN segment.

4 TEST ARRANGEMENTS 23

e Fairness between the connections can only be measured for tests with multiple
connections. To measure the level of fairness we use Jain’s fairness index [Jai91, p.
36|, which is directly derived from throughputs of the parallel connections. Fairness is
not very well defined, and its importance to the end user or the network administrator

is not very obvious. Nevertheless, we use this metric for supporting our analysis.

e Number of retransmissions strongly affects the throughput achieved with TCP
and is therefore an important metric. If we can reduce the number of retransmis-
sions, we will most likely improve the throughput. In our environment retransmission
can be triggered either by packet drop at the last-hop router or by a retransmission
timeout caused by excessive delay, in which case there are usually unnecessary re-
transmissions made. Therefore, an additional analysis is needed to support this

metric.

e Number of dropped packets directly affects the number of retransmissions, but
this metric gives the additional information needed to derive the number of unnec-
essary retransmissions. Because packet drops occur only because of last-hop router
buffer overflow in our environment, this metric measures the severity of the conges-

tion at the last-hop router.

In addition to the metrics described above there are some interesting metrics we are
not giving as much attention, but refer to them during the analysis. These metrics are

described below.

e Number of RTOs is difficult to automatically measure with the current tools we
have. However, the retransmissions triggered by retransmission timeout are relatively
easy to observe from the TCP traces manually. Before RTO is triggered, there is
usually an idle period substantially decreasing the link usage, hence the number
of RTOs is a significant factor affecting the throughput. Moreover, retransmission

timeouts are usually followed by unnecessary retransmissions.

e Number of unnecessary retransmissions is the difference between the number
of dropped packets and the number of retransmissions. The number of unnecessary
retransmissions is the measure of the inefficiency of the used protocol. If we would
have an optimal transport layer protocol, there would be no unnecessary retransmis-

sions.

e Router queue length can be used to measure the congestion at the last-hop router.
The larger the queue length, the more there is queueing delay for the packets at

the router. Therefore it is desirable to keep the queue length as short as possible.

4 TEST ARRANGEMENTS 24

Because the queue length varies depending on the decisions made by the TCP sender,
we follow the progression of the queue length over time to see the effects of the TCP

sender behaviour on the queue length.

In the basic case with a single TCP connection we measure the results for entire
connections transmitting 100 KB, starting from the first SYN segment transmitted to the
last acknowledgement received. However, when evaluating the results of tests with multiple
parallel TCP connections, choosing the measurement point is not as obvious as with a
single TCP connection. If one of the parallel TCP connections has acquired a noticeably
larger share of the link bandwidth and hence finished earlier than the other connections,
the other connections can have the bandwidth reserved by the fastest connection and
achieve a considerably improved throughput for the rest of the test run. Although this is
the realistic behaviour, for example when making multiple ftp transfers in parallel, it is

usually difficult to detect the unfairness at the beginning of the parallel connections.

For the reason described above, we also measure the results for the first 10 kilobytes of
the parallel TCP connections. At that point all the TCP connections are still running and
the unfairness can be observed in the difference of the throughput measurements. This
can also be justified by the observation that 80 % of the transfers from a WWW server
tend to be smaller than 10 KB [All00]. In a WWW-type transmission the throughput of
partial connections is interesting, because the user can see the progress of the transfer on
his desktop.

Finally, we have to decide on which of the parallel TCP connections we are making
the comparisons and conclusions made, i.e. which of the connections is the most inter-
esting one. Presenting the results from all of the parallel connections is not interesting
nor reasonable in most of the test cases. Furthermore, the throughputs of the parallel
TCP connections are often strongly interacting with each other. Usually, a significantly
improved throughput on one of the connections is only an indication of problems (e.g.
retransmission timeout) on the other connections. Although we inspect all of the connec-
tions run in parallel, we use the throughput of the connection finished last as the basis of

the conclusions made, because that is the point at which the test run is actually finishedS.

The test results are obtained by inspecting the transmitted and received IP packets
using the tcpdump tool [JLM97] in both endpoint hosts and then combined with Seawind

5 Total time was also considered as the basis of the analysis. It is the time difference between the first
segment of the first connection sent and the arrival of the last segment of the last connection. However,
because the SYN packets of the connections are transmitted successively by the parallel senders, the
elapsed time of the connection finished last differs only by tens of milliseconds from the actual total time,
and can therefore be used as well.

4 TEST ARRANGEMENTS 25

logs. We primarily use the measurements made in the sending (i.e. fixed) host in our
analysis. The tcpdump output is collected in log files and analysed using tools such as
tracelook [PS98|, matlab [Mat97| and tcptrace |Ost| in addition to our own scripts.

4.4 Selected test cases

We perform two kinds of analysis of TCP behaviour. Firstly, we measure the above-
mentioned metrics of a selected set of test cases and summarise the observed performance
based on the measured metrics. Secondly, we select the most interesting test cases and
analyse them in detail on the packet level to explain the reasons for the observed perfor-
mance. We use the baseline TCP implementation described in Appendix C as the basis
of our analysis, identifying the problems causing bad performance. Then we compare the
effects of the TCP enhancements listed below to see how they affect on the performance,
and whether the enhancements help in avoiding the problems observed with the baseline
TCP.

The different test cases are defined by considering three different factors: the work-
load model to be used in the test, the emulated network and link model, and the TCP

implementation we are using.

‘Workload

For the purposes of this study we have selected two workload models to be used in the

performance tests. The workload models are described below.

Single unidirectional bulk transfer The simplest workload model is to transfer bulk
data only in one direction using a single TCP connection. In this workload model we
transmit 100 KB of bulk data from the fixed end to the mobile end. We believe this
kind of unidirectional transfers to be rather usual in normal mobile networking, because
typically a mobile host is used as a client machine which downloads web pages or other
files from a fixed end server. The bulk data is generated using the ttcp tool. Bulk data
transfers are widely used in performance measurements, because they are simple and easy
to analyse. For the same reason we primarily use bulk data transfers in our performance

tests.

Parallel unidirectional bulk transfers Having several parallel TCP connections is

another common case in normal Internet traffic. For example, user may have active ftp

4 TEST ARRANGEMENTS 26

transfer while he is browsing web pages. We run a number of tests using this workload
model, because having multiple parallel TCP connections transmitting over a bottleneck
link has remarkable implications on the TCP behaviour, as described in Section 3.4. We
use 2 and 4 parallel TCP connections transmitting bulk data from the fixed host to the
mobile host using multiple ttcp processes running in parallel. Each of the connections are
used to transmit 50 KB of data.

SP configuration

As described above, our objective is to inspect the performance implications of the addi-
tional delays on a network path containing a slow link and a last-hop router with a limited
buffer size. Additional delays are defined in two different ways: we determine a simple ran-
dom distribution for the delay frequency to see how TCP behaves in a natural, randomly
behaving environment. For the tests with random additional delays we use a common
random distribution generated in advance for all test cases with all TCP implementations

to make the results more comparable.

In addition to the random delay tests we make tests with selected delay scenarios to
inspect certain details of the TCP behaviour more closely. In these tests we explicitly
define the location and the length of the additional delay based on the preliminary test
runs we have made earlier. We place an additional delay to occur just before the buffer
overflows the first time, during the fast recovery algorithm following the first packet drop,
and after roughly three quarters of the workload have been transmitted, when the TCP
behaviour has reached a steady state. Additionally, we test different delay lengths. The
length of the additional delay is related to the length of the retransmission timer, and is
chosen to be either shorter than what is required for the RTO to expire, long enough to
trigger an RTO and long enough to trigger an additional backed off RTO in addition to
the first RTO.

The different delay scenarios are combined with three different last-hop router buffer
sizes: a small buffer has space for 3 packets, a medium buffer has space for 7 packets and
a large buffer has space for 20 packets. One of the objectives in our performance tests
is to evaluate the effect of the buffer size on the performance of wireless communication
with excessive delays and show the problems observed with the different buffer sizes.
Our primary interest is not to find the exactly the optimal buffer size for different delay
scenarios, hence we have selected only three different buffer sizes to limit the number of

test runs.

Table 2 summarises the delay and buffer configurations we are using in our performance

4 TEST ARRANGEMENTS 27

tests. The table shows the combinations of buffer sizes and the different delay scenarios to
be tested. For each delay scenario the delay location as a packet count from the beginning
of the connection and the length of the delay in seconds are shown. Additionally, a brief
description of the test case is given. Each test case is repeated 20 times and the median of
the measurements is used in analysis to eliminate the effects caused by the possible erratic
behaviour in the test environment. When testing the different TCP enhancements we
select only the most interesting cases, based on the results of tests made with the baseline
TCP.

Table 2: Scenarios used in the performance tests.

Buffer Delay Description
(pkts)
3 - Small buffers, no additional delays
12th, 1 s. before the 1st overflow, less than RTO
12th, 6 s. before the 1st overflow, more than RTO
30th, 6 s. during the 1st fast recovery, more than RTO
30th & 50th, 6 s. | during the first two fast recoveries, more than RTO
rand. 0.01, 6 s. random delays of 6 seconds, packet delay probability 0.01
7 - Medium buffers, no additional delays
20th, 1.5 s. before the 1st overflow, less than RTO
20th, 6 s. before the 1st overflow, more than RTO
40th, 10 s. during the 1st fast recovery, more than RTO
300th, 6 s. after 3/4 of the data has been transmitted, more than RTO
20th, 15 s. before the 1st overflow, two successive RTOs
40th & 80th, 15 s. | during first two fast recoveries, more than RTO
rand. 0.01, 6 s. random delays of 6 seconds, packet delay probability 0.01
20 - Large buffers, no additional delays
40th, 4 s. before the 1st overflow, less than RTO
40th, 6 s. before the 1st overflow, more than RTO
100th, 12 s. during the 1st fast recovery, more than RTO
300th, 6 s. after 3/4 of the data has been transmitted, more than RTO
40th, 30 s. before the 1st overflow, two successive RTOs
rand. 0.01, 6 s. random delays of 6 seconds, packet delay probability 0.01

Selected TCP enhancements

Based on the assumed problems TCP has in the environment we are modelling, we test

a number of enhancements to see whether they improve the performance when compared

4 TEST ARRANGEMENTS 28

to the baseline TCP. Some of the enhancements are a modification of the TCP protocol
behaviour, whereas others require only adjusting a TCP configuration parameter. Ad-
ditionally, we measure the effect of using an active queue management algorithm at the
last-hop router instead of the traditional drop-tail queueing. The modifications are briefly
described below, and a more complete description of the modifications can be found in

Appendix D.

e Selective acknowledgements (SACK) [MMFR96] TCP option makes it possible
for the receiver to give more information in the acknowledgements about which seg-
ments have been received when there are more than one segment missing between
successfully received ones. With SACK it is possible to perform retransmissions
more efficiently than with the baseline TCP, because SACK allows several retrans-
missions to be made within a round-trip time. Because the slow start overshooting
at the beginning of the connection potentially causes several packets to be dropped
during one round-trip time (see Section 3.3), this TCP enhancement is expected to
improve the performance in our target environment. We use the SACK implementa-
tion provided in the Linux kernel, which uses the Forward acknowledgment (FACK)

algorithm [MMO96] on deciding when to transmit segments.

Because SACK is currently widely deployed on the Internet [AF99|, including it
in the baseline TCP could be well justified. However, use of the FACK algorithm
and the other details of the Linux implementation of SACK may cause performance

implications which we need to inspect separately.

e Initial congestion window of four segments has been suggested for enhancing
the TCP performance especially with short connections over high-delay links [AFP9S].
We measure the effects of this enhancement with short connections, but no mean-
ingful improvement is expected for the throughput in longer bulk transfers. It has
been reported that this improvement reduces the response times experienced with
interactive protocols, for example in web browsing [PN98|. Furthermore, a related
measurement report states that when a single TCP connection is used, initial con-
gestion window of 4 * MSS does not cause notable negative effects even when the
last-hop buffer can hold only 3 packets [SP98|. Although the environment assumed
in the report was similar to what we are modelling, we believe that having multiple
parallel TCP connections will result in different behaviour because of increased load

at the last-hop router.

e Shared advertised window limitation is assumed to reduce the number of packet
losses caused by overflow of the last-hop router buffer. We define an upper limit for

the size of the TCP window advertisement transmitted with acknowledgements in

4 TEST ARRANGEMENTS 29

order to reduce the number of outstanding TCP segments the sender is allowed to
inject in the network [DMKMO00|. By default Linux uses a socket buffer size of 32 KB,
which evidently is too large, as the bandwidth * delay product over the connection
path we are using is less than one kilobyte. The bandwidth * delay calculation is
based on the bandwidth of 1200 bytes per second and the estimated round-trip delay,
which consists of data packet delay of 450 ms, added with ACK delay of 250 ms. The
delay estimations include the propagation delay and the packet transmission delay.
If the number of outstanding segments is limited to be smaller than the bottleneck

link capacity augmented with the last-hop router buffer size’

, we believe the packet
losses due to an overflowing router buffer can be avoided. Additionally, limiting the
number of outstanding packets results in smaller queueing delays. This is appealing
optimisation, because it requires changes only at the receiving end. Usually it is
easier to modify the mobile system, which we assume to be the receiving end, than

a legacy server from which the data is sent.

This enhancement is expected to improve the performance of multiple parallel trans-
fers, because the available advertised window space is shared at the receiving host
equally among the TCP connections transferred over the wireless link. This means
that even if the number of parallel TCP connections increases, the total number of
outstanding segments is maintained the same as if there was only one connection
open. We expect to avoid the lock-out behaviour and the resulting unfairness with
this enhancement. We are not aware of other similar suggestions in the related stud-
ies®, although automatic adjustment of the socket buffer size for high-speed links has
been suggested [SMM98]. Sharing the receiver window can be considered an appli-
cation of the Control Block Interdependence [Tou97|, which has been previously used
for sharing the RTT estimates and the slow start threshold between the different
TCP connections.

e Random Early Detection (RED) [FJ93, BCC"98| does not require modifications
at the communicating endpoints, but is a stochastic active queue management algo-
rithm employed at the router. When using a drop-tail router with multiple parallel
TCP connections, the lock-out problem is likely to occur when the router becomes
congested. By using the RED algorithm at the router the lock-out problem should
be avoided, because RED drops the packets randomly before the router buffer be-
comes full. This should improve fairness among the parallel TCP connections. RED
also reduces the average queue length at the router and makes the queueing delays

shorter.

"We use the term pipe buffering capacity to refer to the maximum number of packets that can be

outstanding in the network at once.
8The idea of advertised window sharing was suggested by Markku Kojo.

4 TEST ARRANGEMENTS 30

We call the techniques presented above T'CP enhancements in the analysis, regardless
of the fact, that the RED algorithm could also be used with other transport protocols than
TCP.

4.5 Discussion of the model

Before proceeding to the test analysis, we briefly discuss the implications of the different
approximations we have made in our network model. Additionally, we discuss some of the
common pitfalls made in performance analysis and give a justification of why we believe
that our test results are relevant for analysing TCP behaviour over the target environment

we described.

A common mistake is to draw the wrong conclusions about the TCP performance based
on tests made using an irrelevant workload [AF99]. By using a single TCP connection
we may easily inspect the theoretical TCP behaviour, but the TCP behaviour in the
actual network with competing traffic is likely to be significantly different. Therefore it
is important to perform tests with competing traffic in addition to the tests with a single
TCP connection. Although an accurate model of the competing traffic in the Internet
is very difficult to come up with [PF97], our environment is easier to model, because we
only inspect traffic originating from the local network. Moreover, because the bottleneck
link from the last-hop router is isolated from the traffic of other mobile hosts, the type
of competing traffic is relatively limited. We use several parallel bulk transfers to inspect
the effect of competition, which is likely to cause synchronization effects that might not
be present in an open network. However, because we assume the bottleneck link to be
dedicated for the user, we believe that the workload model used is good enough to be
used in the performance evaluation, even when using only a single TCP connection as a

workload.

A specific TCP implementation may contain features and bugs which have an unwanted
effect on the performance. In particular, older versions of Linux are known to contain
several features which cause incorrect behaviour [Pax97a]. Eliminating the known bugs
in the Linux TCP implementation has been one of our special interests and an extensive
set of preliminary tests were run before the actual performance tests in order to verify
that the TCP implementation works correctly (the bug fixes that were made are listed in
Appendix C). It is also important to be familiar with the TCP implementation and the
corresponding specifications in detail to draw the correct conclusions from the test results
and not to make too strong statements because of the implementation-specific features.
We believe this is the case with our performance analysis. Furthermore, we analyse most

of the test cases in detail using the tracing and the visualisation tools mentioned above in

4 TEST ARRANGEMENTS 31

order to verify that the TCP endpoints have behaved according to the specifications.

Using additional delays in general to model the link-layer retransmissions, pre-emptive
QoS scheduling or other behaviour of the underlying network architecture is an approxi-
mation which deserves to be discussed. Our model of delays resembles the behaviour of
link layer retransmissions, which differs from the implications caused by excessive queue-
ing delay, for example. However, because we are inspecting TCP performance, we are not
interested in the reasons behind the modelled delay in detail, but the consequences the
excessive delays have at the TCP layer, which are distorted RTO estimates and spurious
timeouts. Furthermore, an important question is whether the occurances and the lengths
of the additional delays resemble any real world case. As we do not have any measured
data of the actual delay behaviour in the natural environment with actual link-layer pro-
tocols, we avoid making definite conclusions concerning any specific wireless architecture

and discuss the effect of excessive delays on the TCP performance in general.

The accuracy of the delay lengths affecting the packets is an important issue, because
the emulation is performed on a real-time basis. As described in Section 4.2, we tolerate
inaccuracies up to 10 ms in the actual length of the delays. This kind of inaccuracy
was very rare during our tests. Furthermore, a similar kind of variance in transmission
delay could occur in the target environment, for example because of byte stuffing done by
PPP?. However, we have been cautious to avoid byte stuffing from occuring in our tests

by assuring that the TCP payload does not contain characters that would be stuffed.

Another factor which could cause unwanted inaccuracy is that the workload data is
encapsulated within another TCP connection to be forwarded to Seawind. The congestion
control mechanisms used for the outer TCP connection between a connection endpoint
and Seawind could lead to notable inaccuracy. This is not the case with our tests, because
the TCP MSS on the LAN is 1460 bytes, which can easily hold at least four packets from
the actual workload. Secondly, we have disabled the Nagle’s algorithm'® from the outer
connections to enforce the segments to be transmitted timely. By reviewing the TCP
traces we verified that the behaviour of the outer TCP connection does not have any

notable effect on the emulation accuracy.

Seawind handles the data in the granularity of IP packets, which causes slight inaccu-

racy, for example when defining buffer sizes in bytes. A real link layer protocol usually

Obyte stuffing occurs if the PPP payload contains bytes that are used as terminal control characters.

All such bytes are replaced by a two-byte sequence, which causes variance in the length of PPP frames.
10 Nagle’s algorithm [Nag84] makes the TCP sender delay the transmission of an under-sized segment

until the next acknowledgement arrives in order to make it possible to collect more data in the same
segment before transmitting it. For the workload segments Nagle’s algorithm does not have an effect,

because we always transmit full-sized segments in out workload.

4 TEST ARRANGEMENTS 32

fragments the IP packets into smaller units (e.g. GSM RLP uses frames of 240 bits), but
the delay probabilities and lengths are defined on the granularity of IP packets in our
emulation. However, we inspect the results at the TCP layer which handles the data as
whole segments, thus the inaccuracy is not meaningful in our tests as long as the final

result, an additional delay observed by the TCP receiver, is correct.

5 ANALYSIS OF THE BASELINE TCP 33

5 Analysis of the Baseline TCP

We analyse the baseline TCP implementation with various delay scenarios and three differ-
ent router buffer sizes described in Table 2 on page 27. Our goal was to evaluate whether
the problems described in Section 3 can be observed experimentally and whether there are
additional problems caused by the implementation we are using. We take a detailed look
at the problems to understand how the behaviour should be changed in order to improve
the TCP performance. Another motivation for the detailed analysis is to validate the

experimental results.

5.1 Single unidirectional connection

In this subsection we analyse the results of tests with single connection workload. 100
kilobytes of bulk data were transmitted from the remote host to the mobile host and
only acknowledgements were transferred upstream. Results of single connection tests are

summarised in Table 14 in Appendix A.

Effect of the router buffer size

The summary of test results in Table 14 in Appendix A shows that the smaller the router
buffer, better the resulting performance, if there are additional delays involved. If there
are no additional delays, the medium router buffer size gives the best throughput and the
least packet drops. The large router buffer size yields slightly worse performance than

small or medium buffers.

There are two distinct patterns of how the packets are dropped at the last-hop router.
During the slow start there are usually several packets dropped in a single round-trip
time because of slow start overshooting. After the slow start the sender enters congestion

avoidance, during which one packet is dropped occasionally at constant time intervals.

The number of packets dropped because of slow start overshooting can be estimated
analytically when there are no additional delays on the link. We observed that the number
of packets dropped during slow start is exactly one more than what the pipe capacity is,
with an exception of the extremely small router buffer size of one packet. The reason for
the exceptional result with the router buffer size of one packet is not verified, but we believe

it to be due to possible phase effects!! caused by the small pipe. We describe the events

"Phase effects related to TCP communication are analysed by Floyd and Jacobson [FJ92], and we do
not discuss them any further in this study.

5 ANALYSIS OF THE BASELINE TCP 34

causing the packets to be dropped in detail to justify the above presented statement.

The events following the slow start overshooting are illustrated in Figure 5. The figure
illustrates an environment with pipe buffering capacity of 8 packets; the router buffer
size is 3 packets, the link send buffer can hold 4 packets and one packet is outstanding
elsewhere in the network (e.g. at the receiver) before the acknowledgement for it arrives at
the sender. Similarly, by adding 5 packets to the router buffer size used we can determine

the available buffering capacity for all the test cases analysed in this study.

18000 - !

16000 -

14000 -

12000 -

bytes

10000 -

8000 \
\ \

6000 \\

\

\

Sequence number

fooor

2000 -

packet dropped _|

== data sent

~—— ackrevd

of, 1 I 1 I 1 I 1 1
0 2 4 6 8 10 12 14 16

Figure 5: Implications of slow start overshooting with router buffer size of 3 packets.

The first packet is dropped because of router buffer overflow when the congestion win-
dow size exceeds the pipe capacity. For example, with a router buffer size of 3 packets
the congestion window size is 9 * MSS at the time of the first packet loss. At this point
there are 8 packets in the pipe between the sender and the receiver, for which the acknowl-
edgements will eventually arrive to the sender. Each of these acknowledgements indicates
that one packet has successfully arrived to the receiver. Every packet is acknowledged
separately, because the delayed acknowledgements algorithm'? does not have effect with

the slow link we are using. Because the sender is in slow start, it will transmit two new

2 Delayed acknowledgements algorithm causes the acknowledgement to be held back at the receiver
for short amount of time (usually 200 ms) in order to make it possible to acknowledge more than one
segments at a time. Because the transmission delay of a 303-byte packet over 9600 bps link is larger than
200 ms and Linux refrains from delaying acknowledgements when packets arrive at a low rate, delayed

acknowledgements do not usually have effect in our environment.

5 ANALYSIS OF THE BASELINE TCP 35

segments for each incoming acknowledgement into the network, of which one does not
fit into the router buffer and is therefore dropped. Hence, the number of packet drops
following the first packet loss is equal to the pipe capacity.

Another pattern in which the packets are dropped can be observed during the conges-
tion avoidance phase after the first buffer overflow. The packet drops occur in constant
time intervals, the frequency of the packet drops being determined by the router buffer
size. The packets are dropped because the congestion window size increases by one MSS
for each round-trip time and eventually exceeds the pipe capacity, causing the router buffer
to overflow. The smaller the router buffer, the more frequently the packets are dropped

during the congestion avoidance.

Table 3 shows the number of packets dropped separated into packet losses during the
first slow start and packet losses during the congestion avoidance, which the sender uses
for the rest of the test run after the slow start overshooting. It can be noticed from the
table that there are least packet losses with a router buffer size of 7 packets, which explains
why the throughput is best with that router buffer size. However, the optimal buffer size
depends on the amount of transferred data, because the number of packet losses during the
congestion avoidance increases with the amount of transferred data. On the other hand,
the number of packets dropped during the first slow start is usually the same regardless of
the amount of data transferred, as long as enough packets are transmitted to trigger the

fast retransmit.

Table 3: Number of dropped packets during slow start and during congestion avoidance

Buffer size | Pipe Drops / slow | Drops / | Drops total
(pkts) capacity start congestion
(pkts) avoidance
1 6 9 13 22
8 9 9 18
12 13 4 17
20 25 26 1 27

Based on the justification given above we constructed Equation 1 to estimate the num-
ber of packet losses caused by a router buffer overflow with a single TCP connection, when
there are no packet corruption on the link and no retransmission timeouts occur. Due to
reasons described in the footnote above, it is assumed that the delayed acknowledgements
do not have effect on the TCP behaviour, and that the fast recovery algorithm is equally
aggressive to the congestion avoidance algorithm, as it is in our baseline TCP implementa-

tion. Moreover, the equation assumes that the data transmission is not application limited,

5 ANALYSIS OF THE BASELINE TCP 36

i.e. it is bulk transfer. We tested the equation against the experimental results in Table
3, and got matching results excluding the test case with a router buffer size of 1 packet,
which was briefly discussed above. Although we skip the formal proof of the equation at
this time, we believe the equation is useful when estimating how the router buffer size and

the amount of data to be transferred affect the number of dropped packets.

Let m be the number of non-retransmitted segments to be transmitted, i.e. the amount
of the workload data divided by the MSS, which is 400 with our test cases. Let n be the
pipe buffering capacity plus one, i.e. the congestion window size at the moment when

packet loss occurs. The result estimates the number of packet losses during the test run.

2(m — 2n)
(n+1) = ([n/2] = 1)(n/2])

== J+n 1)

The packet losses due to slow start overshooting cause the acknowledged throughput
to be significantly lower for the duration of the fast recovery algorithm following the
packet losses. As described in Section 3, the NewReno TCP sender can do only one
retransmission in a round-trip time during fast recovery. Hence, the larger the router
buffer, the more round-trip times are needed before the sender has retransmitted the
segments dropped due to slow start overshooting. Moreover, the round-trip time gets
higher for each retransmission, because our TCP implementation increases the number
of outstanding segments with each retransmission during the fast recovery, causing the
queueing delay at the last-hop router to gradually increase. The increasing round-trip

time can also be observed in Figure 5 on page 34.

Table 4 shows the the measured acknowledged throughput for transmitting given
amount of data with different router buffer sizes. The table shows that although the
throughput is very low at the time when the sender is in fast recovery (marked as (FR)
in the table), the final throughput is not significantly lower than the optimal value'? after
100 kilobytes have been transferred. This is because the fast recovery algorithm allows the
sender to transmit new data when new duplicate acknowledgements arrive, hence keeping

the communication path utilised.

Effect of the additional delay length

We made tests with additional delays of selected lengths to see the effect of the delays
on the TCP performance and to find possible problems in the behaviour of the baseline

TCP. We were interested to see how an additional delay affects the occurance of buffer

13 Tests with unlimited router buffer and without additional delays yield throughput of 1003 Bps [Kuh]

5 ANALYSIS OF THE BASELINE TCP 37

Table 4: Achieved throughput in bytes per second after the given amount of data has been

transmitted and acknowledged with the last hop router buffer size shown.

Buffer 3 KB 5 KB 10 KB 25 KB 50 KB 100 KB
size

(pkts)

1 830.4 602.2 (FR) | 785.1 933.8 973.0 985.4

3 831.1 631.1 (FR) | 677.7 949.8 981.7 978.9

7 831.2 896.6 564.6 (FR) | 923.6 9814 998.3

20 831.5 896.5 952.5 500.3 (FR) 923.3 967.3

overflows in cases when the delay did not cause the retransmission timeout to expire, and
on the other hand, how does a spurious retransmission caused by the additional delay
and the resulting go-back-N behaviour affect the performance. Furthermore, we tested
an additional delay which was long enough to cause a backed off'* retransmission for
a segment in addition to the first retransmission of the same segment triggered by the

retransmission timer.

An additional delay shorter than what is required for the RTO to expire does not cause
significant effect on the throughput. Because the additional delay primarily emulates link
layer retransmissions maintaining the ordering of the packets, the packets that are in the
link buffers are considered to be transmitted to the receiving end during the additional
delay!'5. All the packets which have arrived to the link receive buffer during the additional
delay are delivered to the higher protocol layers at once. After the packets are delivered
to higher protocol layers, they are removed from the sending and receiving link buffers.
Therefore, the next four packets from the router queue can be moved to the link send

buffer, making room for four new packets in the router queue.

Because all the packets in the link receive buffer are delivered to the receiving host
at once after an additional delay, the receiver generates a burst of acknowledgements.
These acknowledgements arrive at the sender in a higher rate than normally, when the
ACK segments were clocked by the steadily incoming data segments.'® If the sender is
in slow start, it increases the congestion window size by one segment for each incoming

acknowledgement and transmits a short burst of data into the network. Similar behaviour

MDue to retransmission ambiguity the RTO estimate and RTT measurements are not made for the

retransmitted segments. Instead, the RTO value is backed off to be twice its previous value [KP87].
5This assumption does not hold, if the delay is not caused by link level retransmissions.
'$The transmission delay of an ACK segment without data is less than 40 ms with a link bandwidth of

9600 bps, whereas the transmission delay of a full-sized segment is approximately 250 ms.

5 ANALYSIS OF THE BASELINE TCP 38

has been noticed also in the related work with similar link characteristics [CLM99, LK00].

The behaviour caused by a small additional delay is illustrated in Figure 6. The number
of packets dropped in test case with short delay is reduced by 1-2 packets when compared
to the corresponding test cases without additional delays. The number of packet losses
is smaller, because the receiver uses the delayed acknowledgements algorithm when send-
ing the burst of acknowledgements. The delayed acknowledgements algorithm causes the
receiver to generate less acknowledgements than normally, hence the sender increases its
congestion window less aggressively and transmits less segments after the small additional

delay than when there was no additional delay.

14000 - -

12000 - -

10000 - - | -

=)

o

S

o
T

I

@
=]
=]
=]

E/! \ e
6 packets droppef 3 \\ N
4000 -
2000 -
I |
0 2

Figure 6: A short additional delay in the beginning of connection. The router buffer size
is three packets.

Sequence number, bytes

packet dropped 7

== data sent
~—— ackrcvd

L \ L L L

4 6 8 10 12

When an additional delay long enough to trigger a spurious retransmission timeout
occurs, the performance suffers significantly. Figure 7 shows the events following the
spurious retransmission timeout. When the unnecessary retransmissions arrive at the re-
ceiver, it considers them out-of-order segments and generates a duplicate ACK for each
retransmitted segment. The sender reacts to the duplicate ACKs by doing a fast retrans-
mit and unnecessarily entering the fast recovery algorithm, causing yet more unnecessary

retransmissions and unnecessary deflation of the congestion window.

The problem of the needless fast retransmit caused by duplicate ACKs after unneces-

sary retransmissions is also identified by the authors of the RFC describing the NewReno

5 ANALYSIS OF THE BASELINE TCP 39

14r

12

DUPACKs caused by
0.8 # —of—
o out-of-order segments
go-back-N| .
spurious
RTO
0.4 Cap
- - == datasent | |
RTO expireg
I I
10

Sequence number, bytes

—— ackrevd

I I I I
15 20 25 30
Time, s

5

Figure 7: A spurious timeout triggered by an additional delay of 6 seconds.

algorithm [FH99|. Therefore it is recommended that fast retransmit and fast recovery
should not be entered when retransmitting after a retransmission timeout. This is to avoid
the unnecessary fast retransmit caused by the duplicate ACKs, which causes the sender
to enter fast recovery algorithm and unnecessarily retransmit another window of segments
in addition to the segments retransmitted after the spurious retransmission timeout. The

above-mentioned rule is called “NewReno bugfiz”.

Two variations of the NewReno bugfix have been suggested. The less careful variant
disables the fast retransmit and the fast recovery algorithm until the segments up to the last
originally transmitted segment before the retransmission timeout have been acknowledged.
This variant is implemented in our baseline TCP, but it does not help in avoiding the
unnecessary fast retransmit caused by the out-of-order segments, as can be seen in Figure 7.
The careful variant disables the fast retransmit and the fast recovery algorithm until more
segments have been acknowledged than what was transmitted before the retransmission
timeout. This variant avoids the unnecessary fast retransmit and fast recovery caused by
unnecessary retransmissions, but it may cause an additional retransmission timeout in a
scenario in which the first of the new data segments transmitted after the retransmission

timeout is dropped.

The effects caused by the additional delay triggering a spurious retransmission timeout

5 ANALYSIS OF THE BASELINE TCP 40

varies depending on the location in the data flow at which the delay occured. The TCP
sender takes different actions depending on whether there are packets dropped before the
additional delay or after the additional delay. These cases are discussed later in this sec-
tion. Nevertheless, the reason for decreased throughput is the unnecessary retransmissions

triggered by the spurious retransmission timeout.

An additional delay long enough to trigger two retransmission timeouts for the same
segment is rare in the natural environment, but could occur, for example, as a result
of a bad link outage. Two successive retransmission timeouts may significantly diminish
the achieved throughput. This is not only because the delay is longer, but both of the
retransmission timeouts back off the calculated RTO value by doubling its length twice. If a
retransmission is lost after the retransmission timeouts, a long idle period follows, because
the only way to recover from a dropped retransmission is to wait for the retransmission
timeout to expire. Because the retransmission timer was backed off twice, the RTO length
will be four times the original value measured from the RTT samples. Moreover, the larger
the router queue length at the moment of the additional delay, the longer the RTO length
will be, because the queueing delay increases the measured RTT values. This occured in
our tests with the additional delays causing two successive retransmission timeouts, which

resulted in collapsed throughput.

In Table 14 in Appendix A we can see that if the additional delay does not cause a
spurious retransmission timeout, it does not have negative effect on the TCP performance.
In fact, with small router buffer the throughput is slightly improved. On the other hand, an
additional delay which causes a spurious retransmission timeout will lower the throughput,
especially when it is followed by packet losses due to buffer overflow. In addition, the table
shows that larger the router buffer, worse is the performance when an additional delay long

enough to trigger a retransmission timeout occurs.

Effect of the additional delay location

We made tests with an additional delay long enough to cause a spurious retransmission
timeout in a selected location of the test run. In particular, we were interested to see the
effect of an additional delay which occured during the initial slow start, before there are
packets dropped due to slow start overshooting. Further, we made tests with an additional
delay that occured during the fast recovery following the first slow start overshooting and
an additional delay that occured during the congestion avoidance later in the test run.
We concentrated only on delays long enough to cause a spurious retransmission timeout,
because preliminary test runs revealed that a shorter delay does not cause surprising effects

which would deviate from what was described above, regardless of the location of the short

5 ANALYSIS OF THE BASELINE TCP 41

additional delay.

Figure 8 illustrates a connection in which an additional delay of 6-seconds triggers a
retransmission timeout. After the retransmission timeout the sender starts retransmitting
segments unnecessarily using slow start, as explained in Section 3.2. Moreover, the receiver
sends a burst of ACKs because the whole link receive buffer has been delivered at once
after the additional delay, which results in a burst of segments transmitted by the sender

using the slow start algorithm.

8000

7000

6000

bytes

5000

4000

3000

Sequence number,

1000 RTO -
packet droppe

o : ——= datasent | |
—— ackrcvd

1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18
Time, s

Figure 8: An additional delay of 6 seconds in the beginning of connection. Router buffer

size is three packets.

Some of the originally transmitted segments are dropped at the router due to buffer
overflow soon after the sender has transmitted the segment which suffered from the addi-
tional delay. Because of this, some of the retransmissions after the spurious timeout are
not unnecessarily made. Unfortunately, two of the necessary retransmissions are dropped
due to router buffer overflow. Because the NewReno bugfix is implemented in our TCP,
the sender cannot do fast retransmit and enter the fast recovery, even though more than
three duplicate ACKs arrive. Therefore, the sender must wait for the retransmission timer
to expire. Because the sender is retransmitting, it must use the backed off retransmission
timer, which has twice the value of the first RTO that occured due to the additional de-
lay. Before the retransmission timer expires, the sender cannot transmit new data and

the throughput deteriorates significantly. This scenario occurs every time a necessarily

5 ANALYSIS OF THE BASELINE TCP 42

made retransmission is dropped when retransmitting after a retransmission timeout, and

it indicates that the NewReno bugfix can also be a reason for bad performance.

An additional delay which occurs during the fast recovery after the initial slow start
does not cause as notable decrease in throughput as the additional delay which occured
just before the first packet loss. This scenario is illustrated in Figure 9, which shows
that the fast recovery algorithm is interrupted by the retransmission timeout, which is
followed by retransmissions using the slow start algorithm. Because there were packets
dropped at the last hop router before the additional delay, all retransmissions following
the spurious retransmission timeout are not unnecessarily made. Therefore the number of
duplicate ACKs caused by out-of-order segments is smaller. Similarly, several segments
are cumulatively acknowledged with a single acknowledgement during the go-back-N re-
transmission phase, which causes the sender to transmit small bursts of data segments

during the retransmissions.

x 10
T

25
oL
@
2
>
3
3
]
£
S 15F
[
8
2
5]
S
o
[y
0 |
\
1k
\
\
‘\ = RTO
packet droppe
\
L 10s. dela == datasent
05f — ackrevd |
1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40

Time, s

Figure 9: An additional delay during the fast recovery following the first router buffer
overflow. The router buffer size is 7 packets.

The out-of-order segments caused by the unnecessary retransmissions made after the
spurious retransmission timeout cause a spurious fast recovery because the careful variant
of the NewReno bugfix is not implemented in our baseline TCP. During the unnecessary
fast recovery the router buffer becomes full, because the partial ACKs cause the number

of segments outstanding in the network to be increased gradually. After the router buffer

5 ANALYSIS OF THE BASELINE TCP 43

has become full, every new segment sent with a partial ACK is dropped, which indicates

that sending new data with the retransmissions on partial ACKs should not be allowed.

An additional delay which occurs during the congestion avoidance after roughly three
quarters of the 100 KB transfer have been completed does not cause as severe problems
in the TCP behaviour as the additional delay which occurs in the beginning of the test
run. Figure 10 illustrates an additional delay during congestion avoidance. We can see
that the number of unnecessary retransmissions depends on the congestion window size
at the moment when the segment is delayed. The number of unnecessary retransmissions
is usually higher with large router buffer, because a larger router buffer size allows the

congestion window to be larger.

88

© ©
) N} >
T T T

Sequence number, bytes

e
©
T

P RTO
7.6 = packet dropped |
== data sent
~— ackrcvd
AL Il Il Il Il Il i
75 80 85 90 95

Time, s

Figure 10: An additional delay during the congestion avoidance. The router buffer size is
7 packets.

In addition to the selected single-delay tests, we made a test with two additional delays
of which the first occurs during the fast recovery following the first packet loss and the
second occurs during the spurious fast recovery triggered by the out-of-order segments
caused by the first delay. However, the second delay did not cause surprising performance
implications, but similar spurious retransmission timeout followed by slow start than what

single additional delay did when it occurred during fast recovery.

5 ANALYSIS OF THE BASELINE TCP 44

5.2 Multiple parallel unidirectional connections

We evaluated the performance of multiple parallel TCP connections sharing the wireless
link. Each of the TCP connections were transmitting 50 kilobytes of unidirectional bulk
data. We primarily measured throughput of the connection which was finished last to
see the effect of competition over the bottleneck link. Additionally, we inspected fairness
among the parallel TCP connections, as unfairness was identified as a problem in Section
3.4.

Two parallel connections without additional delays

We made a set of tests with two parallel unidirectional TCP connections when no additional
delays occured on the link. A summary of the results of the full TCP connections can be
seen in Table 15 in Appendix A. Additionally, we have extracted the results for the first
10 KB of the parallel TCP connections in Table 16 in Appendix A. When observing the
results of the full TCP connections, one can notice that although the large router buffer
results in unfair sharing of the bandwidth, the best throughput can be achieved with it.
However, as explained in Section 4.3, we are not usually interested in the results of full
connections, hence we primarily inspect the results from the first 10 KB of the parallel TCP
connections, in which case using the small router buffer results in the highest throughput,

when there are no additional delays on the link.

A detailed look at the test results reveal that the behaviour of the parallel TCP connec-
tions changes during the test because of the interaction between the connections. Figure
11 shows the two parallel TCP connections transmitted through a last-hop router with a
buffer size of 20 packets. Sender A has transferred 10 kilobytes in 25 seconds, but it takes
41 seconds for sender B to transfer the same amount of data. However, sender B transfers
all of the 50 kilobyte workload in 91 seconds, but connection A is not finished until 102
seconds have passed. The change in the TCP behaviour occurs because most the packet
losses caused by the slow start overshooting are concentrated on connection A, because

sender A transmitted more segments before the router buffer overflow.

When there are parallel TCP connections transmitted over the wireless link, each
window of segments for a particular connection is transmitted separately over the link, as
described in Section 3.4. Because the senders are in slow start, they double the congestion
window size on each round-trip time. As a result, the queueing delay perceived by the
competing sender doubles each round-trip time. Because increasing the congestion window
for one sender results in increased amount of delay for the other sender, the unfairness

between the connections increases as the congestion window gets larger. Therefore, for

5 ANALYSIS OF THE BASELINE TCP 45

10" Connection A 1ot Connection B

@ > ~ m
T T T
=) ~ ®

o
T

»
T

Sequence number, bytes
~
T

Sequence number, bytes

N
3

S AR | X\
T |
A /“ i == datasent| | L A\ \\ \ =——— datasent| |
ack revd \ ack revd

\
[win f — win
i i i i I i i i i i i h I I
0 20 40 60 80 100 120 0 10 20 30 40 50 60 70 80 90 100
Time, s Time, s

Figure 11: Two parallel connections through a router buffer of 20 packets.

most of the time during first slow start sender A has transmitted almost twice as much
segments than sender B and the congestion window size for sender A is twice the congestion

window size for sender B.

When the last-hop router buffer is filled up, several packets are dropped because of the
slow start overshooting, as observed with the single connection tests. This causes both
senders to enter the fast recovery algorithm at the same time, illustrating the problem of
global synchronization discussed in Section 3.4. Because sender A has significantly larger
congestion window size than sender B, most of the dropped packets are transmitted by
sender A. Therefore, sender B has less retransmissions to be made, thus it can finish
retransmitting and proceed with the congestion avoidance algorithm, while sender A is

still retransmitting.

After the senders have made the fast retransmit, the pipe between the sending host
and receiving host gets empty before the senders start transmitting again using the fast
recovery algorithm!”. Once the senders have started transmitting again, they increase the
congestion window size by one segment only once in a round-trip time (due to partial
ACKs or due to congestion avoidance), hence the senders are transmitting at equal rate

from that point on.

The reason why connection A ends up with lower throughput than connection B is

1"Reno and NewReno require that the number of outstanding segments is halved after the third duplicate
ACK, but because most of the segments are dropped, the pipe is empty after the sender has received
duplicate ACKs worth half of the congestion window. By using the rate-halving algorithm [SM99] the
pipe could be utilised more efficiently.

5 ANALYSIS OF THE BASELINE TCP 46

that one of the segments sent by sender A during the fast recovery is dropped. Moreover,
because several segments are dropped earlier, the advertised window limit of sender A is
reached during fast recovery and after reaching the window limit, sender A cannot send
new data when receiving partial ACKs. Therefore there are no duplicate ACKs arriving
to trigger the retransmission and sender A has to wait for the retransmission timeout to
expire, which causes an idle period of 13 seconds in the transfer. However, this occurs only

in the test case with a router buffer size of 20 packets.

When a last-hop router with a small buffer is used, the first buffer overflow occurs
earlier and the congestion window size has not inflated as much as in the above-presented
example. Both of the parallel TCP connections suffer from a short fast recovery period
after the first packets are dropped at the router. After the fast retransmit the connections
get equal share of the link bandwidth in a similar way described above for the test case
with large router buffer. As a result, the best fairness can be achieved when using the

router with small buffer.

Two parallel connections with additional delays

When there are additional delays at the link shared by two parallel TCP connections, the
results differ remarkably from the scenarios without the additional delay. The results in
Table 16 in Appendix A show that with a small and medium router buffer, the presence of
additional delays causes unfairness among the TCP connections when inspecting the first
10 KB of the parallel TCP connections.

When the a small router buffer is used, an additional delay causes the most substantial
effects on the performance. Using the small router buffer increases the probability of having
a retransmitted packet dropped when retransmitting after a retransmission timeout, which
results in another retransmission timeout because of the NewReno bugfix. Additionally,
the queueing delays are smaller with the small router buffer, which causes the calculated
RTO value to be smaller and the probability of retransmission timeouts to be higher. When
one of the TCP connections suffers from a retransmission timeout, another connection is
likely to benefit from that, because it can use the whole bandwidth of the link while the

sender of the other connection waits for the retransmission timer to expire.

Figure 12 gives an example of the effects of an additional delay causing a spurious
retransmission timeout for both TCP senders when the last-hop router buffer size is 3
packets. Connection A transmits 10 kilobytes of data in 25 seconds whereas connection B
uses 71 seconds for transmitting the same amount of data. The figure also illustrates the

lock-out problem which was discussed in Section 3.4.

5 ANALYSIS OF THE BASELINE TCP 47

Connection A Connection B

18000 B 18000

16000 - B 16000

14000 14000

bytes

8
5 12000 12000

imber,

2
€ 10000 E 10000+

8
S 80001 8000

Sequence

@
6000 6000

4000

4000

2000(- 2000(-
s data sent

ack revd

7 =——= datasent
B ack revd
o ‘ E

i L i i L i i L I i |
0 5 10 15 20 25 0 10 20 30 40 50 60 70 80
s

Figure 12: Two parallel connections through a router buffer of 3. An additional delay of

6 seconds occurs on 12th packet.

After the additional delay triggering the spurious retransmission timeout is finished,
both senders start retransmitting using the slow start algorithm. However, because of the
small router buffer size used, segments from both connections are dropped, which causes
another retransmission timeout for both senders, because the NewReno bugfix does not
allow the senders to retransmit after receiving three duplicate ACKs. Sender B has a
higher RTO estimate than sender A, because it suffered from higher queueing delays at
the beginning of the connection due to the packet separation effect described above. The
difference in the throughput is further emphasized, because the RTO estimates for both

senders are backed off once because of the earlier spurious retransmission timeout.

Because of the different RTO estimations between the two senders, sender A restarts
the transmission first after the second RTO at 17 seconds, while sender B is still waiting
for its retransmission timer to expire. When the retransmission timer expires for sender
B at 22 seconds, sender A has been transmitting for 5 seconds after its RTO expired,
and the pipe between the sender and the receiver is almost full of packets transmitted by
sender A, causing another packet loss for connection B. Because sender B did not transmit
enough segments to have three duplicate ACKs before the packet loss, it has to wait for
the retransmission timer to expire again, leaving all of the link bandwidth to be used by
sender A. This time the RTO length for sender B is four times the originally calculated

value due to the timer back-off algorithm.

The lock-out behaviour described above results in substantial unfairness. After the
third retransmission timeout expired, sender B can finally transmit enough of its segments

to the network to avoid further timeouts. At this point sender B has successfully trans-

5 ANALYSIS OF THE BASELINE TCP 48

mitted only 3 KB of its workload, whereas sender A has transmitted 40 KB of the 50

kilobytes it has to transmit.

Use of the medium and large last-hop router buffers does not cause as low throughput
as use of the small router buffer, because the larger router buffers avoid the lock-out
problem which was present when using the small router buffer. For the tests with random
additional delays medium router buffer size is a good compromise; with a smaller router
buffer the probability of retransmission timeouts and the lock-out behaviour is higher due
to smaller RTO estimates, but with a larger router buffer size there are more unnecessary
retransmissions after a retransmission timeout because of larger average congestion window

size.

Four parallel connections

We made tests with four parallel TCP connections using small, medium and large last-hop
router buffer sizes without additional delays, with an additional delay just before the first
packet loss caused by router buffer overflow, and with random additional delays. Each of
the TCP connections transmitted 50 KB of unidirectional bulk data. We mainly analyse
the first 10 KB of the parallel TCP connections, of which the test results are shown in
Table 18 in Appendix A. The test results for the full connections are shown in Table 17
in Appendix A.

Four parallel connections fill the router buffer very quickly and even with a medium-
sized router buffer one of the TCP senders is forced to wait for the retransmission timeout
to trigger a retransmission, because it could not transmit enough data to generate three du-
plicate ACKs before the first router buffer overflow. During the time when the connection
is waiting for the retransmission timeout to expire, the other connections fill the available
router buffer space. Therefore, one of the retransmissions triggered by the retransmission
timeout is also dropped because the router buffer is full. The sender cannot do fast re-
transmit, hence it must wait for another retransmission timeout to do the retransmission.
Because of the timer back-off algorithm, the RTO length for the second retransmission is
twice as long as the original RTO. As a result of this typical lock-out behaviour, it takes
138 seconds for the slowest connection to transfer 10 KB, when the fastest connection can
transfer the same amount of data in 24 seconds. The lock-out behaviour and the result-
ing substantial unfairness could be avoided only when the large router buffer was used.
Similarly, the throughput of the connection finished last was highest when using the large
router buffer.

The additional delays do not cause significant differences in the results. When using

5 ANALYSIS OF THE BASELINE TCP 49

four parallel TCP connections, the main problem is the extensive congestion at the last-
hop router, causing packet losses which cannot be recovered by using fast retransmit.
Because there are a number of retransmission timeouts because of the packet losses at the
router, the additional spurious retransmission timeouts caused by the additional delays do
not have a great effect on the performance. The trend is the same with and without the

delays, the best fairness can be achieved by using the large router buffer.

Limited transmit [ABF01] is expected to improve the performance with parallel con-
nections, because it allows sending new data on the first two partial ACKs before the
third duplicate ACK. In this way the receiver would get enough segments to trigger at
least three duplicate ACKs, allowing the sender to do fast retransmit. By doing this most
of the RTOs could be avoided.

5.3 Summary of the baseline tests

After analysing the behaviour of the baseline TCP in various delay scenarios we have
encountered certain problems in the TCP behaviour. We now briefly summarise the noticed
problems, and during the analysis of the TCP enhancements we will inspect whether the

problems are avoided by the enhancements.

As described in Section 3, the behaviour of the fast recovery is not strictly specified
in the related IETF specifications [APS99, FH99|. The alternatives are either to maintain
the number of packets outstanding in the network, following the packet conservation rule,
or to increase the number of outstanding packets for each round-trip time, which resembles
the behaviour of congestion avoidance. Although neither of the alternatives cause serious
problems, the variant which increases the amount of outstanding packets may cause packet
losses during the fast recovery. The packet losses that occur during the fast recovery do not
cause the congestion window to be deflated. Therefore we suggest using the less aggressive

variant, which does not increase the congestion window during the fast recovery.

The less careful variant of the NewReno bugfix implemented in our baseline TCP does
not prevent the spurious fast retransmit after a spurious retransmission timeout and causes
more unnecessary retransmissions, which could be avoided with the careful variant of the
bugfix. Both bugfix variants can also cause an extra retransmission timeout if a retrans-
mission following the spurious timeout is lost, for example, due to router buffer overflow.
We are not aware of any reports discussing this problem. An alternative implementation

for the bugfix, which would allow the fast retransmit below the send_high threshold!®, is

!8The send_high variable stores the highest TCP sequence number transmitted when a retransmission
timeout occurs, and is used by the NewReno bugfix to decide whether to allow fast retransmit.

5 ANALYSIS OF THE BASELINE TCP 50

worth inspecting in the future.

Two factors affect the performance of the tests with random additional delays. A small
router buffer results in smaller average queueing delay and smaller RTO values. This in-
creases the probability of retransmission timeout when an additional delay occurs. A large
router buffer, on the other hand, allows a larger average congestion window, which re-
sults in a larger number of unnecessary retransmissions when a spurious retransmission
timeout occurs. Because of the negative impact caused by the the unnecessary retransmis-
sions, using the small router buffer resulted in the best performance on tests with random

additional delays.

When multiple parallel connections are transmitted through the bottleneck link with
additional delays, one of the connections suffers significantly because of the lock-out be-
haviour, if too small a router buffer is used. Lock-out behaviour usually follows a retrans-
mission timeout, which causes some of the connections to be idle for a short time period,
during which the other connections can fill the pipe between the sender and receiver. Be-
cause the NewReno bugfix causes more retransmission timeouts when packet losses occur
after a retransmission timeout, use of it will increase the number of lock-out occurances
and the unfairness between the TCP connections. If there are no additional delays on
the link, the parallel TCP connections are separated on the link, which can also cause

unfairness because of unequal queueing delays.

6 ANALYSIS OF THE TCP ENHANCEMENTS 51

6 Analysis of the TCP Enhancements

We listed a number of TCP enhancements in Section 4.4 which are expected to improve
the TCP performance over what measured with the baseline TCP in Section 5. In this
section we analyse the effects of the TCP enhancements for the test cases which were
noticed to be problematic with the baseline TCP.

6.1 Results of the SACK tests

Selective Acknowledgements (SACK) [MMFR96| are reported to improve the TCP perfor-
mance when there are several segments dropped within a single round-trip time [FF96].
Considering the extra information about missing segments provided by the SACK acknowl-

edgements, this is easy to believe.

Tests with a single TCP connection

Results of the SACK tests are shown in Table 19 in Appendix A. The test results are
compared with the corresponding baseline TCP test results in Table 5. The table shows
the elapsed time and the number of retransmissions for the baseline TCP and the SACK
TCP. It can be observed that when SACK is used, more retransmissions are done than with
the baseline TCP, if no additional delays occur. On the other hand, if an short additional
delay occurs, there are no significant differences in the number of retransmissions, but the
elapsed times differ notably.

When SACK is used, retransmissions are likely to get dropped and unnecessary re-
transmissions are made when no additional delays occur. However, if a short additional
delay occurs before the router buffer overflows first time, the router buffer is slightly less
loaded after the delay and no retransmissions are dropped. There are no unnecessary
retransmissions with a short additional delay. Figure 13 illustrates the beginning of the
TCP connection in the test case with small router buffer and without an additional delay.
Unnecessary retransmission occurs after 13 seconds have elapsed. This test case can be
compared with the test case with an additional delay of one second occuring before the

first router buffer overflow, which is shown in Figure 14.

We consider the unnecessary retransmissions to be caused by a Linux specific behaviour
which should not be thought of as a problem of SACK algorithm in general. After a retrans-
mission timeout the SACK sender restarts the retransmissions based on the information

received from the SACK blocks contained in the following acknowledgements. Because of

6 ANALYSIS OF THE TCP ENHANCEMENTS

52

16000
14000 -
12000 -
[%]
1 L
£ 10000
o
@
Qo
E 8000
E
c
(]
o
f=4
3 60001
[
2]
4000 -
2000 RTO 4
packet dropped
=——= datasent
ok ~— ackrcvd
1 1 1 1

Time, s

10

15

Figure 13: SACK TCP through router buffer size of three packets. No additional delays.

12000 -

10000 -

8000]
/
|
‘ /
|
‘\
6000 | /

4000

Sequence number, bytes

2000 -

RTO

packet droppedl

data sent
ack rcvd

10

Figure 14: SACK TCP through router buffer size of three packets. An additional delay of

one second occurs before the first buffer overflow.

6 ANALYSIS OF THE TCP ENHANCEMENTS 53

Table 5: Comparison of the single connection test results of the baseline TCP and the
SACK TCP.

Baseline SACK
Buffer Delay Time Rexmits | Time Rexmits
(pkts) (sec) (sec)
3 - 105.15 18.00 102.49 20.00
12th, 1 s. 102.66 16.00 102.48 16.00
12th, 6 s. 113.82 24.50 109.20 23.00
30th, 6 s. 114.76 40.50 109.72 29.00
rand. 0.01, 6 s. || 130.63 42.00 129.62 43.00
7 - 103.11 17.00 103.04 26.00
20th, 1.5 s. 105.11 16.00 104.92 15.00
20th, 6 s. 120.31 24.00 111.80 24.00
40th, 10 s. 116.86 34.00 113.70 34.00
300th, 6 s. 112.52 32.00 122.77 31.00
20th, 15 s. 140.30 24.50 118.44 19.00
rand. 0.01, 6 s. || 132.61 47.00 138.47 44.50
20 - 106.40 27.00 102.79 32.00
40th, 4 s. 109.80 25.00 106.24 27.00
40th, 6 s. 131.04 42.00 118.32 71.00
100th, 12 s. 142.28 104.00 125.42 28.00
300th, 6 s. 117.60 51.00 129.59 45.00
rand. 0.01, 6 s. || 137.42 52.50 142.74 64.00

the additional information provided in SACK block, the sender can usually transmit only
the missing segments and avoid the unnecessary retransmissions, which were present with
the baseline TCP after a retransmission timeout. The unnecessary retransmission occurs
when the cumulative acknowledgement field is inflated after the retransmission timeout.
This happens in Figure 13, because the sender does its next retransmission after the re-
transmission timeout based on the SACK information. However, the receiver sends the
increased cumulative acknowledgement before receiving the next missing segment, but the
acknowledgement arrives to the sender after it has retransmitted the missing segment. Be-
cause of this asynchrony, the sender retransmits the same segment again. The occasional
unnecessary retransmissions caused by the Linux SACK occur only after a retransmission

timeout and do not significantly affect on the throughput.

There are more packets dropped due to router buffer overflow with SACK than with-
out it, if there are no additional delays. Reason for this is that the SACK sender starts

retransmitting the dropped segments as soon as it gets feedback about the missing seg-

6 ANALYSIS OF THE TCP ENHANCEMENTS o4

ments in the SACK blocks contained in the duplicate ACKs. Because the slow start
overshooting causes several segments to be dropped, almost every acknowledgement ar-
riving at the sender contains more information about the missing segments. Therefore,
the sender makes a new retransmission for almost every incoming acknowledgement. This
violates the principle of halving the number of outstanding segments after a packet loss is
observed, which should be followed by every TCP sender. Thus, the number of packets
outstanding in the network is constantly too high, when the load on the network should
be decreased. This causes further router buffer overflows during the retransmissions, and
in case a retransmitted segment is dropped, a retransmission timeout. This happens in
Figure 13.

Despite the aggressiveness of FACK and the increased number of dropped packets, the
SACK TCP slightly improves throughput in the presence of serious congestion. SACK
allows several retransmissions to be made during one round-trip time, which makes the
recovery after the slow start overshooting more efficient. With the baseline TCP a new
retransmission is triggered only when a partial acknowledgement arrives to the sender, i.e.

once per round-trip time.

Table 5 shows that if an additional delay long enough to cause a spurious retransmission
timeout occurs during the first slow start, throughput with the SACK TCP is significantly
better than with the baseline TCP. Nevertheless, there are more retransmissions made with
SACK. The reason for the low throughput with the baseline TCP was that the packet losses
after the spurious retransmission timeout caused another retransmission timeout to expire

after an idle period in transfer, because the NewReno bugfix disabled the fast retransmit.

Figure 15 shows a spurious retransmission timeout occuring during the initial slow
start. Because the SACK TCP does not follow the NewReno bugfix, the second retrans-
mission timeout which was present with the baseline TCP (see Figure 8 on page 41) can
be avoided. Instead, the SACK algorithm in Linux allows the sender to retransmit the
missing segments as soon as the needed information from the SACK blocks is available
at the sender. Because each SACK block arriving at the sender contains new informa-
tion about the successfully received segments, the sender can keep transmitting segments,
causing new acknowledgements to be generated for every segment arrived at the receiver.

As a result, the pipe between the sender and the receiver is utilised efficiently.

The SACK TCP did not improve the performance in random delay tests, despite the
notable improvement in cases where the NewReno bugfix and retransmission timeouts
interact at the beginning of the connection. SACK does not help when additional de-
lays occur during the congestion avoidance, as it is meant for recovering from multiple

packet losses during one round-trip time. Instead, an enhancement of SACK called D-

6 ANALYSIS OF THE TCP ENHANCEMENTS 55

N
T

=
=
T

g
o
T

I
I
T

I
)
T

N
T

o
©
T

Sequence number, bytes

o
o
T

0.4 -

RTO
packet droppe:

02 «——= datasent| |

ack rcvd
o i i I I L |
0 5 10 15 20 25

Figure 15: SACK TCP through router buffer size of 7 packets. Additional delay of 6

seconds occurs before the first buffer overflow.

SACK [FMMPO00] should make it possible to detect the unnecessary retransmissions and
hence improve the performance on test cases with spurious retransmission timeouts. Be-

cause the SACK blocks are an extra overhead in the transmitted segments, the throughput
is lower with SACK than with the baseline TCP.

Tests with two parallel TCP connections

Table 20 in Appendix A shows that SACK slightly improves the throughput of one of the
two parallel TCP connections, when compared to the baseline TCP without additional
delays. However, SACK TCP increases the unequality between the parallel TCP con-
nections, thus the other connection has usually slightly lower throughput than with the
baseline TCP. Additionally, SACK TCP causes more retransmissions than the baseline
TCP, because of the aggressiveness of the SACK algorithm. The same trend can be seen
with the first 10 KB of the TCP connections shown in Table 22 in Appendix A.

Throughput achieved with the SACK TCP and with the baseline TCP with two par-
allel TCP connections are compared in Table 6. The table shows the throughput of the
connection which was last to receive the acknowledgement for 10 KB. When SACK is used,
the network load is higher, because the SACK TCP senders are more aggressive than the

6 ANALYSIS OF THE TCP ENHANCEMENTS 56

baseline TCP senders. A congested last-hop router is a reason for unfairness, as described

in Section 5.2.

Table 6: Comparison of the throughputs of the baseline TCP and the SACK TCP with

two parallel connections.

Baseline SACK |

Buffer Delay Throughput| Fairness || Throughput| Fairness

(pkts) (bytes/sec) | (x 100) (bytes/sec) | (x 100)

3 - 491.55 100.00 394.96 98.16
12th pkt, 6 s. 144.69 82.12 182.06 80.61
rand. 0.01, 6 s. 229.15 88.12 291.57 95.55

7 - 411.08 100.00 373.19 97.73
20th pkt, 6 s. 255.65 99.81 318.72 98.76
rand. 0.01, 6 s. 309.52 99.42 285.52 98.33

20 - 254.48 94.75 247.84 91.46
40th pkt, 6 s. 295.14 99.95 216.13 93.05
rand.prob. 0.01, 6 s. || 275.14 98.18 254.00 96.32

6.2 Results of the tests with larger initial congestion window

Using a larger initial congestion window than two segments has been suggested [AFP9S,
PN98|, because it allows faster increase of congestion window and hence benefit when
short TCP transfers are used, which is the case with most of the TCP transfers presently
done [AlI00]. The disadvantage of using the larger initial congestion window is that it is
likely to increase the level of congestion in the network, especially if several TCP connec-
tions are using the larger congestion window size. We expect the increased congestion to

cause negative effects also in our tests with multiple parallel connections.

The link bandwidth*delay product limiting the amount of data that can be outstanding
in the network is approximately 840 bytes (excluding the effect of queueing delay, the
round-trip time for a packet is 700 ms), which corresponds to less than three packets.
Because of the relatively small capacity of the pipe between the sender and the receiver,
we do not expect to have any significant improvement in the TCP performance when
increasing the initial congestion window over the original value of two segments. However,
we believe that the available bandwidth and the round-trip delay will increase in future e.g.
with the GPRS, which makes increasing the initial congestion window a more appealing
enhancement. Thus, we are interested about the effects of the increased initial congestion

window on the congestion at the last-hop router.

6 ANALYSIS OF THE TCP ENHANCEMENTS o7

In the test cases with a single TCP connection there were no meaningful differences
to the baseline TCP, as predicted above. The test results are presented in Table 43
in Appendix A. Table 7 compares the elapsed time and the number of retransmissions
between the baseline TCP and the TCP with initial congestion window of four segments.
In some of the test cases there were one more packet dropped at the router when initial
congestion window of four segments was used. Presence of the randomly occuring delays

did not cause differences to the baseline TCP, either.

Table 7: Comparison of the single connection test results of baseline TCP and the TCP

with the initial congestion window of four segments.

Baseline IW =14
Buffer Delay Time Rexmits | Time Rexmits
(pkts) (sec) (sec)
3 - 105.15 18.00 104.97 19.00
12th, 6 s. 113.82 24.50 116.54 26.00
rand. 0.01, 6 s. || 130.63 42.00 131.22 39.50
7 - 103.11 17.00 102.92 17.00
20th, 6 s. 120.31 24.00 109.80 26.00
rand. 0.01, 6 s. || 132.61 47.00 132.69 49.00
20 - 106.40 27.00 106.21 27.00
40th, 6 s. 131.04 42.00 131.69 42.00
rand. 0.01, 6 s. || 137.42 52.50 136.97 49.00

A notably better throughput is achieved with an additional delay of 6 seconds on the
20th packet and the router buffer size of 7 packets. Reason for this is that the first packet
is dropped earlier with the larger initial congestion window than with the baseline TCP,
causing the sender to enter fast retransmit before the additional delay occurs, hence avoid-
ing the problem with the NewReno bugfix described with the baseline TCP. Therefore,
the improved throughput applies only to this particular test case, and not to the TCP

behaviour in general.

When multiple parallel TCP connections are used as the workload, only the tests with
the small router buffer introduce serious problems in the TCP performance (see Tables 44
- 47 in Appendix A). With the small router buffer some of the parallel TCP connections
occupy the router buffer space, while segments belonging to the other connections are
dropped in the beginning of the transmission. Some of the senders will have to wait for
the retransmission timeout to expire, while other senders may fill the router buffer space

with their own segments. This is the typical lock-out problem presented in Section 3.4.

6 ANALYSIS OF THE TCP ENHANCEMENTS 58

If a large enough last-hop router buffer is used (a buffer size of 7 packets for two
connections or a buffer size of 20 packets for four connections), using the initial congestion
window of four segments does not have significant negative effect on the performance. In
fact, when using a router buffer size of 7 packets with four parallel TCP connections, a
notable improvement is achieved. This is explained by the fact that the corresponding
baseline TCP test suffered from serious lock-out problem for one of the TCP connections.
Occurances of the lock-out behaviour are very sensitive to small changes in the sender

behaviour, thus no further conclusions can be drawn because of this test case.

Table 8 compares the throughput of the baseline TCP and the TCP with the initial
congestion window of 4 * MSS. The throughput is measured for the first 10 KB of the
transfer of the slowest connection. As expected, larger initial congestion window did
not improve the performance in general. However, because the negative effects were not
serious, as long as the router buffer was large enough considering the number of parallel
TCP connections, this TCP enhancement is worth further inspecting on the connection

paths with a higher bandwidth * delay product.

Table 8: Comparison of the throughputs of the baseline TCP and the TCP using the

initial congestion window of four segments with two parallel connections.

Baseline IW =14 ‘

Buffer Delay Throughput| Fairness || Throughput| Fairness

(pkts) (bytes/sec) | (x 100) (bytes/sec) | (x 100)

3 - 491.55 100.00 124.28 65.06
12th pkt, 6 s. 144.69 82.12 174.78 78.85
rand. 0.01, 6 s. 229.15 88.12 157.56 70.60

7 - 411.08 100.00 359.31 98.31
20th pkt, 6 s. 255.65 99.81 147.56 78.04
rand. 0.01, 6 s. 309.52 99.42 267.29 93.38

20 - 254.48 94.75 231.31 94.20
40th pkt, 6 s. 295.14 99.95 170.32 89.06
rand.prob. 0.01, 6 s. || 275.14 98.18 254.12 97.42

6.3 Results of the tests with shared advertised window

We have pointed out that one of the main problems in our environment is the severe
congestion caused by the slow start overshooting, which causes several segments to be
dropped at the last-hop router. The larger the congestion window, the more packet losses

there are because of the slow start overshooting. When a large router buffer is used, the

6 ANALYSIS OF THE TCP ENHANCEMENTS 59

number of packets outstanding in the network is large, which results in long queueing
delays. Queueing delay inflates the RT'T and RTO estimates, which is harmful if a packet
loss causes a retransmission timeout. However, if there are additional delays on the link,

smaller RTO estimate will increase the probability of spurious timeouts.

Limiting the advertised window should improve the performance, because it does not
allow the sender to transmit more data to the network than what is limited by the receiver.
If the advertised window is limited to be less than the pipe buffering capacity, the number
of buffer overflows should be significantly decreased, if not totally avoided. Moreover,

limiting the amount of outstanding data in the network reduces the queueing delays.

The size of the shared advertised window should be related to the pipe buffering ca-
pacity. Ideal size would be small enough to totally prevent the buffer from overflowing,
but large enough to allow full utilisation of the bottleneck link. However, if the window
size is smaller than four segments per connection, the fast retransmit algorithm becomes
unusable. We chose shared buffer sizes of 2048 KB (8 * MSS), 3072 KB (12 * MSS) and
5120 KB (20 * MSS). When using a router buffer size of 3 packets, 8 packets are needed
to fill the buffers between the sender and the receiver (see Section 5.1), which is equal to
what allowed by the smallest advertised window limit given above. Likewise, with a router
buffer size of 7 packets the network will be able to contain 12 packets. With the different
combinations of the router buffer sizes and the advertised window sizes we can also test
the effect of having an advertised window smaller than the pipe buffering capacity, as well
as having an advertised window larger than the pipe buffering capacity. Results of the
shared advertised window tests for single and parallel connections are shown in Tables 23
- 36 in Appendix A.

Tests with a single TCP connection

Table 9 shows the transfer times and the number of retransmissions for the selected test
cases with the different sizes of the advertised window. The row and column headings
of the table show the total pipe buffering capacity and the window limit as MSS-sized
segments in parenthesis. The delay column shows which packet was delayed and the
length of the additional delay. The table shows that least retransmissions are made when
the advertised window is smaller than the pipe buffering capacity, because then most of

the buffer overflows at the last-hop router can be avoided.

If the advertised window size is smaller than the pipe buffering capacity, the through-
put is higher than with the baseline TCP. There are less retransmissions, because the

router buffer does not overflow and packets are not dropped. However, there are still

6 ANALYSIS OF THE TCP ENHANCEMENTS 60

Table 9: Comparison of throughput and number of retransmissions with the different

advertised window sizes.

Baseline 2 KB (8) 3 KB (12) 5 KB (20)
Buffer ‘ Delay Time | Rxmt || Time ‘ Rxmt || Time ‘ Rxmt || Time ‘ Rxmt
3 (8) - 105.15 | 18 102.03 | 0 103.36 | 13 104.26 | 17
12 (1) 102.66 | 16 109.03 | 10 103.55 | 15 103.75 | 16
12 (6) 113.82 | 24.5 119.14 | 18 113.83 | 24 114.23 | 25
30 (6) 114.76 | 40.5 118.26 | 18 109.55 | 17 111.73 | 27
rand. (6) || 130.63 | 42 134.47 | 31.5 132.62 | 38.5 - -
7 (12) - 103.11 | 17 102.02 | O 102.03 | O 102.92 | 12
20 (1.5) 105.11 | 16 102.97 | O 106.43 | 5 104.05 | 14
20 (6) 120.31 | 24 111.13 | 14 111.46 | 12 120.40 | 25.5
40 (10) 116.86 | 34 114.50 | 13 117.44 | 15 119.41 | 43
rand. (6) || 132.61 | 47 132.90 | 35.5 135.81 | 35 136.08 | 42.5
20 (25) | - 106.40 | 27 102.03 | O 102.03 | O 102.02 | O
40 (6) 131.04 | 42 110.75 | 13 112.26 | 19 111.25 | 22
100 (12) 142.28 | 104 116.75 | 13 118.01 | 18 117.26 | 22
rand. (6) || 137.42 | 52.5 133.09 | 34 136.29 | 42.5 132.25 | 43

retransmissions which are caused by the spurious retransmission timeouts. Because of the
limited advertised window there are less segments in the network, hence the queueing de-
lay is smaller. Additionally, limiting the number of outstanding segments gives an upper
bound to the slow start threshold value, which is set to half of the number of outstanding
segments when the sender observes a packet loss. However, the effect of the congestion
control algorithms on the throughput is not so notable as with the baseline TCP, because

the advertised window controls the amount of outstanding segments for most of the time.

The buffer overflows cannot always be avoided by limiting the advertised window to
be smaller than the pipe capacity. Using the limited advertised window does not help in
limiting the number of segments sent as retransmissions. Figure 16 illustrates a situation
in which a spurious retransmission timeout occurs because of an additional delay and
the sender enters the slow start, starting the retransmissions from the segment which
was delayed. Seven segments are retransmitted after the delay, even though the original
transmissions are still in the router queue. One of the segments transmitted during the
slow start following the retransmission timeout does not fit in the router queue and is
therefore dropped. However, the fast retransmit would have been triggered because of the
spurious retransmissions even if the segment was not dropped. Therefore, the segment loss

does not cause the throughput to be any lower than what it would have been without the

6 ANALYSIS OF THE TCP ENHANCEMENTS 61

segment loss.

12000 -

10000 -

8000 -

6000 -

Sequence number, bytes

4000

RTO

2000 packet dropped |

——= data sent
~—— ack rcvd
win

1 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Time, s

Figure 16: Shared advertised window of 2 KB (8 * MSS) with router buffer size of 7

packets. An additional delay of 6 seconds occurs before the first buffer overflow.

If there were random additional delays on the link, limiting the advertised window
to 2 KB improved the performance. The performance was not meaningfully improved
with the advertised window limitations of 3 KB and 5 KB. By using a small advertised
window the packet losses caused by the router buffer overflow can be avoided, hence
there are less retransmissions made. Limiting the advertised window does not usually
help in avoiding the unnecessary retransmissions after a spurious retransmission timeout.
However, by using a small advertised window the number of unnecessary retransmissions

can be reduced.

Limiting the advertised window is a safe enhancement which usually improves the per-
formance, provided that it is done on a path with known bottleneck link characteristics.
It is not harmful for the network, but actually makes the sender to behave more conserva-
tively. The highest throughput can be achieved with a relatively small advertised window
size, but using too small window is harmful. In addition to the possibility of disabling the
fast retransmit algorithm, small advertised window size can limit the amount of the new

data transmitted during the fast recovery algorithm.

6 ANALYSIS OF THE TCP ENHANCEMENTS 62

Tests with multiple parallel TCP connections

In tests with multiple parallel TCP connections the advertised window space is shared
between the connections. Table 10 compares the throughput of the baseline TCP and the
TCP with a shared advertised window of 2 KB. Throughput of the connection which was
last to transfer 10 KB is shown in the table.

Table 10: Comparison of the throughputs of the baseline TCP and the TCP using the

shared advertised window of 2 KB with two parallel connections.

Baseline Adv. Wnd 2 KB ‘

Buffer Delay Throughput| Fairness || Throughput| Fairness

(pkts) (bytes/sec) | (x 100) (bytes/sec) | (x 100)

3 - 491.55 100.00 461.40 99.54
12th pkt, 6 s. 144.69 82.12 241.31 87.39
rand. 0.01, 6 s. 229.15 88.12 376.39 99.41

7 - 411.08 100.00 484.39 99.95
20th pkt, 6 s. 255.65 99.81 339.96 99.36
rand. 0.01, 6 s. 309.52 99.42 380.98 99.95

20 - 254.48 94.75 484.37 99.95
40th pkt, 6 s. 295.14 99.95 345.81 99.97
rand.prob. 0.01, 6 s. || 275.14 98.18 380.89 99.95

When two parallel TCP connections were used, the throughput of the first 10 KB of
the transfer was improved, if the shared advertised window size was smaller than the pipe
buffering capacity. If an additional delay long enough to trigger a spurious retransmission
timeout occured, the throughput with the shared advertised window was significantly
better than with the baseline TCP. The fairness between the TCP connections was also
better with the shared advertised window. If the shared advertised window was larger
than the pipe buffering capacity, the throughput was not better than with the baseline
TCP.

As described for the baseline TCP, a combination of an additional delay and a packet
loss inflicted severe problems, because the retransmission timeout following the additional
delay caused the fast retransmit to be unusable due to the NewReno bugfix. Because there
were packets dropped just after the retransmission timeout, one of the senders suffered from
another retransmission timeout, in worst case twice. The retransmission timeouts not only
caused the throughput to be lower, but were a significant source of unfairness between the

TCP connections.

6 ANALYSIS OF THE TCP ENHANCEMENTS 63

Figure 17 compares an additional delay followed by a packet loss with the baseline
TCP and with the shared advertised window. The buffer overflows can be avoided with
the shared advertised window, thus the additional retransmission timeouts caused by the
NewReno bugfix do not occur. This explains the significant improvement for the test cases
with a delay causing the RTO to expire. Additionally, because the packet losses caused
by a router buffer overflow can be avoided by using the shared advertised window, the

lock-out problem is not present with this TCP enhancement.

Baseline Adv. Wnd = 2 KB

12000

9000

20001 10000

70001 : : A
" T ,, 8000
8

£ 6000 Iaua

2
£ 5000~ 6000

lence number, byte:

§ 4000
g

& & 4000
3000}

2000 z/}

1000 f

2000

1 { =—— datasent
data sent z/ 6 s. dela ack revd
ackrevd | | ok win |

. L L L L L .
25 0 5 10 15 20 25

°
5
w o
N
8

Figure 17: Comparison of the behaviour of baseline TCP and shared advertised window
TCP when an additional delay of 6 seconds occurs. Slowest of two parallel TCP connections

is shown.

Another factor improving the fairness between the connections is that the shared ad-
vertised window causes the number of packets in flight to be limited. Moreover, all the
parallel TCP connections have equal amount of segments outstanding in the network. It
was noticed in the baseline TCP analysis that the packet separation during the slow start
increased the unfairness between the connections. With the shared advertised window,
the parallel connections are limited by the same advertised window size, hence they trans-
mit equal number of segments during one round-trip time. This can be seen in Figure
18, which compares the baseline TCP and the TCP with shared advertised window. Four
connections are transmitted in parallel, of which all behave similarly when using the shared

advertised window.

Shared advertised window significantly improves the fairness and the throughput of
the slowest connection also when four parallel TCP connections are used as the workload.
Surprisingly, the throughput is improved even with a shared advertised window of 2 KB,
although then only 2 segments per each connection are allowed to be outstanding in the

network. Therefore, it is impossible to get the three duplicate ACKs required to trigger

6 ANALYSIS OF THE TCP ENHANCEMENTS 64

fast retransmit. Because the packet losses due to router buffer overflow can be avoided
by using an appropriately set shared advertised window, there is no need for triggering
the fast retransmit. Of course, if the mobile host is communicating through the Internet,
packet losses may occur regardless of the advertised window limitation. The throughput
was also improved when using the advertised window size of 3 KB and 5 KB, as long as
it is smaller than the pipe capacity. Figure 18 compares the startup of the slowest of the
four parallel connections with the baseline TCP and with the shared advertised window
limited to 5 KB (20 * MSS). The router buffer size is 20 packets in both scenarios, yielding
the pipe capacity of 25 packets.

Baseline Adv. Wnd =5 KB

9000
6000

8000 O i

5000 70000

bytes

: q000]- 16000+

imber

5 5000~
3 3000
2
g

4000

A
2000 3000}

2000
1000

i 1000 1 == datasent | {
= data sent — ack revd
ackrovd |4 ! win

Figure 18: The slowest of the four parallel connections through a router with 20-packet

buffer. Comparison of the baseline TCP and a shared advertised window of 5 KB.

6.4 Results of the baseline TCP tests through a RED router

We made a set of tests with the baseline TCP and a last-hop router which uses the Random
Early Detection (RED) [FJ93, BCCT98] algorithm for dropping the packets instead of the
common tail-drop algorithm. Due to its randomness, a RED router should avoid the
lock-out problem, which was present in the multiconnection tests made with the tail-drop

router. The description of the RED algorithm is given in Section D.3 in Appendix D.

We noticed during our performance tests that it is very difficult to tune the RED
parameters to make the last-hop router perform efficiently in our environment. RED has
been developed mainly for the routers at the fixed networks with high volumes of traffic,
hence it may not be suitable for our environment, in which the routers have a small

separated buffer space for each user.

6 ANALYSIS OF THE TCP ENHANCEMENTS 65

There are four parameters which can be used to tune the RED router for its environ-
ment. Minimum threshold specifies the average queue length at the router after which
the packets may be dropped at a certain probability. Mazimum threshold determines the
upper limit for the average queue length. If the average queue length is higher than the
maximum threshold, an incoming packet is dropped. The comparisons are made against
the sliding average of the recent queue lengths, thus it is possible to set the maximum
threshold to have a smaller value than the router queue capacity. Queue weight gives the
weight of the current queue length when making the calculations for the average queue size.
Mazimum probability specifies the probability for dropping a packet when the queue length
is the same than the maximum threshold. The probability is uniformly scaled depending
on the queue length so that when the queue length is close to the minimum threshold, the
packet drop probability is close to zero.

We decided to run tests with the RED parameter sets shown in Table 11. The table
shows three RED configurations used with the medium and large router buffers. We believe
that the RED algorithm is not reasonable with the small router buffer, hence we did not
run tests using the router with small buffer. Parameter sets R1 and R2 start dropping
packets early, but the packets are not dropped very frequently (max probability is low)
and the router does not react very rapidly on the changes in the router queue length (low
queue weight). With configuration R3 the router drops the packets more aggressively and
is more reactive to the changes in the queue length, but does not start dropping the packets

as early as configurations R1 and R2.

Table 11: RED parameters used in performance tests. The table shows minimum thresh-

old, maximum threshold, queue weight and maximum probability chosen.

‘ Buf‘ 1d H min thr. | max thr. ‘ Q weight ‘ max prob.

7 R1 || 2 7 0.15 0.3
R2 || 1 5 0.1 0.2
R3 | 3 6 0.4 0.5
20 R1| 7 20 0.15 0.3
R2 | 5 16 0.1 0.2
R3 || 10 18 0.4 0.5

Tests with a single TCP connection

The test results in Table 38 in Appendix A show that using the RED configurations R1

and R2 causes lower throughput in a 100 KB connection without additional delays than

6 ANALYSIS OF THE TCP ENHANCEMENTS 66

when the tail-drop algorithm was used. The problem with these RED configurations is
that the algorithm reacts too slowly to the rapid growth of the router queue length during
the slow start. On the other hand, the router is dropping the packets frequently after
the slow start, when the queue size starts to increase again. As a result, there are more

packets dropped when using RED than with the tail-drop router.

Table 12 compares the elapsed time and the number of retransmissions between the
tail-drop router and the RED router with configuration R3, when the baseline TCP is
used. Throughput is improved with RED configuration R3 and a router buffer size of 20
packets, when compared to the similar configuration with the tail-drop router. The reason
for this is that the first packet is dropped earlier with the RED router than when using
the tail-drop router. Because the length of the router queue is smaller, the sender receives
the duplicate ACKs resulting from the packet losses earlier and may start retransmitting
earlier. As a result, the congestion window does not get as high value as with the tail-drop
router, hence there are less packets dropped during the first slow start and the fast recovery
can be finished earlier than with the tail-drop router. However, the best throughput can

be achieved by having a tail-drop router with a buffer size of 7 packets.

Table 12: Comparison of the single connection test results with the tail-drop router and
with the RED router.

Tail-drop RED R3
Buffer Delay Time Rexmits || Time Rexmits
(pkts) (sec) (sec)
7 - 103.11 17.00 104.21 24.50
20th, 6 s. 120.31 24.00 113.94 32.00
rand. 0.01, 6 s. || 132.61 47.00 137.96 53.50
20 - 106.40 27.00 103.77 23.50
40th, 6 s. 131.04 42.00 111.62 34.00
rand. 0.01, 6 s. || 137.42 52.50 143.69 68.00

With random additional delays using the RED router resulted in lower throughput with
all RED configurations and router buffer sizes tested than when using the tail-drop router
with the corresponding buffer size. RED algorithm causes the number of packet losses
to be higher, because the RED router drops packets more frequently than the tail-drop
router. Moreover, because of the frequent packet losses the average congestion window
size with RED is smaller than when using the tail-drop router, which causes smaller RTT
and RTO estimates. Therefore the probability for a spurious timeout to be triggered by
an additional delay is higher.

6 ANALYSIS OF THE TCP ENHANCEMENTS 67

The TCP performance is improved with the test cases in which an additional delay
occurs during the first slow start, because the RED router drops first packet before the
additional delay. Because the three duplicate ACKs arrive to the sender before the addi-
tional delay and the corresponding spurious timeout occurs, the NewReno bugfix does not
cause another retransmission timeout, as it did with the tail-drop router (see Figure 8 on
page 41). However, the throughput improvement concerns only the particular test cases
and the problem with the NewReno bugfix would still be present if an additional delay

occured for an earlier packet.

Tests with multiple parallel TCP connections

The results of the tests with parallel connections are shown in Tables 39 - 42 in Appendix
A. For most of the test cases with two parallel TCP connections using RED with the
selected parameter sets does not improve the performance. Reason for the lower through-
put is the same what observed with the single connection tests; the RED algorithm causes
the packets to be dropped more frequently, which also increases the number of dropped
retransmissions. When a retransmission is dropped, the sender will have to wait for the
retransmission timeout to trigger the retransmission of the lost segment. Additionally, the
retransmission timeouts cause unfairness among the connections, because the other con-
nections can use the link without facing competition with the connection which is waiting
for the retransmission timer to expire. However, the lock-out problem could be avoided
by using RED.

From the different RED configurations tested, R3 provided the best throughput and
least retransmissions. However, excluding the test cases with a selected additional delay
location, none of the different combinations of RED configurations and router buffer sizes
resulted in a better performance than what was achieved with the baseline TCP with a
router buffer size of 7 packets, when two parallel TCP connections were used as a workload.
If we restrict the analysis to the test cases with router buffer size of 20 packets, using RED
configuration R3 improved the throughput when compared to the baseline TCP, if there
was no additional delays. Table 13 compares the throughput and the fairness between the
tail-drop router and the RED router. The values are measured for the slowest connection,
after the first 10 KB have been transferred.

6.5 Summary

We finish the evaluation of the different TCP enhancements by comparing them with each

other on the different test cases made. We briefly summarise the improvements and the

6 ANALYSIS OF THE TCP ENHANCEMENTS 68

Table 13: Comparison of the throughputs of the tail-drop router and the RED router with

two parallel connections.

Tail-drop RED R3 ‘
Buffer Delay Throughput| Fairness || Throughput| Fairness
(pkts) (bytes/sec) | (x 100) (bytes/sec) | (x 100)
7 - 411.08 100.00 332.44 93.18
20th pkt, 6 s. 255.65 99.81 260.03 92.15
rand. 0.01, 6 s. 309.52 99.42 281.75 93.24
20 - 254.48 94.75 302.17 98.06
40th pkt, 6 s. 295.14 99.95 237.31 95.04
rand.prob. 0.01, 6 s. || 275.14 98.18 259.43 98.49

problems caused the different enhancements and suggest topics for further work.

Throughputs of the different TCP enhancements tested on a link without additional
delays are compared in Figure 19. The figure shows that using the last-hop router with a
medium buffer size yields the best throughput with the baseline TCP. When the SACK
TCP is used, the throughput is better than with the baseline TCP, regardless of the router
buffer size used. The throughput is improved because SACK can do several retransmissions
during a single round-trip time, whereas the baseline TCP can retransmit only one segment

during a round-trip time.

The highest throughput of the tested TCP enhancements can be achieved with the
limited advertised window smaller than the pipe capacity between the sender and the
receiver. Limiting the advertised window causes the number of packets outstanding in the
network to be limited, hence by choosing a small enough advertised window size the packet
losses caused by a buffer overflow can be totally avoided. Using the RED algorithm at the
router improves the throughput of the baseline TCP when the large router buffer is used,
but the throughput is not as good as when using the conventional tail-drop router with
the medium buffer size. Using the initial congestion window of four segments results in a

slight improvement of throughput.

We inspected the queue length at the last-hop router with a single TCP connection
using the different TCP enhancements. Figure 20 illustrates the trace of the router queue
length when no additional delays occured on the link. The figure shows a sliding average
of the four recent queue length measurements at a router with a buffer size of 7 packets
for a 50-second period. The queue length was measured every time a packet arrives to the

router (a plot in the figure). When the queue length exceeds seven packets, a packet is

6 ANALYSIS OF THE TCP ENHANCEMENTS 69

1010

1000

T
|

990 .
2
@ 980 4
El
(=%
<
j=2}
>
o
= 970 i
=
960 .
950+ 3—pkt buf i
7-pkt buf
20—pkt buf
940
Baseline SACK Adv. Wnd 3KB IW=4 RED R3
Modifications

Figure 19: Comparison of the effect of different enhancements and buffer sizes on through-

put without additional delay on the link.

dropped at the router.

The different phases of the TCP connection are reflected in the queue load. During
the first slow start the queue length grows rapidly. The slow start is finished when several
packets are dropped due to slow start overshooting. The dropped packets cause the sender
to enter the fast recovery, during which the queue becomes shorter. When the partial
ACKs start arriving at the sender, the sender increases the amount of outstanding data
by one segment for each round-trip time, which can be seen in the queue trace. A similar

policy is also followed by the congestion avoidance algorithm.

Figure 20 shows that although the SACK TCP improves the throughput, it keeps the
queue full when retransmitting after the slow start overshooting. For the same reason the
SACK TCP causes the number of packets dropped due to overflowing buffers to be higher.
The Linux implementation of SACK does not decrease the congestion window after the

slow start overshooting, which causes more packet losses during the fast recovery.

The effect of limiting the advertised window can be observed very clearly in Figure 20.
When the advertised window limit of 2 KB (8 TCP segments) is used, there are never more
than three packets in the router queue. From the eight packets allowed to be outstanding

in the network, one is in transit on the connection path between the TCP endpoints and

6 ANALYSIS OF THE TCP ENHANCEMENTS 70

Avg queue size, packets
N
T

2k Baseline \w
SACK
Adv. Wnd 2 KB
ir RED R3 7
IW =4
0 ‘ 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Time, s

Figure 20: Trace of router queue length with various TCP variations.

four are in the link send buffer. When using the RED algorithm with configuration R3,
the router queue is never full because several packets are randomly dropped before the
queue is filled up. From Figure 20 we can see that the RED algorithm has the expected
effect of keeping the average queue length shorter than the tail-drop router. However,
because RED causes the number of packet losses to be higher, the throughput is lower
with RED than with the baseline TCP. Inspecting the proper configurations and different

active queue management algorithms will be continued as future work.

When there are additional randomly occuring delays on the link, the effect of the TCP
enhancements differs from what was observed with the tests without additional delays.
Figure 21 compares the achieved throughput with the different TCP enhancements used
over a link with additional delays. The figure reveals that there are no significant differences
between the different TCP enhancements when random additional delays are present. A
small router buffer size yields the highest throughput, because then the queue length
and the average congestion window size is smallest, hence there are least unnecessary

retransmissions after a spurious timeout.

If multiple parallel TCP connections are transmitted over the bottleneck link, the
connections suffer from unfairness when the baseline TCP is used. If one of the connections

ceases transmitting for a short period of time, the other connections use all of the link

6 ANALYSIS OF THE TCP ENHANCEMENTS 71

800

780

760 -

740

Throughput, Bps

720

700

3-pkt buf
7-pkt buf
20-pkt buf
680
Baseline SACK Adv. Wnd 3KB IwW=4 RED R3
Modifications

Figure 21: Comparison of the effect of different enhancements and buffer sizes on through-

put with additional random delays on the link.

bandwidth, which makes it difficult for the idle connection to restart its transmission.
Figure 22 shows the throughput of the slowest of the two parallel TCP connections with
the different TCP enhancements. The SACK TCP did not improve the throughput for the
connection finished last, because the Linux SACK sender is more aggressive and causes
even more congestion at the last-hop router than what the baseline TCP does. Similarly,
using the initial congestion window of four segments makes the network congested when
several parallel TCP connections are used, hence it does not improve the TCP performance.
Using the RED router improves the throughput only in the test cases in which some of

the connections suffered from the lock-out problem.

By using the shared advertised window smaller than the pipe capacity results in almost
optimal fairness. This reflects also to the throughput of the connection finished last,
which is significantly higher than the throughput achieved with the baseline TCP, when
inspecting the first 10 KB of the connections. This indicates that it would be a good idea
to share some of the connection-specific TCP parameters with other connections using the
same link interface, when the last-hop link is the bottleneck. The same applies also in the
Internet for sharing the connection state between the connections destined to the same
host or to the same subnetwork. This mechanism is called Control Block Interdependence,

which has been suggested earlier for sharing the round-trip time measurements and the

6 ANALYSIS OF THE TCP ENHANCEMENTS 72

400

350 : : 4

Throughput, Bps
N w
a1 o
o o
T T
|

N

o

o
T

150

3-pkt buf
7-pkt buf
20-pkt buf

100
Baseline SACK Adv. Wnd 3KB IwW=4 RED R3

Modifications

Figure 22: Comparison of the effect of different TCP enhancements and buffer sizes on
throughput with additional random delays on the link. Two parallel TCP connections are

used as workload.

slow start threshold [Tou97].

7 CONCLUSION 73

7 Conclusion

Our objective was to study the TCP behaviour when it is used over slow wireless links
with link-level retransmissions. The two main problems identified in such environment
were the spurious retransmission timeouts caused by the variable delays on the wireless
link and the heavy congestion at the last-hop router. We presented some of the related

studies and suggested improvements concerning these environments.

We made experimental tests using a software emulator for modelling the slow wire-
less link and the last-hop router. With the emulator we could control the properties of
the environment and select specific test scenarios to be repeated with the different TCP
implementations. We selected a number of test cases to be made with our baseline TCP
implementation. Based on the results we selected the interesting test cases to be tested
with the different TCP enhancements. Additionally, we made tests with randomly occur-
ing additional delays to inspect the performance of the different TCP enhancements in an
unpredictable natural environment. In addition to the tests with a single TCP connection,
we used multiple parallel TCP connections in our tests to monitor the effect of competition

of the shared link on the TCP performance.

We found problems in the baseline TCP behaviour when certain events occur on the
connection path. If the NewReno bugfix is used, a combination of a spurious retransmission
timeout and packet losses results in an additional retransmission timeout. We observed
that using a small router buffer usually provides the best results when using a single TCP
connection. However, with multiple parallel TCP connections the baseline TCP caused
the link bandwidth to be shared unequally, especially if there were additional delays on
the link with a small last-hop router buffer.

Three TCP enhancements and the RED active queue management algorithm at the
last-hop router were tested and analysed in this work. Using a larger initial congestion
window and the RED queue management did not significantly improve the throughput of
the TCP connections from what measured with the baseline TCP. By using the SACK
TCP the throughput was improved if a single TCP connection was used as the workload
and no additional delays occured. Because the Linux SACK sender does not reduce its
transmission rate after the packet losses, the last-hop router was severely congested when
the SACK TCP was used by multiple parallel TCP connections.

We introduced a mechanism for sharing the advertised window space among the connec-
tions running in parallel. By using a shared advertised window smaller than the capacity of
the pipe between the sender and the receiver, the throughput is improved from what mea-

sured using the baseline TCP with a single TCP connection, if additional delays are not

7 CONCLUSION 74

present. If there are multiple parallel TCP connections, the connections get equal share of
the link bandwidth and the parallel connections get higher throughput, when compared to
the baseline TCP. When the parallel TCP connections use the shared advertised window,

the performance is improved also when the additional delays occured on the link.

The additional delays causing the spurious retransmission timeouts are a difficult en-
vironment for a single TCP connection using the baseline TCP or the tested TCP en-
hancements. Although many of the TCP enhancements improved the TCP performance
when packet losses due to buffer overflow were present, none of the tested enhancements

improved the performance significantly, if there were additional delays on the link.

Because of the retransmission ambiguity, identifying the unnecessary retransmissions
at the sending end is impossible with the information available in the basic TCP header.
However, by using the TCP timestamps option [LK00] or an enhancement of the SACK
algorithm [FMMPO0O0] the unnecessary retransmissions can be recognized at the sending
end. This makes it possible to improve the performance after the spurious retransmission

timeouts.

In future we intend to enhance the shared advertised window implementation further.
Additionally, it will be interesting to inspect different workload models over the slow wire-
less link. In particular, modelling interactive message exchange resembling the HT'TP
protocol used in the WWW transfer is important, because it is the prevalent protocol
presently used in the Internet. The problems caused by the spurious retransmission time-
outs inspire for seeking alternative ways of doing retransmissions after a retransmission
timeout. Furthermore, it will be interesting to inspect the effects of D-SACK, which helps

in detecting unnecessary retransmissions.

REFERENCES 75

References

[ABF01]

[ADG*00]

[AF99]

[AFP9S]

[AGKM93]

[AGS99]

[ALL0O]

[APS99)

[BBYS5]

[BBJ92]

[BCC+9g]

[BKG+00]

M. Allman, H. Balakrishnan, and S. Floyd. Enhancing TCP’s Loss Recovery
Using Limited Transmit. IETF RFC 3042, January 2001.

M. Allman, S. Dawkins, D. Glover, J. Griner, D. Tran, T. Henderson, J. Hei-
demann, J. Touch, H. Kruse, S. Ostermann, K. Scott, and J. Semke. Ongoing
TCP research related to satellites. IETF RFC 2760, 2000.

M. Allman and A. Falk. On the effective evaluation of TCP. ACM Computer
Communication Review, 5(29), October 1999.

M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s initial window.
IETF RFC 2414, September 1998.

T. Alanko, A. Gurtov, M. Kojo, and J. Manner. Seawind: Software require-
ments document. University of Helsinki, Department of Computer Science,
September 1998.

M. Allman, D. Glover, and L. Sanchez. Enhancing TCP over satellite channels
using standard mechanisms. IETF RFC 2488, January 1999.

M. Allman. A web server’s view of the transport layer. ACM Computer
Communication Review, 30(5), October 2000.

M. Allman, V. Paxson, and W. Stevens. TCP congestion control. IETF RFC
2581, April 1999.

Ajay Bakre and B.R. Badrinath. I-TCP: Indirect TCP for mobile hosts. In
Proceedings of the 15th Conference on Distributed Computer Systems, pages
136-143. IEEE, 1995.

D. Borman, R. Braden, and V. Jacobson. TCP extensions for high perfor-
mance. IETF RFC 1323, May 1992.

B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,
V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan,
S. Shenker, J. Wroclawski, and L. Zhang. Recommendations on queue man-
agement and congestion avoidance in the Internet. IETF RFC 2309, April
1998.

J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby. Performance
enhancing proxies. IETF Internet draft “draft-ietf-pilc-pep-05.txt”, November
2000. Work in progress.

REFERENCES 76

[BPSK96]

[Brag9)

[BSK95]

[BW97]

[CGOT]

[C194]

[CLMO99]

[Com95]

[DMK*00]

[DMKMO00]

[FF96]

[FHOY]

H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz. A com-
parison of mechanisms for improving TCP performance over wireless links. In

Proceedings of ACM SIGCOMM 96, Stanford, CA, August 1996.

R. Braden. Requirements for internet hosts — communication layers. IETF
RFC 1122, October 1989.

H. Balakrishnan, S. Seshan, and R. Katz. Improving reliable transport
and handoff performance in cellular wireless networks. Wireless Networks,
1(4):471-481, 1995.

G. Brasche and B. Walke. Concepts, services and protocols of the new GSM
phase 2+ general packet radio service. IEEE Communications Magazine,
pages 94-104, August 1997.

J. Cai and D. J. Goodman. General packet radio service in GSM. IEEE
Communications Magazine, pages 122-131, October 1997.

R. Caceres and L. Iftode. The effects of mobility on reliable transport pro-
tocols. In 14th International Conference on Distributed Computer Systems,
pages 12-20, Poznan, Poland, June 1994. IEEE.

H. M. Chaskar, T. V. Lakshman, and U. Madhow. TCP over wireless with
link level error control: Analysis and design methodology. IEEE/ACM Trans-
actions on Networking, 7(5):605-615, October 1999.

D. E. Comer. Internetworking with TCP/IP Volume I: Principles, Protocols
and Architecture. Prentice Hall International, third edition, 1995.

S. Dawkins, G. Montenegro, M. Kojo, V. Magret, and N. Vaidya. End-to-end
performance implications of links with errors. Internet draft “draft-ietf-pilc-

error-06.txt”, November 2000. Work in progress.

S. Dawkins, G. Montenegro, M. Kojo, and V. Magret. End-to-end performance
implications of slow links. IETF Internet draft “draft-ietf-pilc-slow-05.txt”,
November 2000. Work in progress.

K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno, and
SACK TCP. ACM Computer Communication Review, July 1996.

S. Floyd and T. Henderson. The NewReno modification to TCP’s fast recovery
algorithm. IETF RFC 2582, April 1999.

REFERENCES 7

[FJ92]

[FJ93]

[FMMPOO]

[FR99]

[Hoe95]

[Hoe96|

[Jac88]

[Jac90]

[Jaiol]

[JLM97]

[KA9S|

[KFET*00]

S. Floyd and V. Jacobson. On traffic phase effects in packet-switched gate-
ways. Internetworking: Research and Experience, 3(3):115-156, September
1992.

S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking, 1(4):397-413, August
1993.

S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An extension to the
selective acknowledgment (SACK) option for TCP. IETF RFC 2883, July
2000.

S. Floyd and K. K. Ramakrishnan. A proposal to add explicit congestion
notification (ECN) to IP. IETF RFC 2481, January 1999.

J. Hoe. Startup dynamics of TCP’s congestion control and avoid-
ance schemes. Master’s thesis, MIT, 1995. Available at: http://ana-
www.lcs.mit.edu/anaweb/ps-papers/hoe-thesis.ps.

J. Hoe. Improving the start-up behavior of a congestion control scheme for
TCP. In ACM SIGCOMM, August 1996.

V. Jacobson. Congestion avoidance and control. In Proceedings of ACM
SIGCOMM ’88, pages 314-329, August 1988.

V. Jacobson. Compressing TCP/IP headers for low-speed serial links. IETF
RFC 1144, February 1990.

R. Jain. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation and Modeling. John Wiley &
Sons, 1991.

V. Jacobson, C. Leres, and S. McCanne. tcpdump. Available at
http://ee.lbl.gov/, June 1997.

S. Kent and R. Atkinson. Security architecture for the Internet Protocol.
IETF RFC 2401, November 1998.

P. Karn, A. Falk, J. Touch, M. Montpetit, J. Mahdavi, G. Montenegro,
D. Grossman, and G. Fairhurst. Advice for internet subnetwork designers.
Internet draft “draft-ietf-pilc-link-design-04.txt”, November 2000. Work in

progress.

REFERENCES 78

[KP87]

[KRL*97]

[Kuh]

[LK9S]

[LKO00]

[LRK*99]

[LS00]

[Lud00]

[Mat97]

[MDK*00]

[MMO96]

[MMFR6|

[MP92]

P. Karn and C. Partridge. Improving round-trip estimates in reliable transport
protocols. In Proceedings of ACM SIGCOMM ’87, pages 2-7, August 1987.

M. Kojo, K. Raatikainen, M. Liljeberg, J. Kiiskinen, and T. Alanko. An
efficient transport service for slow wireless links. IEEE Journal on Selected
Areas In Communications, 15(7):1337-1348, September 1997.

P. Kuhlberg. Effects of delays and errors on TCP-based wireless data com-
munication. Master’s thesis, Department of Computer Science, University of

Helsinki. Work in progress.

D. Lin and H. Kung. TCP fast recovery strategies: Analysis and improve-
ments. In IEEFE Infocom. IEEE, March 1998.

Reiner Ludwig and Randy H. Katz. The Eifel algorithm: Making TCP robust
against spurious retransmissions. ACM Computer Communications Review,
30(1), January 2000.

Reiner Ludwig, Bela Rathonyi, Almudena Konrad, Kimberly Oden, and An-
thony Joseph. Multi-layer tracing of TCP over a reliable wireless link. In
Proceedings of the International conference on Measurement and Modeling of
Computer Metrics (ACM SIGMETRICS ’99), pages 144-154, May 1999.

R. Ludwig and K. Sklower. The Eifel retransmission timer. ACM Computer
Communication Review, 30(3), July 2000.

R. Ludwig. Eliminating Inefficient Cross-Layer Interactions in Wireless Net-
working. PhD thesis, Aachen University of Technology, April 2000.

MathWorks. matlab version 5. See http://www.mathworks.com/, 1997.

G. Montenegro, S. Dawkins, M. Kojo, V. Magret, and N. Vaidya. Long thin
networks. IETF RFC 2757, January 2000.

M. Mathis and J. Mahdavi. Forward acknowledgement: Refining TCP con-
gestion control. In Proceedings of ACM SIGCOMM ’96, volume 26, October
1996.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selective acknowl-
edgement options. IETF RFC 2018, October 1996. Standards Track.

M. Mouly and M. Pautet. The GSM System for Mobile Communications.
Europe Media Duplication S.A., 1992.

REFERENCES 79

[Nag84]

[Ost]

[PA00]

[Pax97a]

[Pax97b]

[PF97]

[PN9g|

[Pos81]

[PS98]

[Sim94]

[SM99]

[SMM98]

[SP9S]

[Sta00]

J. Nagle. Congestion control in IP/TCP internetworks. IETF RFC 896,
January 1984.

S. Ostermann. tcptrace. Available at: http://jarok.cs.ohiou.edu/

software/tcptrace/teptrace.html.

V. Paxson and M. Allman. Computing TCP’s retransmission timer. IETF
RFC 2988, November 2000. Standards Track.

V. Paxson. Automated packet trace analysis of TCP implementations. In
Proceedings of the ACM SIGCOMM Conference: Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication (SIGCOMM-
97), volume 27 of Computer Communication Review, pages 167-180, Cannes,
France, September 14-18 1997. ACM Press.

V. Paxson. End-to-end internet packet dynamics. In ACM SIGCOMM °97,
pages 139-152, September 1997. Cannes, France.

V. Paxson and S. Floyd. Why we don’t know how to simulate the Internet.
In Proceedings of the 1997 Winter Simulation Conference, December 1997.

K. Poduri and K. Nichols. Simulation studies of increased initial TCP window
size. IETF RFC 2415, September 1998.

J. Postel. Transmission control protocol. IETF RFC 793, 1981. Standard.

S. Parker and Schmechel. Some testing tools for TCP implementors. IETF
RFC 2398, August 1998.

W. Simpson. The point-to-point protocol (PPP). IETF RFC 1661, July 1994.

R. Semke and J. Mahdavi. The rate-halving algorithm for TCP congestion
control. IETF draft draft-mathis-tcp-ratehalving-00.txt, August 1999. Work

in progress.

J. Semke, J. Mahdavi, and M. Mathis. Automatic TCP buffer tuning. ACM
Computer Communication Review, 28(4), October 1998.

T. Shepard and C. Partridge. When TCP starts up with four packets into
only three buffers. IETF RFC 2416, September 1998.

W. Stallings. Data and Computer Communications. Prentice-Hall, sixth edi-
tion, 2000.

REFERENCES 80

[Ste95] W. Stevens. TCP/IP Illustrated, Volume 1; The Protocols. Addison Wesley,
1995.

[SZCI0] S. Shenker, L. Zhang, and D. Clark. Some observations on the dynamics
of a congestion control algorithm. ACM Computer Communications Review,
20(5):30-39, October 1990.

[Tou97] J. Touch. TCP control block interdependence. IETF RFC 2140, April 1997.

[WS95] G. Wright and W. Stevens. TCP/IP Illustrated, Volume 2; The Implementa-
tion. Addison Wesley, 1995.

A SUMMARY OF THE TEST RESULTS 81

A Summary of the test results

The summary of all performance tests run are described in this section. Each scenario is
tested with 20 replications, except the scenarios with random delays are tested with 50

replications. There are three different kinds of tables.

Single connection tests are done with 100 KB of unidirectional bulk data generated
by ttcp tool. The tables describing the results of single connection tests show the buffer
size and chosen delay identifying the scenario, and for each scenario first quartile (25%
percentile), median (50% percentile) and third quartile (75% percentile) of the elapsed
time for the connections are shown. Elapsed time is the time between the first SYN sent
by the sender and the last packet received (usually a FIN acknowledgement) by the sender.
Additionally, median of throughput (#put), number of retransmissions (rezmt) and number

of packets dropped (drops) are shown.

For tests with 2 and 4 parallel connections there are two tables shown for each test.
First of the tables shows the performance of the whole 50 KB connections, and the second
shows the results for the first 10 KB of the same connections. The connections are uni-
directional bulk data generated by ttcp processes launched within 100 ms of each other
(in other words, almost simultaneously). The table shows elapsed time for the slowest and
the fastest of the connections started in parallel. First quartile, median and third quartile
of 20 replications are shown. Additionally, median of the number of packets retransmit-
ted are shown separately for the connection with least retransmissions (RzMin) and the

connection with most retransmissions (RzMaz).

A SUMMARY OF THE TEST RESULTS

82

Table 14: Baseline single connection tests, 20 replications (random delays tested with 50

replications)
elapsed time
Buffer | Delay 25 % | 50 % | 75 % tput rexmt | drops
1 - 104.43 104.45 104.50 980.00 22.00 22.00
9th, 6 s. 114.90 114.94 116.00 891.00 29.00 23.00
3 - 105.14 105.15 105.17 974.00 18.00 18.00
12th, 1 s. 102.65 102.66 102.67 997.00 16.00 16.00
12th, 6 s. 113.80 113.82 114.22 900.00 24.50 19.00
30th, 6 s. 114.25 114.76 114.91 892.50 40.50 27.00
12th, 10 s. 123.94 124.01 124.12 826.00 25.00 18.00
30th & 50th, 10 s. 125.95 126.10 126.49 812.00 38.50 24.50
rand. 0.01, 6 s. 120.74 130.63 138.29 784.00 42.00 25.50
7 - 103.10 103.11 103.12 993.00 17.00 17.00
20th, 1.5 s. 104.24 105.11 105.47 974.00 16.00 16.00
20th, 6 s. 120.19 120.31 120.42 851.00 24.00 16.00
40th, 10 s. 116.03 116.86 119.18 876.50 34.00 20.00
300th, 6 s. 112.51 112.52 112.53 910.00 32.00 21.00
20th, 15 s. 140.08 140.30 141.01 730.00 24.50 16.50
40th & 80th, 15 s. 137.20 137.93 139.40 742.00 42.00 22.00
rand. 0.01, 6 s. 120.69 132.61 142.01 772.50 47.00 23.50
20 - 106.39 106.40 106.41 962.00 27.00 27.00
40th, 4 s. 109.74 109.80 109.83 933.00 25.00 25.00
40th, 6 s. 129.74 131.04 131.64 781.00 42.00 27.00
100th, 12 s. 140.32 142.28 142.47 720.00 104.00 52.00
300th, 6 s. 116.82 117.60 117.63 871.00 51.00 29.00
40th, 30 s. 176.56 178.73 178.93 573.00 41.00 21.00
100th & 250th, 20 s. 162.76 164.06 164.13 624.00 138.00 52.00
rand. 0.01, 6 s. 121.99 137.42 141.94 745.50 52.50 26.00
Table 15: Baseline tests, 2 parallel connections, 20 replications.
elapsed time (fast) elapsed time (slow)
Buffer| Delay 25% [50% | 75% || 25% | 50 % | 75 % | RxMin| RxMax
3 - 101.81 | 101.81 | 101.82 102.24 | 102.25 | 102.25 15.00 15.00
12th, 1 s. 78.98 87.45 96.05 103.62 | 105.00 | 105.54 || 14.50 23.50
12th, 6 s. 79.06 87.78 91.52 115.08 | 117.02 | 118.36 || 17.00 24.00
30th, 6 s. 84.58 91.79 102.80 110.87 | 111.20 | 114.15 18.00 28.50
rand. 0.01, 6 s. 92.15 100.59 | 109.87 || 122.37 | 133.69 | 148.16 || 25.00 33.00
7 - 99.72 99.73 99.74 102.30 | 102.30 | 102.32 || 9.00 14.00
20th, 6 s. 92.10 114.61 | 117.72 || 116.86 | 118.48 | 118.61 || 15.00 20.00
40th, 10 s. 96.16 96.38 105.16 114.40 | 115.98 | 116.60 15.00 24.00
rand. 0.01, 6 s. 99.39 105.74 | 126.13 || 117.87 | 130.15 | 139.39 || 21.50 30.00
20 - 91.47 91.47 91.48 102.70 | 102.70 | 102.71 11.00 17.00
40th, 4 s. 95.61 95.79 96.24 105.55 | 106.05 | 106.84 || 10.00 18.00
40th, 6 s. 99.24 100.50 | 102.78 || 108.87 | 109.02 | 109.21 || 17.00 17.50
100th, 12 s. 104.49 | 105.42 | 108.27 114.72 | 115.06 | 120.20 17.00 17.00
rand. 0.01, 6 s. 110.71 | 124.34 | 135.58 122.81 | 134.79 | 145.37 || 20.00 29.50

A SUMMARY OF THE TEST RESULTS 83
Table 16: Baseline tests, First 10 KB of 2 parallel connections, 20 replications.
elapsed time (fast) elapsed time (slow)
Buffer| Delay 25% [50% | 75% || 25% | 50 % | 75 % | RxMin| RxMax
3 - 21.12 | 2112 | 2112 || 21.36 | 21.36 | 21.37 || 5.00 6.00
12th, 1 s. 17.83 | 17.84 | 18.61 || 33.92 | 35.49 | 40.75 | 2.00 12.00
12th, 6 s. 25.29 | 26.22 | 26.24 || 63.99 | 71.30 | 72.74 || 8.00 12.00
30th, 6 s. 25.24 | 2531 | 25.52 || 36.43 | 41.45 | 44.20 || 7.00 18.00
rand. 0.01, 6 s. 18.47 | 19.16 | 25.44 || 39.03 | 45.22 | 56.73 | 5.00 14.50
7 - 25.14 | 25.15 | 25.16 || 25.41 | 25.41 | 25.42 || 5.00 9.00
20th, 6 s. 33.30 | 37.20 | 37.27 || 40.50 | 40.55 | 47.72 || 9.00 15.00
40th, 10 s. 33.28 | 33.60 | 34.10 || 34.79 | 35.62 | 35.67 || 8.00 18.00
rand. 0.01, 6 s. 23.82 | 24.84 | 29.98 || 25.97 | 33.69 | 51.35 || 7.00 9.00
20 - 25.40 | 25.41 | 25.41 || 40.77 | 40.77 | 40.78 || 5.00 10.00
40th, 4 s. 28.91 | 29.16 | 30.21 || 38.63 | 40.50 | 41.75 || 5.00 9.00
40th, 6 s. 31.34 | 33.41 | 33.48 || 34.18 | 35.19 | 35.20 || 5.00 16.00
100th, 12 s. 24.64 | 24.71 | 37.23 || 43.14 | 43.45 | 46.86 || 5.00 15.00
rand. 0.01, 6 s. 25.09 | 27.21 | 34.95 || 35.12 | 37.76 | 45.59 || 6.00 9.50
Table 17: Baseline tests, 4 parallel connections, 20 replications.
elapsed time (fast) elapsed time (slow)
Buffer| Delay 25 % | 50 % | 75 % 25 % | 50 % | 75 % || RxMin| RxMax
3 - 109.46 | 149.07 | 164.03 || 206.38 | 207.52 | 208.58 || 20.50 | 40.50
12th, 6 s. 160.36 | 175.53 | 189.64 || 220.15 | 221.19 | 224.24 || 35.00 | 47.50
rand. 0.01, 6 s. 168.22 | 192.26 | 207.47 || 250.79 | 264.55 | 274.53 || 30.50 | 48.00
7 - 155.62 | 156.64 | 162.07 || 203.59 | 204.21 | 205.01 || 15.00 | 22.00
20th, 6 s. 128.90 | 146.33 | 181.46 || 217.69 | 218.50 | 219.47 || 16.50 | 31.00
rand. 0.01, 6 s. 137.17 | 165.60 | 200.78 || 250.48 | 264.83 | 284.26 || 27.00 | 42.00
20 - 171.20 | 171.21 | 171.22 || 203.64 | 203.65 | 203.65 || 10.00 | 18.00
40th, 6 s. 176.85 | 186.70 | 192.66 || 210.60 | 210.78 | 210.90 || 12.00 | 17.00
rand. 0.01, 6 s. 207.94 | 223.70 | 237.72 || 249.64 | 262.07 | 271.86 || 19.50 | 40.00
Table 18: Baseline tests, First 10 KB of 4 parallel connections, 20 replications.
elapsed time (fast) elapsed time (slow)
Buffer| Delay 25% | 50% | 75% || 25% |50 % | 75 % || RxMin| RxMax
3 - 17.77 | 2120 | 2470 || 90.02 | 108.43 | 149.33 || 5.00 14.00
12th, 6 s. 28.32 | 31.54 | 32.83 || 68.95 | 86.87 | 99.21 || 6.00 14.50
rand. 0.01, 6 s. 29.45 | 32.89 | 38.49 || 86.65 | 140.38 | 198.12 || 6.50 15.00
7 - 24.30 | 24.30 | 24.31 || 110.03 | 137.59 | 140.91 || 4.00 13.00
20th, 6 s. 24.29 | 24.72 | 24.76 || 93.48 | 106.51 | 132.79 || 2.00 12.00
rand. 0.01, 6 s. 30.69 | 34.22 | 39.23 || 84.28 | 104.44 | 144.66 || 3.50 15.00
20 - 39.13 | 39.15 | 39.16 || 61.08 | 61.08 | 61.09 || 5.00 9.00
40th, 6 s. 42.39 | 42.56 | 42.88 | 57.45 | 57.71 | 62.37 || 7.00 10.00
rand. 0.01, 6 s. 41.69 | 47.01 | 51.04 | 60.37 | 65.97 | 72.57 || 4.00 11.00

A SUMMARY OF THE TEST RESULTS

84

Table 19: Single connection tests with SACK, 20 replications (random delays tested with

50 replications).

elapsed time
Buffer | Delay 25 % | 50 % | 75 % tput rexmt | drops
3 - 102.48 102.49 102.49 999.00 20.00 19.00
12th, 1 s. 102.47 102.48 102.48 999.00 16.00 16.00
12th, 6 s. 109.20 109.20 109.22 938.00 23.00 17.00
30th, 6 s. 109.71 109.72 109.73 933.00 29.00 23.00
rand. 0.01, 6 s. 120.75 129.62 140.00 790.00 43.00 26.00
7 - 103.04 103.04 103.05 994.00 26.00 22.00
20th, 1.5 s. 104.85 104.92 104.93 976.00 15.00 15.00
20th, 6 s. 110.81 111.80 111.90 916.00 24.00 16.00
40th, 10 s. 113.69 113.70 113.71 901.00 34.00 27.00
300th, 6 s. 122.53 122.77 122.86 834.00 31.00 23.00
20th, 15 s. 118.43 118.44 118.45 865.00 19.00 15.00
40th & 80th, 6 s. 133.08 135.08 135.38 758.00 35.50 28.00
rand. 0.01, 6 s. 129.40 138.47 144.94 739.50 44.50 22.00
20 - 102.79 102.79 120.38 996.00 32.00 29.00
40th, 4 s. 105.48 106.24 106.39 964.00 27.00 27.00
40th, 6 s. 118.00 118.32 118.83 865.00 71.00 28.00
100th, 12 s. 125.41 125.42 125.43 816.00 28.00 28.00
300th, 6 s. 111.90 129.59 129.60 790.00 45.00 29.00
100th & 250th, 20 s. 150.15 150.16 150.33 682.00 49.00 28.00
rand. 0.01, 6 s. 127.85 142.74 148.84 717.50 64.00 27.00
Table 20: SACK tests, 2 parallel connections, 20 replications.
elapsed time (fast) elapsed time (slow)
Buffer| Delay 25% [50% | 75% || 25% | 50 % | 75 % | RxMin| RxMax
3 - 95.22 | 96.79 | 97.03 || 102.88 | 103.07 | 104.05 || 26.00 | 31.00
12th, 6 s. 90.58 93.94 99.20 109.86 | 109.99 | 110.83 || 18.00 25.00
rand. 0.01, 6 s. 97.96 108.51 | 125.76 116.45 | 130.53 | 138.72 || 31.50 37.00
7 - 99.11 99.11 99.16 102.92 | 102.92 | 102.93 16.00 26.00
20th, 6 s. 101.34 | 102.31 | 106.28 || 109.33 | 109.75 | 109.98 || 13.00 21.00
rand. 0.01, 6 s. 105.45 | 116.89 | 128.08 122.92 | 130.46 | 139.64 || 24.50 38.00
20 - 82.22 82.23 84.24 105.94 | 105.95 | 105.95 || 21.00 44.00
40th, 6 s. 72.75 77.08 82.89 107.89 | 108.74 | 109.18 17.00 19.50
rand. 0.01, 6 s. 84.81 107.05 | 137.17 || 123.92 | 132.61 | 143.72 || 29.00 39.50

A SUMMARY OF THE TEST RESULTS 85
Table 21: SACK tests, First 10 KB of 2 parallel connections, 20 replications.
elapsed time (fast) elapsed time (slow)
Buffer| Delay 25% | 50% | 75% || 25% | 50 % | 75 % | RxMin| RxMax
3 - 20.18 | 20.18 | 20.18 || 26.47 | 26.47 | 26.48 | 10.00 | 14.00
12th, 6 s. 19.73 | 19.73 | 19.74 || 56.55 | 56.79 | 56.80 || 8.00 9.00
rand. 0.01, 6 s. 19.69 | 20.67 | 30.69 || 30.49 | 35.64 | 44.40 || 11.00 | 13.00
7 - 20.68 | 20.68 | 20.79 || 27.98 | 27.99 | 28.14 || 7.00 17.00
20th, 6 s. 26.13 | 26.39 | 28.14 || 29.39 | 32.67 | 32.68 || 7.00 14.00
rand. 0.01, 6 s. 24.09 | 30.29 | 32.41 || 33.28 | 36.39 | 43.68 || 9.50 14.00
20 - 2248 | 22.48 | 22.48 || 41.86 | 41.86 | 41.87 || 16.00 | 16.00
40th, 6 s. 27.42 | 27.42 | 27.70 || 47.03 | 47.94 | 54.86 | 15.00 | 18.50
rand. 0.01, 6 s. 22.41 | 27.41 | 35.08 || 36.35 | 40.89 | 59.36 | 11.50 | 17.00
Table 22: SACK tests, First 10 KB of 4 parallel connections, 20 replications.
elapsed time (fast) elapsed time (slow)
Buffer| Delay 25% | 50% | 75% || 25% | 50 % | 75 % | RxMin| RxMax
3 rand. 0.01, 6 s. 24.27 | 28.30 | 33.77 || 120.69 | 197.07 | 217.49 || 10.00 | 20.00
7 rand. 0.01, 6 s. 28.91 | 34.63 | 43.02 || 82.56 | 100.21 | 163.35 || 8.50 14.50
20 rand. 0.01, 6 s. 38.87 | 39.42 | 47.21 || 64.87 | 73.19 | 83.98 || 7.00 16.50

Table 23: Single connection tests with shared advertised window of 2 KB, 20 replications.

elapsed time
Buffer | Delay 25 % | 50 % | 75 % tput rexmt | drops
3 - 102.02 102.03 102.03 1004.00 | 0.00 0.00
12th, 1 s. 108.97 109.03 109.03 939.00 10.00 10.00
12th, 6 s. 119.12 119.14 119.17 859.50 18.00 14.00
30th, 6 s. 117.90 118.26 118.38 866.00 18.00 12.00
rand. 0.01, 6 s. 122.17 134.47 144.09 761.50 31.50 17.00
7 - 102.02 102.02 102.03 1004.00 | 0.00 0.00
20th, 1.5 s. 102.97 102.97 102.98 994.00 0.00 0.00
20th, 6 s. 111.13 111.13 111.15 921.00 14.00 2.00
40th, 10 s. 114.50 114.50 114.50 894.00 13.00 1.00
rand. 0.01, 6 s. 119.59 132.90 140.45 771.00 35.50 3.00
20 - 102.02 102.03 102.03 1004.00 | 0.00 0.00
40th, 6 s. 110.75 110.75 110.76 925.00 13.00 0.00
100th, 12 s. 116.75 116.75 116.76 877.00 13.00 0.00
rand. 0.01, 6 s. 119.79 133.09 141.10 770.00 34.00 0.00

A SUMMARY OF THE TEST RESULTS

86

Table 24: Shared advertised window of 2 KB. 2 parallel connections, 20 replications.

elapsed time (fast) elapsed time (slow)
Buffer| Delay 25% [50% | 75% || 25% | 50 % | 75 % | RxMin| RxMax
3 - 100.60 | 100.60 | 100.61 102.06 | 102.06 | 102.07 || 0.00 1.00
12th, 6 s. 94.51 95.52 102.98 || 108.86 | 108.97 | 109.35 || 13.00 15.00
rand. 0.01, 6 s. 102.54 | 110.41 | 123.72 115.30 | 129.61 | 137.57 || 18.50 25.50
7 - 101.37 | 101.37 | 101.38 || 101.86 | 101.87 | 101.87 || 13.00 15.00
20th, 6 s. 107.82 | 107.83 | 108.57 || 109.52 | 109.53 | 110.27 || 5.00 6.00
rand. 0.01, 6 s. 116.80 | 127.28 | 137.06 || 118.16 | 131.69 | 138.50 || 16.50 20.50
20 - 101.37 | 101.37 | 101.37 || 101.86 | 101.87 | 101.87 || 5.00 6.00
40th, 6 s. 110.59 | 110.60 | 110.61 110.84 | 110.85 | 110.86 || 7.00 7.00
rand. 0.01, 6 s. 122.34 | 134.86 | 143.78 123.02 | 135.57 | 144.02 || 20.50 26.50

Table 25: Shared advertised

window of 2 KB, First 10 KB of 2 parallel connections, 20

replications.
elapsed time (fast) elapsed time (slow)

Buffer| Delay 25% | 50% | 75% || 25% | 50 % | 75 % | RxMin| RxMax

3 - 19.91 | 19.91 | 19.92 || 22.69 | 22.69 | 22.70 || 0.00 1.00
12th, 6 s. 19.36 | 19.42 | 21.46 || 34.57 | 42.99 | 44.05 || 5.00 8.50
rand. 0.01, 6 s. 20.46 | 20.69 | 21.80 || 22.92 | 27.74 | 41.06 || 2.00 4.00

7 - 20.68 | 20.68 | 20.68 || 21.68 | 21.68 | 21.69 || 2.00 4.00
20th, 6 s. 26.13 | 26.13 | 26.88 || 30.65 | 30.66 | 31.41 || 5.00 6.00
rand. 0.01, 6 s. 20.68 | 21.94 | 29.05 || 21.67 | 27.40 | 35.41 || 5.00 6.00

20 - 20.68 | 20.68 | 20.68 || 21.68 | 21.68 | 21.69 || 5.00 6.00
40th, 6 s. 29.15 | 29.15 | 29.16 || 30.15 | 30.15 | 30.16 || 7.00 7.00
rand. 0.01, 6 s. 20.68 | 23.36 | 34.78 || 21.66 | 27.41 | 35.96 || 7.00 7.00

Table 26: Shared advertised window of 2 KB. 4 parallel connections, 20 replications.

elapsed time (fast) elapsed time (slow)

Buffer| Delay 25% | 50% | 75% || 25% | 50% | 75 % || RxMin| RxMax

3 - 198.84 | 198.85 | 198.87 || 204.75 | 204.76 | 204.78 || 1.00 2.00
12th, 6 s. 199.77 | 201.61 | 204.21 || 214.95 | 215.12 | 215.25 || 12.00 19.00

7 - 198.48 | 198.48 | 198.50 || 203.42 | 203.44 | 203.45 || 0.00 1.00
20th, 6 s. 206.30 | 206.59 | 206.60 || 216.23 | 216.39 | 216.51 || 3.00 7.00

20 - 200.24 | 200.25 | 200.26 || 204.44 | 204.44 | 204.46 || 3.00 7.00
40th, 6 s. 207.71 | 207.71 | 207.73 || 211.92 | 211.92 | 211.94 || 2.00 2.00

A SUMMARY OF THE TEST RESULTS 87

Table 27: Shared advertised window of 2 KB, First 10 KB of 4 parallel connections, 20

replications.

elapsed time (fast) elapsed time (slow)
Buffer| Delay 25% | 50% | 75% || 25% | 50% | 75 % || RxMin| RxMax
3 - 35.99 36.00 36.00 53.14 53.15 53.16 1.00 3.00
12th, 6 s. 34.96 34.99 38.24 64.78 70.79 73.31 1.00 9.00
rand. 0.01, 6 s. 32.54 36.57 42.81 54.39 61.49 69.33 2.50 8.00
7 - 37.14 37.14 37.15 45.94 45.96 45.96 0.00 1.00
20th, 6 s. 38.05 38.05 38.07 66.99 67.01 67.03 0.00 4.00
rand. 0.01, 6 s. 38.65 40.10 49.84 51.22 53.07 66.35 1.50 4.00
20 - 38.90 38.91 38.91 42.63 42.65 42.66 1.50 4.00
40th, 6 s. 46.36 46.37 46.38 50.09 50.10 50.12 2.00 2.00
rand. 0.01, 6 s. 38.95 49.73 54.08 48.05 53.47 58.54 2.00 2.00

Table 28: Shared advertised window of 3 KB. Single connection, 20 replications.

elapsed time
Buffer | Delay 25 % | 50 % | 75 % tput rexmt drops
3 - 103.35 103.36 103.36 991.00 13.00 13.00
12th, 1 s. 103.55 103.55 103.55 989.00 15.00 15.00
12th, 6 s. 113.81 113.83 114.22 900.00 24.00 18.00
30th, 6 s. 109.31 109.55 109.57 935.00 17.00 16.00
rand. 0.01, 6 s. 118.32 132.62 142.01 772.00 38.50 20.00
7 - 102.03 102.03 102.04 1004.00 | 0.00 0.00
20th, 1.5 s. 106.42 106.43 106.46 962.00 5.00 5.00
20th, 6 s. 111.44 111.46 111.48 919.00 12.00 9.00
40th, 10 s. 117.44 117.44 117.45 872.00 15.00 5.00
rand 0.01, 6 s. 121.13 135.81 142.02 754.50 35.00 13.00
20 - 102.02 102.03 102.03 1004.00 | 0.00 0.00
40th, 6 s. 112.26 112.26 112.27 912.00 19.00 0.00
100th, 12 s. 118.01 118.01 118.02 868.00 18.00 0.00
rand. 0.01, 6 s. 122.50 136.29 148.67 751.50 42.50 0.00

A SUMMARY OF THE TEST RESULTS

88

Table 29: Shared advertised window of 3 KB. 2 parallel connections, 20 replications.

elapsed time (fast) elapsed time (slow)
Buffer| Delay 25% | 50% | 75% || 25% | 50% | 75 % || RxMin| RxMax
3 - 100.30 | 100.31 | 100.32 || 102.15 | 102.16 | 102.17 || 12.00 13.00
12th, 6 s. 67.88 70.26 85.27 113.86 | 131.36 | 165.87 || 9.00 17.50
rand. 0.01, 6 s. 82.02 98.56 119.50 || 132.38 | 137.21 | 141.98 || 21.50 30.00
7 - 96.83 96.83 96.84 101.90 | 101.91 | 101.92 || 0.00 1.00
20th, 6 s. 83.85 83.86 84.12 109.33 | 109.34 | 109.35 || 8.00 10.00
rand. 0.01, 6 s. 99.25 108.01 | 117.26 || 117.80 | 130.13 | 138.30 || 13.50 25.50
20 - 101.37 | 101.37 | 101.38 || 101.86 | 101.87 | 101.88 || 8.00 10.00
40th, 6 s. 111.60 | 111.61 | 111.61 || 112.35 | 112.36 | 112.37 || 10.00 10.00
rand. 0.01, 6 s. 122.80 | 133.49 | 149.10 || 123.08 | 134.64 | 149.57 || 20.00 26.00

Table 30: Shared advertised

window of 3 KB, First 10 KB of 2 parallel connections, 20

replications.
elapsed time (fast) elapsed time (slow)

Buffer| Delay 25% | 50% | 75% || 25% | 50% | 75 % || RxMin| RxMax

3 - 19.36 | 19.36 | 19.37 || 23.13 | 23.14 | 23.15 || 3.00 5.00
12th, 6 s. 21.06 | 26.23 | 26.26 || 54.92 | 89.26 | 123.96 || 8.00 11.00
rand. 0.01, 6 s. 19.61 | 20.36 | 27.18 || 23.31 | 39.11 | 65.78 | 5.00 9.00

7 - 16.39 | 16.39 | 16.40 || 26.46 | 26.47 | 26.47 | 0.00 1.00
20th, 6 s. 21.56 | 21.56 | 21.61 || 43.22 | 43.23 | 43.24 || 8.00 8.00
rand. 0.01, 6 s. 16.39 | 16.40 | 28.04 || 29.47 | 35.04 | 43.10 | 0.00 7.50

20 - 20.17 | 20.18 | 20.18 || 21.93 | 21.93 | 21.94 || 0.00 7.50
40th, 6 s. 30.66 | 30.66 | 30.66 || 32.42 | 32.42 | 32.43 | 10.00 | 10.00
rand. 0.01, 6 s. 20.17 | 23.09 | 35.50 || 21.92 | 27.55 | 37.30 || 10.00 | 10.00

Table 31: Shared advertised window of 3 KB. 4 parallel connections, 20 replications.

elapsed time (fast) elapsed time (slow)

Buffer| Delay 25% | 50% | 75% || 25% | 50% | 75 % || RxMin| RxMax

3 - 122.05 | 138.69 | 150.91 || 203.94 | 204.79 | 206.44 || 6.50 24.50
12th, 6 s. 116.57 | 136.77 | 153.16 || 216.60 | 217.97 | 235.12 || 9.00 29.50
rand. 0.01, 6 s. 155.83 | 164.67 | 191.05 || 248.03 | 259.50 | 275.11 || 21.00 | 38.50

7 - 193.51 | 193.52 | 193.58 || 204.32 | 204.32 | 204.38 || 1.00 3.00
20th, 6 s. 186.28 | 191.35 | 193.43 || 220.81 | 221.04 | 221.29 || 6.00 13.00
rand. 0.01, 6 s. 200.63 | 213.11 | 228.27 || 244.64 | 254.76 | 269.24 || 16.50 | 30.50

20 - 198.73 | 198.74 | 198.93 || 202.77 | 202.78 | 202.96 || 6.00 13.00
40th, 6 s. 204.18 | 204.18 | 204.18 || 208.21 | 208.21 | 208.22 || 6.00 13.00
rand. 0.01, 6 s. 378.79 | 390.90 | 416.43 || 380.30 | 396.50 | 418.76 || 106.00 | 162.50

A SUMMARY OF THE TEST RESULTS

89

Table 32: Shared advertised

window of 3 KB, First 10 KB of 4 parallel connections, 20

replications.
elapsed time (fast) elapsed time (slow)

Buffer| Delay 25% | 50% | 75% || 25% | 50 % | 75 % | RxMin| RxMax

3 - 21.58 | 24.54 | 29.00 | 67.53 | 108.83 | 145.52 || 2.00 12.50
12th, 6 s. 28.72 | 29.23 | 30.65 || 110.69 | 147.24 | 164.07 || 2.00 16.00
rand. 0.01, 6 s. 24.36 | 30.70 | 35.28 | 94.60 | 122.03 | 144.62 || 4.00 15.00

7 - 30.65 | 30.66 | 30.67 | 50.01 | 50.02 | 50.04 || 1.00 3.00
20th, 6 s. 37.49 | 42.57 | 42.60 | 93.71 | 100.30 | 105.40 || 1.00 6.00
rand. 0.01, 6 s. 20.41 | 35.34 | 38.50 | 72.20 | 89.21 | 117.22 || 2.00 9.50

20 - 35.88 | 35.88 | 35.91 || 43.90 | 43.91 | 43.94 || 2.00 9.50
40th, 6 s. 41.32 | 41.33 | 41.33 || 49.35 | 49.35 | 49.36 || 2.00 9.50
rand. 0.01, 6 s. 35.91 | 53.73 | 57.88 || 49.47 | 65.81 | 71.92 || 2.00 9.50

Table 33: Shared advertised window of 5 KB. Single connection, 20 replications.

elapsed time
Buffer | Delay 25 % | 50 % | 75 % tput rexmt | drops
3 - 104.25 104.26 104.28 982.00 17.00 17.00
12th, 1 s. 103.75 103.75 103.77 987.00 16.00 16.00
12th, 6 s. 113.85 114.23 114.35 896.00 25.00 19.00
30th, 6 s. 110.95 111.73 111.98 916.00 27.00 20.00
7 - 102.91 102.92 102.93 995.00 12.00 12.00
20th, 1.5 s. 103.86 104.05 104.06 984.00 14.00 14.00
20th, 6 s. 120.32 120.40 120.46 850.50 25.50 16.50
40th, 10 s. 118.01 119.41 134.38 857.50 43.00 22.00
rand. 0.01, 6 s. 124.08 136.08 140.55 753.00 42.50 20.50
20 - 102.02 102.02 102.03 1004.00 | 0.00 0.00
40th, 6 s. 111.25 111.25 111.32 920.00 22.00 7.00
100th, 12 s. 117.25 117.26 117.45 873.00 22.00 7.00
rand. 0.01, 6 s. 122.34 132.25 146.51 775.50 43.00 7.00

Table 34: Shared advertised window of 5 KB. 2 parallel connections, 20 replications.

elapsed time (fast) elapsed time (slow)

Buffer| Delay 25% | 50% | 75% || 25% | 50 % | 75 % | RxMin| RxMax

3 - 97.46 97.47 97.48 102.53 | 102.55 | 102.56 || 16.00 17.00
12th, 6 s. 70.11 81.63 86.19 116.27 | 117.50 | 118.85 || 15.00 19.50

7 - 98.46 98.47 98.49 102.29 | 102.30 | 102.31 || 8.00 10.00
20th, 6 s. 66.08 108.97 | 117.09 113.69 | 118.22 | 118.39 14.00 20.50
rand. 0.01, 6 s. 93.77 114.17 | 129.65 116.96 | 131.79 | 141.44 || 20.00 27.00

20 - 100.36 | 100.36 | 100.36 || 101.86 | 101.87 | 101.88 || 14.00 20.50
40th, 6 s. 97.74 97.74 97.74 109.87 | 109.87 | 109.87 || 0.00 12.00
rand. 0.01, 6 s. 119.53 | 126.55 | 141.86 122.18 | 132.13 | 144.14 || 24.00 26.00

A SUMMARY OF THE TEST RESULTS

90

Table 35: Shared advertised

window of 5 KB, First 10 KB of 2 parallel connections, 20

replications.
elapsed time (fast) elapsed time (slow)
Buffer| Delay 25% | 50% | 75% || 25% | 50% | 75 % || RxMin| RxMax
3 - 17.59 17.59 17.61 29.68 29.69 29.70 5.00 9.00
12th, 6 s. 26.21 26.24 26.25 70.78 71.43 76.28 8.00 10.00
7 - 19.42 19.42 19.42 22.94 22.94 22.95 3.00 4.00
20th, 6 s. 23.04 37.19 37.27 40.55 40.57 73.32 9.00 15.00
rand. 0.01, 6 s. 18.10 18.12 28.17 23.90 33.33 49.38 4.00 6.50
20 - 19.67 19.67 19.67 22.18 22.18 22.19 4.00 6.50
40th, 6 s. 26.27 26.27 26.28 35.18 35.19 35.19 0.00 12.00
rand. 0.01, 6 s. 19.67 19.75 35.01 22.19 27.79 36.75 0.00 12.00

Table 36: Shared advertised window of 5 KB. 4 parallel connections, 20 replications.

elapsed time (fast) elapsed time (slow)

Buffer| Delay 25% | 50% | 75% || 25% | 50% | 75 % || RxMin| RxMax

3 - 86.99 101.21 | 118.52 || 206.03 | 207.33 | 208.10 || 10.00 25.00
12th, 6 s. 138.72 | 173.63 | 188.76 || 219.87 | 221.06 | 222.04 || 32.00 45.50

7 - 117.67 | 119.59 | 119.60 || 205.70 | 205.95 | 205.99 || 3.00 22.00
20th, 6 s. 120.30 | 137.24 | 150.75 || 222.44 | 224.84 | 236.42 || 7.50 26.00
rand. 0.01, 6 s. 230.00 | 238.56 | 250.16 || 246.19 | 254.33 | 270.16 || 13.50 21.00

20 - 199.70 | 199.71 | 199.87 || 202.92 | 202.93 | 203.12 || 0.00 1.00
40th, 6 s. 209.97 | 210.65 | 210.98 || 211.25 | 211.81 | 211.99 || 1.00 8.00
rand. 0.01, 6 s. 251.43 | 257.92 | 263.77 || 262.08 | 267.95 | 279.71 || 21.00 36.00

Table 37: Shared advertised window of 5 KB. 4 parallel connections, analysis of the first

10 KB.
elapsed time (fast) elapsed time (slow)
Buffer| Delay 25% | 50% | 75% || 25% | 50 % | 75 % | RxMin| RxMax
3 - 16.16 16.60 16.61 133.85 | 142.46 | 156.15 3.00 14.00
12th, 6 s. 29.39 30.49 31.27 78.60 93.76 103.29 || 6.00 14.00
7 - 23.78 23.78 23.79 147.08 | 147.10 | 147.16 || 2.00 17.00
20th, 6 s. 32.40 36.57 38.08 119.65 | 166.82 | 195.84 || 3.00 12.00
rand. 0.01, 6 s. 40.19 45.78 52.14 46.71 53.10 70.95 3.00 12.00
20 - 37.67 37.68 37.69 45.97 45.98 46.01 0.00 1.00
40th, 6 s. 47.95 48.56 48.96 50.86 51.76 51.86 1.00 8.00
rand. 0.01, 6 s. 38.15 47.83 52.18 47.70 57.62 64.04 0.00 7.50

A SUMMARY OF THE TEST RESULTS 91
Table 38: Baseline TCP with RED router, single connections, 20 replications.
elapsed time
Buffer | Delay 25 % | 50 % | 75 % tput rexmt | drops
7 - (R1) 106.27 | 11151 | 112.21 || 918.50 | 41.50 36.50
20th, 6 5. (R1) 118.70 | 119.57 | 120.13 || 856.50 | 35.00 31.00
- (R2) 111.68 | 114.91 | 119.87 || 891.50 | 49.50 39.50
- (R3) 103.10 | 104.21 | 105.06 || 983.00 | 24.50 24.50
20th, 6 5. (R3) 110.20 | 113.94 | 116.57 || 898.50 | 32.00 26.00
rand. 0.01, 6 5. (R2) 129.50 | 145.74 | 152.61 || 702.50 | 61.00 37.50
rand. 0.01, 6 s. (R3) 124.34 | 137.96 | 143.12 || 742.50 | 53.50 30.50
20 - (R1) 108.60 | 117.58 | 123.52 || 871.00 | 73.50 32.00
40th, 6 5. (R1) 109.81 | 118.54 | 122.80 || 864.00 | 30.50 22.00
- (R2) 104.96 | 113.11 | 121.76 || 905.50 | 40.50 30.00
40th, 6 5. (R2) 114.27 | 127.22 | 129.68 || 805.00 | 38.50 27.50
- (R3) 103.31 | 103.77 | 109.85 || 987.00 | 23.50 23.50
40th, 6 5. (R3) 109.29 | 111.62 | 121.61 || 917.00 | 34.00 21.50
rand. 0.01, 6 5. (R2) 133.77 | 146.42 | 159.18 || 699.00 | 66.00 30.00
rand. 0.01, 6 s. (R3) 134.76 | 143.69 | 152.44 || 712.50 | 68.00 27.50
Table 39: Baseline TCP with RED router, 2 parallel connections, 20 replications.
elapsed time (fast) elapsed time (slow)
Buffer| Delay 25% | 50% | 75% || 25% | 50% | 75 % || RxMin| RxMax
7 - (R1) 83.73 | 89.14 | 98.17 || 103.49 | 104.59 | 106.30 || 18.50 | 26.50
20th, 6 s. (R1) 96.72 | 107.48 | 110.60 || 117.40 | 118.96 | 120.72 || 22.50 | 29.00
- (R2) 88.33 | 97.44 | 102.89 || 105.16 | 106.84 | 109.09 || 20.50 | 30.00
- (R3) 80.92 | 89.91 | 97.93 || 102.87 | 103.77 | 104.91 || 17.00 | 22.00
20th, 6 s. (R3) 90.07 | 102.95 | 106.39 || 110.01 | 111.14 | 116.41 || 22.50 | 26.00
rand. 0.01, 6 5. (R2) 104.05 | 117.83 | 129.15 || 127.44 | 138.91 | 145.52 || 31.00 | 41.50
rand. 0.01, 6 s. (R3) 96.63 | 107.73 | 117.72 || 121.32 | 133.59 | 140.37 || 25.00 | 34.00
20 - (R1) 91.41 | 97.53 | 100.99 || 103.18 | 106.93 | 109.23 || 15.50 | 33.00
40th, 6 5. (R1) 81.69 | 89.71 | 97.77 || 109.59 | 110.41 | 112.26 || 14.50 | 21.00
- (R2) 75.74 | 89.63 | 96.51 || 103.70 | 107.12 | 108.91 || 17.50 | 32.00
40th, 6 5. (R2) 87.58 | 97.36 | 106.50 || 109.88 | 110.59 | 114.51 || 18.50 | 23.50
- (R3) 78.19 | 88.39 | 96.04 || 101.92 | 102.42 | 103.29 || 12.50 | 17.00
40th, 6s. (R3) 79.39 | 91.18 | 105.16 || 109.49 | 109.87 | 112.05 || 15.00 | 22.50
rand. 0.01, 6 5. (R2) 107.98 | 123.09 | 129.78 || 127.90 | 135.16 | 142.59 || 29.50 | 38.00
rand. 0.01, 6 5. (R3) 106.28 | 115.97 | 125.56 || 121.06 | 130.98 | 139.06 || 24.00 | 37.00

A SUMMARY OF THE TEST RESULTS

92

Table 40: Baseline TCP with RED router. 2 parallel connections, analysis of the first 10

KB.
elapsed time (fast) elapsed time (slow)

Buffer| Delay 25% | 50% | 75% || 25% | 50% | 75 % || RxMin| RxMax

7 - (R1) 19.16 21.03 23.85 27.34 30.47 39.12 6.00 11.50
20th, 6 s. (R1) 30.65 35.62 36.93 37.77 38.49 43.07 10.00 14.50
- (R2) 16.59 20.13 21.44 26.96 31.66 40.94 5.00 12.50
- (R3) 16.92 19.37 20.24 22.82 31.34 40.17 6.00 9.50
20th, 6 s. (R3) 20.86 21.02 25.05 36.87 39.91 45.54 8.00 11.50
rand. 0.01, 6 s. (R2) 20.12 22.37 29.86 41.64 47.14 60.30 9.50 16.00
rand. 0.01, 6 s. (R3) 18.71 20.17 22.39 29.52 36.85 50.46 6.00 12.00

20 - (R1) 25.15 26.73 28.69 31.91 35.04 38.27 8.00 18.00
40th, 6 s. 26.87 27.63 29.21 35.07 44.36 56.88 9.50 16.00
- (R2) 23.38 24.49 28.30 31.50 34.40 38.45 8.00 15.00
40th, 6 s. (R2) 27.18 28.38 30.59 38.37 47.67 55.34 9.00 16.50
- (R3) 21.45 27.51 29.35 31.77 34.39 38.51 7.50 10.50
40th, 6 s. (R3) 26.73 27.90 28.86 40.08 43.67 56.66 10.00 17.00
rand. 0.01, 6 s. (R2) 26.57 29.25 35.11 36.77 41.59 54.09 9.00 15.00
rand. 0.01, 6 s. (R3) 25.28 30.53 36.03 37.94 39.98 52.66 8.50 13.00

Table 41: Baseline TCP with RED router, 4 parallel connections, 20 replications.

elapsed time (fast) elapsed time (slow)

Buffer| Delay 25% | 50% | 75% || 25% | 50% | 75 % || RxMin| RxMax

7 - (R1) 131.91 | 158.01 | 170.47 || 207.58 | 208.77 | 210.77 || 24.00 34.00
20th, 6 s. (R1) 140.94 | 152.16 | 178.35 || 222.24 | 228.28 | 237.22 || 26.50 38.50
- (R2) 130.64 | 142.77 | 159.46 || 211.80 | 214.13 | 220.28 || 27.00 38.50
- (R3) 129.42 | 155.21 | 162.04 || 207.22 | 208.44 | 209.24 || 22.50 39.00
20th, 6 s. (R3) 147.31 | 169.49 | 174.55 || 220.92 | 222.92 | 233.12 || 29.00 44.50
rand. 0.01, 6 s. (R2) 155.69 | 170.68 | 205.64 || 259.22 | 281.20 | 323.15 || 33.00 52.00
rand. 0.01, 6 s. (R3) 160.44 | 172.24 | 195.69 || 250.91 | 257.86 | 273.42 || 35.00 49.50

20 - (R1) 150.02 | 170.16 | 179.05 || 205.11 | 206.20 | 207.03 || 16.00 23.00
40th, 6 s. (R1) 149.53 | 167.52 | 184.27 || 211.58 | 212.36 | 213.01 15.50 25.00
- (R2) 146.95 | 157.78 | 168.01 || 204.81 | 205.39 | 206.48 || 17.50 28.50
40th, 6 s. (R2) 140.18 | 149.94 | 172.45 || 210.80 | 212.56 | 213.95 16.50 25.50
- (R3) 154.32 | 175.79 | 187.45 || 204.38 | 205.13 | 205.98 || 14.00 25.50
40th, 6 s. (R3) 160.45 | 168.15 | 171.70 || 211.12 | 211.70 | 212.40 15.50 25.50
rand. 0.01, 6 s. (R2) 168.66 | 200.46 | 210.46 || 251.17 | 263.32 | 273.12 || 25.50 41.00
rand. 0.01, 6 s. (R3) 199.68 | 210.96 | 219.94 || 248.21 | 255.69 | 271.85 || 23.50 41.00

A SUMMARY OF THE TEST RESULTS

93

Table 42: Baseline TCP with RED router. 4 parallel connections, analysis of the first 10

KB.
elapsed time (fast) elapsed time (slow)

Buffer| Delay 25 % | 50 % | 75 % 25 % | 50 % | 75 % RxMin| RxMax

7 - (R1) 23.29 26.63 28.76 67.28 92.03 109.55 || 4.50 11.00
20th, 6 s. (R1) 28.32 30.26 32.63 76.65 104.55 | 179.59 || 5.00 11.50
- (R2) 22.92 26.71 32.37 71.11 93.07 133.95 || 5.00 13.50
- (R3) 20.07 24.28 28.14 74.01 90.08 113.72 || 4.00 12.00
20th, 6 s. (R3) 30.20 32.13 34.49 80.42 98.98 126.88 || 5.00 12.00
rand. 0.01, 6 s. (R2) 26.68 29.82 35.87 89.64 130.53 | 194.01 || 6.00 14.00
rand. 0.01, 6 s. (R3) 28.54 34.87 38.11 85.14 114.31 | 138.41 || 6.00 16.50

20 - (R1) 26.90 29.94 31.63 56.73 76.31 85.77 3.50 11.00
40th, 6 s. (R1) 35.03 36.66 38.81 71.60 95.88 122.18 || 5.00 12.00
- (R2) 30.27 33.86 36.69 73.30 89.01 99.86 4.50 13.50
40th, 6 s. (R2) 32.26 34.15 36.33 75.08 99.93 119.92 || 5.00 13.00
- (R3) 32.81 34.84 36.94 56.88 71.32 87.02 4.00 11.00
40th, 6 s. (R3) 33.78 36.09 39.12 64.30 70.24 91.68 4.00 11.50
rand. 0.01, 6 s. (R2) 29.88 34.68 39.47 83.22 104.84 | 138.90 || 5.00 12.00
rand. 0.01, 6 s. (R3) 35.26 37.98 41.48 65.88 72.37 114.19 || 5.50 12.50

A SUMMARY OF THE TEST RESULTS 94

Table 43: Initial congestion window of 4 * MSS. Single connections, 20 replications.

elapsed time
Buffer | Delay 25 % | 50 % | 75 % tput rexmt drops
3 - 104.96 104.97 104.98 976.00 19.00 19.00
12th, 6 s. 116.23 116.54 116.65 879.00 26.00 21.00
rand. 0.01, 6 s. 120.76 131.22 138.27 780.50 39.50 25.50
7 - 102.91 102.92 102.93 995.00 17.00 17.00
20th, 6 s. 109.80 109.80 109.81 933.00 26.00 16.00
rand. 0.01, 6 s. 124.18 132.69 141.97 771.50 49.00 24.50
20 - 106.20 106.21 106.22 964.00 27.00 27.00
40th, 6 s. 111.57 131.69 132.64 777.50 42.00 25.00
rand. 0.01, 6 s. 121.45 136.97 143.13 747.50 49.00 27.00

Table 44: Initial congestion window of 4 * MSS. 2 parallel connections, 20 replications.

elapsed time (fast) elapsed time (slow)
Buffer| Delay 25% | 50% | 75% || 25% | 50% | 75 % || RxMin| RxMax
3 - 55.57 55.58 55.65 124.96 | 125.14 | 125.18 || 9.00 13.00
12th, 6 s. 63.20 83.42 86.59 110.02 | 110.76 | 112.51 16.50 22.00
rand. 0.01, 6 s. 64.07 80.54 104.35 || 119.89 | 137.70 | 147.41 || 20.00 34.50
7 - 80.19 80.19 80.20 103.78 | 103.79 | 103.81 || 8.00 17.00
20th, 6 s. 63.14 63.20 63.71 109.93 | 110.26 | 110.48 || 10.00 19.00
rand. 0.01, 6 s. 100.39 | 111.50 | 123.54 119.12 | 130.54 | 143.55 || 22.00 31.50
20 - 90.96 90.97 90.99 102.70 | 102.70 | 102.73 12.00 17.00
40th, 6 s. 67.44 70.38 78.09 108.78 | 109.05 | 109.12 || 15.00 17.00
rand. 0.01, 6 s. 104.28 | 119.85 | 131.62 122.07 | 131.56 | 143.95 || 20.50 34.00

Table 45: Initial congestion window of 4 * MSS, First 10 KB of 2 parallel connections, 20

replications.

elapsed time (fast) elapsed time (slow)
Buffer| Delay 25% | 50% | 75% || 25% | 50% | 75 % || RxMin| RxMax
3 - 13.18 13.19 13.20 82.75 82.93 82.95 5.00 9.00
12th, 6 s. 18.75 18.75 18.77 53.27 59.34 68.18 8.00 9.00
rand 0.01, 6 s. 12.18 12.68 19.17 50.99 65.69 84.50 6.00 9.00
7 - 22.43 22.44 22.44 28.99 29.00 29.00 4.00 10.00
20th, 6 s. 21.76 21.77 21.79 69.56 69.89 70.11 7.00 16.00
rand. 0.01, 6 s. 18.41 23.69 27.07 27.31 38.83 51.29 5.00 16.00
20 - 27.17 27.17 27.18 44.80 44.81 44.82 6.00 11.00
40th, 6 s. 29.29 29.84 30.66 59.13 60.66 68.72 6.00 17.00
rand. 0.01, 6 s. 26.93 30.13 34.44 38.35 40.84 44.64 6.00 10.00

A SUMMARY OF THE TEST RESULTS 95
Table 46: Initial window of 4 * MSS. 4 parallel connections, 20 replications.
elapsed time (fast) elapsed time (slow)

Buffer| Delay 25% | 50% | 75% || 25% | 50% | 75 % || RxMin| RxMax
3 - 123.91 | 138.42 | 152.88 || 206.07 | 211.48 | 318.40 || 22.00 | 35.50
12th, 6 5. 145.30 | 151.70 | 167.52 || 218.86 | 221.29 | 223.63 || 34.00 | 47.00
rand. 0.01, 6 s. 161.21 | 177.76 | 192.86 || 253.41 | 273.13 | 281.55 || 33.00 | 52.50
7 - 148.52 | 148.57 | 153.18 || 205.65 | 205.81 | 205.85 || 15.00 | 30.50
20th, 6 s. 127.38 | 153.90 | 180.75 || 218.03 | 219.04 | 220.52 || 21.50 | 35.00
rand. 0.01, 6 s. 154.69 | 165.52 | 180.04 || 248.05 | 261.94 | 268.37 || 26.00 | 43.50
20 - 167.47 | 167.65 | 173.13 || 203.92 | 204.16 | 204.25 || 9.00 26.00
40th, 6 s. 180.84 | 201.87 | 201.90 || 211.10 | 211.11 | 211.30 || 12.00 | 20.00

Table 47: Initial congestion window of 4 * MSS, First 10 KB of 4 parallel connections, 20

replications.
elapsed time (fast) elapsed time (slow)
Buffer| Delay 25% | 50% | 75% || 25% | 50 % | 75 % | RxMin| RxMax
3 - 23.34 | 23.36 | 23.72 || 100.36 | 143.65 | 276.15 || 6.00 15.00
12th, 6 s. 21.62 | 24.15 | 25.53 || 100.42 | 127.15 | 141.27 || 9.00 18.00
rand. 0.01, 6 s. 25.45 | 28.44 | 35.61 | 90.24 | 125.83 | 148.89 || 8.50 19.50
7 - 29.53 | 29.57 | 31.40 | 55.39 | 55.41 | 75.37 || 4.00 12.00
20th, 6 s. 27.33 | 28.14 | 32.18 || 81.27 | 89.35 | 126.91 || 7.50 14.50
rand. 0.01, 6 s. 24.76 | 28.83 | 35.80 || 91.15 | 122.10 | 158.78 || 7.00 16.00
20 - 42.11 | 43.29 | 43.33 || 50.31 | 59.57 | 59.58 || 4.00 9.00
40th, 6 s. 39.26 | 39.28 | 39.31 || 63.21 | 63.23 | 74.09 || 7.00 14.00

B TRANSMISSION CONTROL PROTOCOL 96

B Transmission Control Protocol

We assume that the reader has a basic knowledge about Transmission Control Protocol
(TCP). The basics can be found, for example, in [Ste95] and [Com95]. However, we go
through the fundamentals.

B.1 General Overview

TCP assumes it can obtain a simple, potentially unreliable datagram service from the lower
level protocols. The intermediate routers may discard packets, the packets can arrive to
the destination out of order or the packets may be duplicated by the network. Those are
the situations that TCP was made to recover from. Thus, it provides reliable, connection-
oriented transportation. To provide this service, TCP has to implement facilities in the
following areas: set up the connection, multiplexing, basic data transfer, reliability and
flow control, precedence, and security [Pos81]. In addition to these, the protocol makes
use of congestion control algorithms to monitor the congestion in the network and reduce
the load in the intermediate links, if needed. These algorithms are crucial for the stability

of the Internet. The congestion control algorithms are discussed in Appendix B.2.

Connections

For reliability and flow control TCP needs state information for each data stream. This
includes information about window sizes, sequence numbers etc. In the beginning of
the communication, the TCPs establish a connection and initialize the status informa-
tion by executing a three-way handshake. Figure 23 shows the segments sent during the
handshake. During the handshake, the initial sequence numbers, and possibly maximum
segment sizes (MSS) and TCP options are negotiated. In Figure 23 the first transmitted
packet is the SYN segment that tells the receiver that the sender wishes to establish a
connection. In addition, the initial sequence number is provided (X in the figure). The
receiver sends a SYN segment that contains the receiver’s initial sequence number (Y), and
the acknowledgment for the sender’s initial sequence number (X+1, i.e. the next expected
sequence number). Finally, the TCP initiator acknowledges the receiver’s initial sequence
number (Y+1). After this procedure the connection is established and data transfer may
begin. The MSS and TCP options are “piggybacked” with the SYN messages, if used.

B TRANSMISSION CONTROL PROTOCOL 97

(1) SYNX
Remote Host / Mobile Host
2) SYNY,ACK X+1

(

\

(3) ACKY+1

Figure 23: The three-way handshake at the beginning of the connection
Multiplexing

To allow many processes to use TCP simultaneously, TCP provides multiple ports to be
used within a single host. Concatenated with the IP-address this forms a socket. A pair
of sockets identifies a connection, so a single socket can be used in different connections at

the same time.

Basic Data Transfer

TCP is able to transfer a continuous stream of octets in each direction between its users.
It packages some number of octets into segments and forwards them to the lower layer for

transportation through the Internet.

Reliable transportation

The TCP recovers from data that is damaged, lost, duplicated, or delivered out of order by
the Internet communication system. This is achieved by assigning a sequence number to
each octet transmitted, and requiring a positive acknowledgment (ACK) from the receiving
TCP. The initial sequence numbers are negotiated between the hosts at the beginning of the
connection (see Figure 23). In the ACK segment the next expected octet is indicated using
the sequence number. The acknowledgments are cumulative, so each ACK acknowledges all

previous segments, too.

B TRANSMISSION CONTROL PROTOCOL 98

TCP makes use of timers to monitor the flow of incoming ACKs. If the acknowledgment
has not arrived within a certain time interval, a retransmission timeout (RTO) occurs and
the segment is retransmitted. The TCP sender constantly monitors the round-trip time
(RTT) and calculates the RTO value using the following equations|Jac88]:

Diff = New RTT - SRTT
SRTT = SRTT + 6« Dif f

DEV =DEV + px (|Diff| — DEV)
RTO = SRTT +n+ DEV

In the above equations New RTT is the round-trip time measured from the latest
packet, SRTT stands for “Smoothed round-trip time” and DEV is estimated mean devia-
tion. § and p are constants between 0 and 1 to be chosen by the implementation. [PA0O]
states that § should be set to 1/8, p set to 1/4 and 7 should be set to 4. These values
are also widely used in the present TCP implementations. The equations presented above
were introduced in [Jac88], as the original algorithm introduced in [Pos81] turned out to
be inadequate with congested internetworks. Later RFC [Bra89| states that a TCP im-
plementation must follow the rules mentioned above. The retransmission timer must be
reseted when an ACK is received that acknowledges new data. This way the timer will
expire one round trip time later, after RTO seconds. For a more detailed description, refer
to [PA0O].

At the receiver, the sequence numbers are used to correctly order segments that may be
received out of order and to eliminate duplicates. Data corruption is handled by adding a
checksum to each segment transmitted, checking it at the receiver, and discarding damaged

segments.

In-order delivery is achieved by buffering the received segments at the receiving end
until the expected octet of data are obtained to be delivered to the receiving application.
The TCP receiver does not acknowledge the incoming segments if some previous octets
have not yet arrived. In that case, receiving TCP sends a duplicate acknowledgment
every times it gets a new segment until the missing segment is received. The duplicate
acknowledgment is an ACK that acknowledges the same segment as the previous ACK (i.e.
the sequence number is the same). The behavior of the TCP sender, as well as the whole
algorithm called fast retransmit/fast recovery, is described in more detail in Appendix
B.2.4.

So-called delayed acknowledgment is used to reduce traffic over the network. An ACK is

B TRANSMISSION CONTROL PROTOCOL 99

not sent immediately after the arrival of a data segment. This makes possible to piggy-back
data or window updates. Every second full-sized segment should be acknowledged and the
ACK can not be delayed for more than 500 ms [APS99|. A usual delay threshold for the
delayed acknowledgments is 200ms which is more user friendly in interactive connections
where the response time is more important. Delayed acknowledgments slow down the slow-
start phase because the number of incoming ACKs is decreased, so the congestion window
does not grow as quickly. To improve the feedback from the receiver, it is stated that
duplicate acknowledgments should be sent immediately to the TCP sender[APS99]. Also,
the receiver should send an immediate ACK when it receives a data segment that fills in all

or part of a gap in the sequence space[APS99].

Flow control

TCP provides a means for the TCP receiver to control the amount of data sent by the
sender. This prevents the sender to overfill the receiver’s storage space (i.e. socket buffer)
in case the receiver is not capable to consume the data as quickly as the sender provides
new segments. This is achieved by returning a "window" with every ACK indicating a
range of acceptable sequence numbers beyond the last segment successfully received. The
recetver advertised window (rwnd) indicates an allowed number of octets that the sender
may transmit before receiving further permission. In many implementations the socket
receive buffer size determines how large a window the receiver advertises. The socket
buffer size has system dependent default value but can usually be set directly by the
application. In addition to the advertised window, several congestion control algorithms,
such as slow-start and congestion avoidance, control the number of segments sent to the

receiver.

Precedence and security

TCP makes use of the IP type of service field and security options to provide precedence

and security to TCP users.

B.2 Congestion control

The basic congestion control mechanisms are described in this section. These algorithms

were not included in the earliest TCP specifications.

B TRANSMISSION CONTROL PROTOCOL 100

B.2.1 Background

As noted before, IP networks may drop packets, for example, when the router buffers
become full and no storage space is available for the incoming packet. It causes a TCP
retransmission as the TCP senders retransmission timer expires because the acknowledg-
ment for the packet has not arrived. The sender will send the packet again - and cause
more congestion in the routers. This was the situation earlier as the congestion control
algorithms were not yet in use. The receiver’s advertised window was the only way to

reduce the data flow.

The first congestion collapses started to occur in October 1986 when the data through-
put decreased in factor-of-thousand from 32 Kbps to 40 bps|Jac88]. At that time, research
was carried out to understand the background of the collapses. As a result of the study,
algorithms called slow-start and congestion avoidance were introduced|[Jac88]. This state-

ment outlined the principles when designing the algorithms:

"If packet loss is (almost) always due to congestion and if a timeout is (almost) always due

to a lost packet, we have a good candidate for the ‘network is congested’ signal.”|Jac88|

B.2.2 Slow-Start and Congestion Avoidance

Slow-start and congestion avoidance were first introduced by Jacobson [Jac88| and they
were quickly made mandatory [Bra89]. It allows the TCP sender to probe the capacity of
the network by increasing the sending frequency to probe the network capacity. The slow
start algorithm is used for this purpose at the beginning of a transfer, after repairing loss

detected by the retransmission timer, and after idle periods.

To implement these two algorithms we need to add two state variables: congestion

window (cwnd) and slow-start threshold (ssthresh).

cwnd is a sender-side limit on the amount of data the sender can transmit into the
network before receiving an ACK, while the receiver’s advertised window (rwnd) is a receiver-
side limit on the amount of outstanding data. The minimum of cwnd and rwnd governs
data transmission [APS99].

ssthresh is needed to determine whether to use slow-start or congestion avoidance. If
cwnd is smaller than ssthresh, then slow start is used. Otherwise the TCP sender uses

congestion avoidance.

B TRANSMISSION CONTROL PROTOCOL 101

The initial value of cwnd, called initial window (IW), must be no more than two seg-
ments'?. After the connection establishment, the TCP sender transmits as many segments
to the network as the value of IW permits. Before the sender receives an ACK the sender
is blocked and cannot send any new data. After receiving the ACK, the number of new
segments to be sent is equal to the number of "acked" segments plus one segment due to

the increase of the cwnd.

During slow-start, a TCP sender starts with a cwnd of one or two segments and increases
the cwnd by at most sender maximum segment size (SMSS) bytes for each ACK received that
acknowledges new data. Slow-start ends when cwnd reaches ssthresh or when congestion
is observed. The sender may observe the congestion in two ways: the retransmission timer
expires or after receiving three consecutive duplicate acknowledgments (dupack). The data
receiver sends a dupack after receiving an out-of-order segment. When the third dupack

has arrived, the TCP sender goes to a fast retransmit/fast recovery algorithm.

Figure 24: A trace of slow start with the IW size of two segments, without delayed
acknowledgments.

In Figure 25 we see the slow-start phase ending when it reaches the receiver advertised
window after 68 seconds (i.e. the point in the figure where the line sent seghigh reaches

the line receiver window).

During congestion avoidance, cwnd is incremented by one full-sized segment per round-
trip time (RTT). That means that the cwnd is increased only after a full window of data
is acknowledged. Congestion avoidance continues till the end of the connection or until

congestion is detected by RTO. A commonly used formula to update cwnd is [APS99]:

cwnd+ = SMSS « SMSS/cwnd (2)

19Tn experimental TCP extensions, values three and four are accepted, as well [APS99]

B TRANSMISSION CONTROL PROTOCOL 102

10.0.0.1.4405 <> 10.0.0.2.3814

KB
/ receiver window
120.0 / / Sent Seghigh ™
110.0 / // treceivedack

b /
80.0 "i’r

70.0 J’ﬁgr J#!r
60.0 "#’;’F ""
o)
wo Wl f S
/4

0.0 —

Secs
0.0 50.0 100.0 150.0

Figure 25: A 130KB transfer

Figure 24 shows this situation as the TCP sender sends two new segments the the
networks after receiving an ACK. If delayed acknowledgments (explained in Appendix ?7)
were in use, the sender would send three segments instead of two because the incoming
ACK acknowledges two segments. After the cwnd has reached ssthresh the slow start is
exited and congestion avoidance is invoked. After successfully sending a whole window of

data (eight data segments), cwnd is increased by one segment.

B.2.3 Recovery from Retransmission Timeout

As noted before, TCP makes use of timers to monitor the flow of incoming ACKs. The

equations used to achieve the RTO were described in Appendix B.1.

When a RTO occurs, the TCP sender interprets it to have two meanings. First, the
segment that was not acknowledged in time is missing and, second, the loss is due to
congestion in the network. Thus, the TCP sender will retransmit the segment and invoke
slow start with a cwnd of one segment [APS99|. In addition, ssthresh is updated to be half
the current number of segments outstanding in the network (flightsize) and the ezponential

backoff [KP87] algorithm is used to re-initialize the retransmission timer.

Because ssthresh is lowered, the congestion avoidance phase will start sooner. This

B TRANSMISSION CONTROL PROTOCOL 103

way the capacity of the network is not exceeded as quickly as with a longer slow start.

The correct formula to calculate the new value of ssthresh is [APS99]:
ssthresh = max(flightsize/2,2 x SMSS) (3)

Figure 26 shows an artificial trace of the congestion window before and after a retrans-
mission timeout. The connection starts with slow start and proceeds using congestion
avoidance until the retransmission timer expires. As a result, cwnd is set to one segment
and slow start is invoked again. The new value of ssthresh is visible as the congestion

avoidance starts in an earlier phase than before the RTO.

Congestion Window

N e
N // \\
N |
) / \\
oL/ /
% o L

0 5 10 15 20 25

Trace of cwnd

Transmission nbi

Figure 26: The trace of cwnd after a retransmission timeout

Each time the RTO has occurred, the new RTO value has to be the old RTO mul-
tiplied by a constant value, which must be at least 2[PA00]. This, so-called ezponential
backoff algorithm, is used after RTO has expired to avoid future RTOs to be triggered
unnecessarily. Also, the retransmissions may cause more congestion to the network, so
the threshold when to retransmit data should be higher every time the TCP sender has
detected congestion.

The SRTT estimate should be updated only after new segments have been acknowl-
edged, the acknowledgments for the retransmitted TCP segments should not be taken into
account. This is to avoid the problem caused by an old acknowledgment arriving for the

first packet just after a retransmission has been triggered by a RTO, causing the RTT

B TRANSMISSION CONTROL PROTOCOL 104

measurement to be invalid.

B.2.4 Fast Retransmit/Fast Recovery

This algorithm provides a quicker way to recover from a single packet loss. The latest
TCP congestion control specification [APS99] states that these algorithms should be im-
plemented. Before this algorithm was in use, the retransmission timeout (RTO) was the

only way to observe a packet loss.

The TCP receiver is required to send a duplicate acknowledgment (dupack) immediately
when an out-of-order segment arrives. The dupack is identical to the previously sent ACK,
i.e. the acknowledged sequence number is the same. The purpose of a dupack is to
inform the sender that a segment has received out-of-order and which sequence number
is expected. The dupacks can be caused by different reasons, not just a packet loss. The
network may have re-ordered the data segments, or the ACKs (or data segments) may have
been replicated by the network [Pax97b]. When the TCP sender receives the first dupack,
it cannot yet retransmit the segment because the dupacks can be caused by a number of
network problems, not just a dropped segment. There is other information in the ACK,
too. The receiver can only generate one in response to a segment arrival. A dupack means
that a segment has left the network (it is now cached at the receiver)??. Thus, if the sender
was limited by the congestion window, a segment can now be sent. This is the reason why
the sender does not have to go to into slow-start. The fast retransmit algorithm uses three
dupacks (four identical ACKs without any other intervening segments) as an indication of

a lost segment.

Taking these different aspects into account, the fast retransmit and fast recovery algo-

rithms are usually implemented as follows [APS99]:

1. When the third dupack is received (4 identical ACKs without any other intervening

segments) , set ssthresh to no more than the value given in equation 3.

2. Retransmit the lost segment. Set cwnd = ssthresh + 3 x SMSS. This “inflates” the
congestion window by the number of segments (three) that have left the network and

the receiver has buffered.
3. Increase cwnd by one SMSS for each additional dupack received.
4. Transmit a segment if allowed by the new cwnd or rwnd.

5. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh (the

value set in step 1). This is termed "deflating" the window.

20 A large duplication of segments by the network can invalidate this conclusion.

B TRANSMISSION CONTROL PROTOCOL 105

The ACK received in step 5 should be due to the retransmission of the segment in step 1.
If so, the retransmitted segment was the only one to be missing. It is well known that fast
retransmit and fast recovery algorithms do not work well if multiple segments are dropped
within a single window[FH99][MMFR96]. This is because the algorithm retransmits only
the first segment without waiting for the RTO after the third dupack. While in fast
recovery phase, all other packet losses are observed using the retransmission timer. A
single retransmit timeout might result in the retransmission of several data packets, but
each invocation of the Reno fast retransmit algorithm leads to the retransmission of only a

single data packet[FH99]. A more detailed description is presented in [Hoe96], for example.

Figure 27 shows the recovery from a lost segment. The x-axis is the time and y-
axis is the highest sequence number of a segment. Both, sent segments and received
ACKs, are printed. The figure is drawn from the sender’s TCP dump?! and the dropped
segment was the 15th segment. The received dupacks are clearly visible as a horizontal
line after 5 seconds of transfer and the fourth dupack triggers the single retransmission.
After retransmitting the expected segment the TCP sender has halved the cwnd. After
7.5 seconds the TCP sender may transmit new segments even if the retransmitted one is
not yet acknowledged. This is due to the constant flow of dupacks that increase the cwnd
to a value that allows new segments to be sent to the network. Once the new ACK arrives

at the TCP sender, the connection continues by using congestion avoidance.

B.2.5 NewReno TCP modification

The basic problem of fast retransmit is that it invokes only one fast retransmission without
waiting for the retransmission timer to expire. Therefore, the recovery from situations
where multiple segments are dropped from a single window, is not good. There is not
much information available for the TCP sender for making retransmission decisions during
fast recovery. However, a response to so-called partial acknowledgments (described later)

ameliorate this situation.

Many different modifications for the regular fast recovery algorithms exist. The NewReno
modification is specified in [FH99| and it was first introduced in [Hoe95] by Janey Hoe.
This modification is based on the information achieved when the first acknowledgment of
new data after three consecutive duplicate acknowledgments is received. If there were mul-
tiple packets dropped, the acknowledgment for the retransmitted segment will acknowledge
some but not all of the segments transmitted before the segment retransmitted by the fast

retransmit. This packet is a partial acknowledgment.

21 A software that is used to monitor the network traffic going through the computer

B TRANSMISSION CONTROL PROTOCOL 106

15th data segment dropped

KB

- sent seghigh
11 /’f - . ana
1, ~ received ack

10 -
/ ,-r"
9 =

L't T
[P
,.'
.

Secs
0 5 10

Figure 27: Recovery from a missing segment using the fast retransmit/fast recovery algo-

rithm

NewReno modification makes use of a new variable called recover that is set to the high-
est sequence number sent before receiving three duplicate ACKs. The steps of NewReno
modification are mostly the same as in regular fast retransmit and fast recovery described
in Appendix B.2.4, page 104. The only changes are in step 1 where the highest sequence
number sent is recorded in the variable recover and in step 5 where responses to partial
acknowledgments are produced. The response to the partial ACKs (step 5) is explained
below. If the incoming ACK acknowledges all segments up to and including the sequence
number in recover, cwnd is set to ssthresh as in regular fast recovery. The fast recovery

procedure may be exited. A second option is to set the cwnd to flightsize + MSS.

Recovery from partial acknowledgments

During the recovery period, when an ACK arrives that acknowledges new data, it could be
the ACK elicited by the retransmission of step 2 (due to dupacks) or later retransmissions.
Different actions are made if the ACK acknowledges all the segments sent up to the variable
recover or if it is just a partial ACK. If the acknowledgment is a partial ACK, retransmit
the first unacknowledged segment. Deflate the cwnd by the amount of new acknowledged

data and add back one segment. This is so called “partial window deflating”. Reset also the

B TRANSMISSION CONTROL PROTOCOL 107

retransmission timer, but only for the first partial ACK that arrives during fast recovery.
The fast recovery procedure does not end, so later duplicate ACKs received invokes steps
3 and 4.

C BASELINE TCP 108

C Baseline TCP

The TCP implementation we use to execute the tests is based on Linux kernel 2.3.99-pre9.
The situation with Linux kernel was quite inconsistent since the final stable release 2./
had not yet been published (and still has not). Many new patches came every week. We
decided to take the pre9 version and start working with it because we did not have the
time to wait for the final release that we still might have to patch to achieve a TCP that
works like we would wish. This section outlines the modifications we have made to the pre9
kernel. We call this modified TCP version Baseline TCP, as it represents the standard
behaving TCP that is outlined in [Pos81], [Bra89] and [APS99].

C.1 TCP parameters, options and settings

The TCP standards let the TCP implementations choose some of the parameters and for
their own convenience. This section outlines the behavior of Baseline TCP in more detail.
Because NewReno TCP modification is accepted as a possible fast recovery modification
in [APS99], we have included it in the Baseline TCP as it represents the "best current

practice".

C.1.1 NewReno TCP modification

When receiving a partial ack the TCP sender retransmits the following segment immedi-
ately. The question is, should the congestion window be suppressed. It is not clearly stated
in [FH99] if a retransmissions is counted as a new transmitted segment which should be
taken into account by lowering the cwnd by one SMSS. The alternative interpretation is
that retransmissions do not count when calculating the new value for cwnd. In this case, a
new segment may be transmitted in addition to the retransmitted one. We took the latter
interpretation and so the Baseline TCP sends a new data segment after receiving a partial

acknowledgment.

After the TCP sender has received the ACK that acknowledges all segments up to and
including the variable recover, the fast recovery period is ended. [FH99] gives two possible
values for the new value of the cwnd: it can be set to ssthresh or flightsize + SMSS.
We chose the latter alternative as it reduces the possible burst that may follow after the
recovery period. After fast recovery is exited, the cwnd is raised by one SMSS upon every
incoming ACK until ssthresh is reached, as in regular slow start. However, if the cwnd

is exactly four segments, while the third duplicate acknowledgment arrives, the cwnd is

C BASELINE TCP 109

not reduced after exiting the algorithm upon the new ACK that acknowledges all the four
segments. Thus, after the recovery, the cwnd is retained, and congestion avoidance is used
to further increase the cwnd. By doing this, the cwnd is not lowered beyond four segments,

and the possibility to use fast retransmits is maintained??.

The NewReno specification [FH99| describes a “bugfix”. The question is, how to avoid
multiple fast retransmits. Because the data sender remains in fast recovery until all of the
data outstanding when fast retransmit was entered has been acknowledged, the problem
of multiple fast retransmits can only occur after a retransmission timeout. After RTO, the
highest segment sent during the recovery period is recorded to a new variable send_high.
If the data sender receives three dupacks that do not cover send_high, fast retransmit
is not triggered. Two different variants of exists for the “bugfix”, called Careful and Less
CarefullFH99]. The Less Careful variant triggers fast retransmit if the ACKs covers the
variable send_high and the Careful variant enters fast retransmit only if the ACK covers

more than send_high. Baseline TCP implements Less Careful variant of the “bugfix”.

C.1.2 Recovery from RTO

Linux kernel was modified to implement “BSD style” RTO recovery??. The exact behavior

is explained in SectionB.2.3

C.1.3 RTO calculation

The RTO calculations were not changed from original Linux kernel 2.8.99-pre9. However,
there are some occasions, where the RTO calculation is not accurate. Linux uses the cwnd
as a parameter, when setting the RTO. Due to Intel Celeron’s processor achitecture and
undefined functionality in C-programming language conserning right shift operations, a
cwnd that is multiple of 32, creates very high RTO values. When analyzing the tests, the

effect of invalid RTOs were observed, and excluded from the test results.

C.1.4 Delayed acknowledgments

Baseline TCP makes use of delayed acknowledgments. The threshold for delaying an ACK
is 200ms. Using a bandwidth of 9600bits/second, the time between the arrival of two

221f the cwnd is less than four segments, there are not enough segments in the network that would

produce three duplicate acks to trigger a fast retransmit.
23We call it BSD style, because Baseline TCP imitates the behavior that was used in the 4.4BSD-Lite

version.

C BASELINE TCP 110

consecutive data segments of size 296 bytes is more than 200ms. Therefore, in most of
our tests each data segment is acknowledged separately. When using higher bandwidths,
two segments are "quickacked" 2 in the beginning of the connection before the delayed

acknowledgments are taken into use.

C.1.5 Receiver’s advertised window

Due to implementation problems, Linux kernel 2.3.99-pre9 advertised a window of 32Kbytes
in maximum even if the socket buffer size was bigger. We have not modified this in any
way and therefore, Baseline TCP has a socket buffer of 64Kbytes of which 32 Kbytes is
advertised. This feature does not affect the tests and the tests should be interpreted sim-
ilarly as a "regular" TCP connection with a socket buffer and advertised window of 32
Kbytes. When we run tests with a reduced advertised window, the size announced is the

size of the advertised window, not the size of the socket buffer.

C.1.6 Disabling control block interdependence

Linux kernel 2.3.99-pre9 used control block interdependence for ssthresh, RTT and RTT

variance. We disabled this feature and made it a sysctl option.

Table 48 summarizes the algorithms, parameters and their values used in Baseline
TCP.

C.2 Implementation issues

This section describes the modifications which were made to Linux kernel version 2.3.99-
pre9. There are two types of modifications: bug fixes and new TCP options added for the
IWTCP project.

C.2.1 New TCP options

Linux provides a mechanism to set kernel-specific options at runtime. We added a set
of new TCP options for the purposes of IWTCP. These options can be accessed in
/proc/sys/net/ipv4 in the Linux filesystem.

24 A term used to describe that each data segment is acknowledged separately

C BASELINE TCP 111

Table 48: Baseline TCP
Item Value and explanation
Slow start As defined in [APS99]
Congestion Avoidance As defined in [APS99]
Initial window (IW) Initial window of 2 segments
NewReno As defined in [FH99] and Appendix C.1.1
cwnd after exiting NewReno flightsize + SMSS (Appendix C.1.1)
NewReno “Bugfix” Less Careful variant (Appendix C.1.1)
Recovery from RTO 'BSD’ style (Appendix B.2.3)
Delayed ACK threshold 200ms (Appendix C.1.4)
Quickacks Two segments in the beginning of the connection
Advertised window (rwnd) 32Kbytes (Appendix C.1.5)
Control Block Interdependence | Disabled by default (Appendix C.1.6)
SACK SACK option is disabled
Timestamps timestamps are disabled

e iwtcp_cbi. Control Block Interdependence for congestion control variables was
used in the unmodified Linux. We added this parameter to make Control Block

Interdependence a user-selectable option.

e iwtcp_iw. This parameter can be used to set the initial congestion window in the

beginning of the connection.

e iwtcp newreno. Unmodified Linux used NewReno unconditionally. However, we
added this option to follow the regular Reno congestion control policy instead of

NewReno.

e iwtcp quickacks. The parameter sets the number of quickacks used to quickly exit
the early slow start phase. If the value is set to 0, the regular Linux-behavior is used.
(i.e. number of quickacks is rwnd / (2 * MSS)).

e iwtcp srwnd addr. This parameter is used to activate the shared advertised
window for connections originating from specified IP address. The user may specify
the least meaningful octet of the peer IP address, for which the connections use
shared advertised window. Only the connections from 10.0.0.* address family may
be shared. This might not be the correct functionality for the real world (in which
case the sharing should be done per device interface), but for the IWTCP purposes
we decided to follow the above mentioned logic when deciding whether to share the
advertised window or not.

The TCP receiver calculates the advertised window following the standard proce-

dures, but after the calculation it checks whether the sender’s IP address was same

C BASELINE TCP 112

than what specified with this parameter. In such case, the receiver calculates the
current amount of shared advertised window and sets minimum of the original and

shared window to the TCP window advertisement field.

e iwtcp srwnd _size. This parameter specifies the size of the advertised window
in bytes to shared among the connections originating from the IP address specified
by iwtcp _srwnd_ addr parameter. For the sharing purposes, our modification keeps
track of the number of connections open from the specified source address. When
a connection sharing the window receives data, the available space in the window
is decreased by the amount of data received. When application reads data from a
connection sharing the window, available space in the window is increased by the
amount of data read by the application. The size of the window advertisement for
each acknowledgement is min(real _wnd,avail _shared/connection _count), where
real _wnd is the calculated window which would normally be advertised, based on
the available buffer size for the socket, avail_shared is the amount of shared window
space currently available and connection_ count is number of connections sharing the
window.

If there are new connections opened to share the advertised window, the available win-
dow for old connections would decrease, because connection_ count would increase.
However, the advertised window will not be shrinked in such a case, but if a con-
nection was advertising more than its share, no new window space will be advertised
when new data arrives. This way the connection’s advertised window will gradually

decrease when new data arrives.

e iwtcp_rto_behaviour. With this parameter the user may choose from three poli-
cies of how to act when retransmission timeout occurs. LINUX (1) is the unmodified
Linux behavior, which allowed new data to be sent while retransmitting the seg-
ments from retransmission queue. In particular, duplicate ACKs increased cwnd,
which made this possible. HOLDCWND (2) holds the cwnd value as 1 during the
transmission from post-RTO retransmission queue. BSD (3) is the default used in
the IWTCP performance tests, named after BSD because it mimics the BSD style
go-back-N behavior when RTO expires. This is achieved by making to alternations to
the LINUX style: the duplicate ACKs do not increase the cwnd when retransmitting
from post-RTO retransmission queue, and only the number of originally sent packets
is compared to cwnd when deciding on whether to send new data. Original Linux

compared the sum of original transmissions and retransmissions to the cwnd.

C BASELINE TCP 113

C.2.2 Bug fixes

Following fixes were made to the Linux kernel version 2.3.99-pre9 before running the
IWTCP performance tests.

e Linux keeps the data received or to be transmitted in data blocks called sk_ buffs.
Each sk_buff has over 100 bytes of control data in addition to the segment data.
Additionally, Linux allocates a fixed size memory block (usually 1536 bytes) for each
IP packet it receives, instead of using the actual MTU in allocation requests.

The user may limit the amount of memory allocated for each connection by setting
socket options for sending and receiving socket buffer size. If the MTU is significantly
smaller than the size of the fixed memory block allocated, the socket buffer limits will
be reached, even though the amount of actual data received is significantly smaller.
However, Linux uses the amount of actual data received for the basis of receiving
window advertisements, which causes the receiver to advertise more it is allowed
to receive when the MTU size is small. As a result, if the Linux receiver gets more
segments than it has allocated space in its buffers, it discards all packets in its current
out-of-order queue.

As this behavior was not acceptable, we modified the TCP code to use actual data

size in sending and receiving buffer allocations instead of the fixed predefined size.

e When exiting from fast recovery, unmodified Linux sender set cwnd to the value of
ssthresh. In many situations, this caused a burst of ssthresh packets, harmful in en-
vironments with limited last-hop buffer space. We fixed this to set maz(packets _in__ flight,2)
to cwnd when exiting fast recovery. packets in_ flight is the amount of unacknowl-

edged packets in network, including retransmissions.

e The unmodified Linux forced the minimum advertised segment size to be 536 bytes
by default (unless changed by sysctl route/min_adv_mss). We changed this to be
256 bytes.

e When a burst of segments arrives, Linux does not acknowledge every second segment
violating SHOULD in RFC [FH99]. The reason for this may be treating segments of
the size less than 536 bytes as a not full sized segments independently on the MSS of

the connection.

e The unmodified Linux did not reduce the congestion window when partial ACKs were
received during fast recovery, as required in [FH99]. We fixed this to decrease the
congestion window by the amount of new data acknowledged with the partial ACK.
After decreasing cwnd, it is increased by one. As a result, one new segment is trans-
mitted in addition to the first unacknowledged segment next to the one acknowledged
with partial ACK.

C BASELINE TCP 114

e Unmodified Linux did not parse TCP option field for incoming segments unless it
was about to send some options. This made, for example, SACK unusable. We fixed

it to parse option fields for all incoming segments.

e Linux grows the congestion window above the receiver window. This can lead to

bursts and should not be done.

e Unmodified Linux did not use an ACK that confirms both a retransmitted and a new
segment to collect an RTT sample. It is possible to collect a valid RT'T sample in this
situation (i.e. there is no contradiction to Karn’s algorithm) and it is quite helpful
for reseting backed off RTO. We fixed it.

e Linux uses a single variable seq high for two purposes instead of two recommended
variables [FH99|. The the variable recover should be used for New Reno, while
the variable send high should be used for preventing Fast Retransmits after RTO.
Mixing those two variables leads to a non-conformant behavior for example when

several packets are dropped in the middle of the current FlightSize.

D TCP ENHANCEMENTS 115

D TCP Enhancements

In this section we discuss enhancements that possibly improve the TCP performance in
our environment. First, appropriate values of the standard TCP control parameters are
considered. Second, we describe two TCP extensions that optimize the protocol operation.

Finally, the active queue management in the router buffer is described.

D.1 TCP Control Parameters
D.1.1 Increasing initial congestion window

The TCP protocol starts transmitting data in the connection by injecting the initial win-
dow number of segments into the network. The initial window of one or two segments is
allowed by the current congestion control standard [APS99]. An experimental extension
allows an increase of the initial window to three or four segments [AFP98]. However, the
number of segments sent after RT'O, the loss window, is fixed at one segment and remains

unchanged.

The increased initial window size has the advantage of saving up to three RTTs from
the connection time. It also decreases the time when the FlightSize of the connection is
smaller than necessary to trigger the fast retransmit if a packet loss occurs. This decreases
the probability of the connection experiencing RTOs. The increased initial window may
have a possible disadvantage for an individual connection in an increased probability of a
congestion loss in the connection start-up when the router buffer size is small. A study
has been made to evaluate a connection with the initial window of four segments when the
router buffer size is three packets [SP98|. The study shows that the four-packet start is no
worse than what happens after two RT'Ts in the normal slow start with the initial window
of two segments. Another simulation study has evaluated the effect of the increased initial
window on the network [PN98]. The study concludes that the increased initial window
size does not significantly increase congestion losses but improves the response time for

short-living connections.

Using an increased initial window can be beneficial in our environment because of the
high RTT of the wireless link and presence of error losses. We expect that the perfor-
mance increases with increasing the initial window, but the improvement only affects the
beginning of connections. In addition, interesting questions are, whether the number of
RTOs is reduced and whether the start-up buffer overflow is worsened by the increased

initial window.

D TCP ENHANCEMENTS 116

D.1.2 Receiver’s advertised window

The amount of outstanding data, the FlightSize, is limited at any time of a connection
by the minimum of the congestion window and the receiver’s advertised window. The size
of the receiver window is a standard control parameter of TCP [Pos81|. By advertising
a smaller window the receiver can control the number of segments that the sender is
allowed to transmit. The basic analysis of the effect of the receiver window on a protocol

performance can be found e.g. in [Sta00].

If the receiver window is limited to an appropriate value that reflects the available
network capacity, then congestion losses are prevented. The receiver rarely has any knowl-
edge of the underlying network properties and current state. However, when a host knows
that it is connected to a last-hop wireless link, it should limit the advertised window |[?].
Limiting the receiver window also prevents excessive queueing in the network (overbuffer-
ing). Overbuffering occurs when the size of the router buffer is much larger than required
to utilize the link.

It is interesting to examine whenever the limited receiver window prevents the start-
up buffer overflow, whether error recovery is disturbed and what the appropriate size of
the receiver window is for a given size of the router buffer. We expect that when the
receiver window is limited to an appropriate value, TCP performance is improved, but
the improvement only affects the beginning of connections and is more visible for a larger
router buffer. When the receiver window is larger than appropriate, we expect TCP to
perform similar to the baseline. The receiver window which is too small can adversely

affect TCP performance.

D.1.3 Maximum segment size

The Maximum Segment Size affects TCP performance [MDK*00]|. The Maximum Transfer
Unit (MTU) of the network path imposes an upper limit for MSS; in certain cases using
a smaller MSS is desirable. For example, with an MSS of 1024 bytes, each segment
will occupy a 9600-bps link for almost a second. This is unacceptable for an interactive
application, because a large file transfer packet can delay a small telnet packet for a time
much longer than the human-perceptible delay. Links that rely on the end-to-end TCP
error recovery also demand a small MSS. For a fixed BER, the probability of segment
corruption increases with its size. On the other hand, the header overhead grows with a
smaller MSS, especially in the absence of the TCP/IP header compression. A MSS value
of 256 bytes for a 9600-bps link is often used as a compromise.

D TCP ENHANCEMENTS 117

It is interesting to examine the effect of a larger MSS on the TCP congestion and error
control. TCP grows the congestion window in units of segments, independently of the
number of bytes acknowledged. Using a larger MSS allows a connection to complete the

slow start phase faster.

We expect that TCP throughput increases with a larger MSS in our environment. The
router will drop less packets, because the router buffer limit is in terms of packets, not
bytes. Our error model also favors larger packets, because the error loss probability is
independent of packet size. Due to these factors we cannot directly compare the results of

tests with increased MSS with other optimizations.

D.2 TCP Optimizations
D.2.1 Selective Acknowledgments

TCP acknowledgments are cumulative; an ACK confirms reception of all data up to a
given byte, but provides no information whether any bytes beyond this number were re-
ceived. The Selective Acknowledgment (SACK) option [MMFR96] in TCP is a way to
inform the sender which bytes have been received correctly and which bytes are miss-
ing and thus need a retransmission. How the sender uses the information provided by
SACK is implementation-dependent. For example, Linux uses a Forward Acknowledg-
ment (FACK) algorithm [MM96]. Another implementation is sometimes referred to as
“Reno+SACK” [MMFR96, MM96|. SACK does not change the semantics of the cumula-
tive acknowledgment. Only after a cumulative ACK, data are “really” confirmed and can
be discarded from the send buffer. The receiver is allowed to discard SACKed, but not
ACKed, data at any time.

The FACK algorithm uses the additional information provided by the SACK option
to keep an explicit measure of the total number of bytes of data outstanding in the net-
work [MM96]. In contrast, Reno and Reno+SACK both attempt to estimate the number
of segments in the network by assuming that each duplicate ACK received represents one
segment which has left the network. In other words, FACK assumes that segments in
the “holes” of the SACK list, are lost and thus left the network. This allows FACK to
be more aggressive than Reno+SACK in recovery of data losses. In particular, the fast
retransmit can be triggered already after a single DUPACK in FACK implementation if
the SACK information in the DUPACK indicated that several segments were lost. In
contrast, Reno+SACK will wait for three DUPACKSs to trigger the fast retransmit.

A loss of multiple segments from a FlightSize of data often presents a problem for

D TCP ENHANCEMENTS 118

TCP [FH99|. As one option, the sender either have to retransmit outstanding segments
using the slow start; most of the segments could be received correctly already and thus are
unnecessarily retransmitted. As another option, the sender can recover by one segment
per RTT as the cumulative acknowledgment number advances. In the presence of SACK,
the sender knows exactly which segments were lost and thus can recover multiple segments
per RTT without unnecessary retransmits. SACK TCP has been shown to perform well
even at a high level of packet losses in the network [MM96].

D.3 Active Queue Management

A method that allows routers to decide when and how many packets to drop is called the
active queue management. The Random Early Detection (RED) algorithm is the most
popular active queue management algorithm nowadays [FJ93]. A RED router detects
incipient congestion by observing the moving average of the queue size. To notify connec-
tions about upcoming congestion, the router selectively drops packets. TCP connections

reduce their transmission rate when they detect lost packets and congestion is prevented.

The RED algorithm solves two problems related to congestion losses: overbuffering
and fair sharing of resources. RED is recommended as a default queue management
algorithm in the Internet routers [BCC*98]. This is motivated by the statement that all
available empirical evidence shows that the deployment of RED in the Internet would have
substantial performance benefits. There are seemingly no disadvantages to using the RED

algorithm, and numerous advantages [FJ93].

RED may not be useful in our environment. The major advantages of RED in providing
fair sharing of resources and the low-delay service for interactive applications simply are
not needed in the case of a single bulk data transfer. It is probable that RED does not
prevent the start-up buffer overflows. Still, we would like to evaluate the effect of RED on
TCP performance in our environment, because RED can improve the performance of two
concurrent bulk connections and the algorithm is expected to be widely deployed in the

Internet.

Here we provide some details about the RED algorithm for an interested reader. The
algorithm contains two parts. The first part is to compute the moving average of queue size
avg that determines the degree of burstiness allowed in the router queue. The second part
is to determine the packet-dropping probability, given the moving average of the queue
size. The general RED algorithm is shown in Figure D.3. The moving average of the
queue size is computed by a low-pass filter giving the current queue size a certain weight

in the result. When the moving average is below the minimum threshold min;, no packets

D TCP ENHANCEMENTS 119

for each packet arrival
calculate the moving average of the queue size avg
if ming, < avg < mazy,
calculate probability p,
with probability pq:
drop the arriving packet
else if mazy, < avg

drop the arriving packet

Figure 28: The general algorithm of the Random Early Detection (RED).

are dropped, and when it is above the maximum threshold max,,, every arriving packet
is dropped. Between these boundary conditions, each packet is marked with a probability
pe that depends on the moving average. During congestion the probability that the router
drops a packet from a connection is roughly proportional to the bandwidth share of that
connection. By default the RED algorithm measures the queue size in packets, not in

bytes.

E TEST ARRANGEMENTS 120

E Test arrangements

In this section we describe the characteristics of the environment where we run the perfor-
mance tests. The characteristics are somewhat similar to data transfer over a GSM link,
but the goal of the performance tests is not to exactly model the behaviour of GSM or any
other wireless communication technology. The environment is emulated using Seawind

wireless network emulator.

E.1 Seawind emulator

In this section we describe Seawind [AGKM9S|, a real-time software network emulator
developed at the University of Helsinki. Networks with various properties can be emu-
lated with Seawind by altering different simulation parameters affecting, for example, the
bandwidth, latency and reliabilty of the emulated network. Seawind can be programmed
to run several test configurations automatically, making it possible to run tests for several

hours without human interruption.

E.1.1 General overview

Seawind is a real-time emulator which can be run on any common Unix system. It is
transparent to the network applications which are used to generate traffic into the emulated
network, and therefore any application can be used in performance tests to test different
workload patterns. Seawind can be distributed on multiple hosts, which is an important
property, because our goal is to achieve accurate results on top of non-realtime operating
systems, and thus avoid competing processes to exist in the hosts which are used in the

emulation.

Seawind consists of a number of components with a specified role in the emulation.
The Seawind architecture is illustrated in figure 29. For the user, it provides a Graphical
User Interface (GUI), which can be used to define the test parameters and control the
test runs. GUI is closely tied with Control Tool (CT) which controls the execution of
automated test runs, passing the appropriate information to the different components and
collecting the log information generated by the components. Two types of log information
is collected: Seawind log, which shows a detailed description (e.g. queue size, delays and
other events for each packet) of the actions taken by Seawind in the emulation, and filter
log which shows the relevant protocol information about the packets injected to Seawind.
For example, when TCP traffic is transmitted through Seawind, the filter log output is

E TEST ARRANGEMENTS 121

similar to the output generated by the widely used tcpdump [JLM97] tool. The filter log

is generated by both connection endpoints and all SPs used for the simulation.

3 oeuret fITTTTTe

******* = Control interaction

Workload path

— Process creation

— Log information

socket
interface

socket
interface

log storage

Figure 29: Architecture of the Seawind emulator.

Simulation of the target network is done by Simulation Process (SP), which can be
used to simulate a link with given rate and reliability properties, as well as a limited input
buffer separately at both ends of the link. More complicated networks can be emulated
by attaching several SPs as a pipeline of components, of which each can be used to model,
for example, a node or a subnetwork in the connection path. Network Protocol Adapters
(NPA) are located at both connection endpoint hosts and they take care of routing the
data generated by applications through the pipeline of SPs to the NPA at the other end
of the emulated network path. The NPAs catch the data after it has been handled by the
network code of the operating system, thus making the transfer transparent to the appli-
cations. In effect, the applications behave as if they really were used over the emulated
link. Additionally, NPAs take care of inserting the data into link layer frames using a spec-
ified link layer protocol, such as PPP [Sim94|. Workload Generator Controller (WLGC)
controls the applications at the endpoint hosts, executing the applications automatically
and collecting the output generated by the application. WLGCs are needed to make it
possible to run automated tests. Additionally, we denominate the applications (or tools)
which are used to generate the workload with a generic term, Workload Generator (WLG).
Seawind daemon is required in the hosts that are to be used in emulation to manage the
TCP connections used to pass the control information and to create and tear down the

components used during the emulation.

Various configuration files can be defined using the GUI to define the properties of the
different components described above. In addition to having configuration files for each SP

used in emulation, WLGs and NPAs at both ends have their own configuration file. The

E TEST ARRANGEMENTS 122

parameters used for these components depend on the tool used for workload generation
and the link layer protocol used at the NPA. Additionally, there is a network configuration
file, which defines how the components are distributed in the hosts used in the emulation.

The combination of these configuration files is called a configuration set.

Because Simulation Process is the core of the emulation, we describe its functionality in
more detail. The internal logic of SP can be also thought as a pipeline, because different
operations are done for each packet in a defined order. Figure 30 shows the emulation
events triggered for each packet arriving in SP and finally transmitted out to the next SP
or to the NPA. All of the events shown in the figure are optional and can be skipped from
the emulation. Both directions of the traffic flow are processed through the similar set of

events independently.

LINK

1

ALLOC TRANSl PROP ERRORi
incoming dat outgoing data

H[I[I[I[]’ LRB HOUTDROPPER}H

Figure 30: Ordering of events for a packet in a simulation process.

When a packet arrives to SP, it is appended to the end of the input queue. If the size
of the input queue is limited and the input queue is full, the packet can either be dropped
(thus implementing a drop tail policy), or the receiving of new data may be suspended
until there is more room in the input queue again. If there is room for packets in the link
send buffer (LSB), the packets are taken from the head of the input queue and appended
to the link send buffer. In effect, the input queue will not be filled up before the link send
buffer is full.

The packets are taken from the link send buffer to the virtual link one at a time.
When a packet is on a link, it can be affected by various delays before it is transmitted out
from the SP, or dropped to emulate a transmission error on the link. First, an allocation
delay can be issued for the packet, which occurs when the packet arrives at an empty link.
After the allocation delay is finished, the packet is put under transmission delay, which
is used to model a defined bandwidth of the link. The length of the transmission delay
depends on the size of the packet and the sending rate the user has chosen. After the
transmission delay is finished, the packet is put under a propagation delay. The length of
the propagation delay is the same for every packet, regardless of the size of the packet. At

the same time, the next packet can be taken from the link send buffer under a transmission

E TEST ARRANGEMENTS 123

delay (an allocation delay is not needed, because the link is not idle).

After the propagation delay, an error delay can be issued on the packet. This is
commonly used to model link layer retransmissions on a reliable link layer protocol. Error
delay occurs on a packet randomly, which makes it possible for packets to get reordered at
this point of emulation. However, the packets are ordered again at the link receive buffer
(LRB) and therefore, packets following the error-delayed packet will also be affected by
the delay to some extent. Alternatively to the error delay, the packet may also be dropped
or corrupted by a certain probability at this point.

An alternative location to drop a packet is just before it would be sent out (output
dropper in figure 30). Various distributions can be chosen for the probability for dropping
a packet at the output dropper.

Seawind can also be used to predefine various configuration sets that can be tested
automatically. The group of configuration sets that are used in a test run are called test
set. This is an important feature, because each test run usually takes minutes to complete,
as the test environments are emulated in a real-time basis. Each configuration set can be
tested repeatedly for a defined number of replications (we call one repetition a basic test).
After all replications have been run, the next configuration set in the test set is chosen
and a number of test runs are run with it. Logs of each configuration set are collected into

a separate file to be analysed later.

E.1.2 Emulation parameters

In this subsection we describe the most important parameters of Seawind which are used
to emulate various environments in the IWTCP performance tests. SP parameters are
chosen separately for uplink and downlink traffic. NPA parameters are common in both

flow directions, but are chosen separately for mobile and remote ends.

Simulation Process

The following three parameters define the properties of the input queue, in which the
packets arrive first, when SP receives them. The input queue can be used to emulate, for

example, the last-hop router buffer.

There are three types of parameters. Some of the parameters contain a set of literal
values, of which one is chosen. Other parameters have a single numeric value. A third

type of parameters are distribution parameters, for which a random distribution with

E TEST ARRANGEMENTS 124

parameters specific to that distribution is chosen. The actual parameter values are chosen
randomly based on the selected distribution. The following distributions may be chosen:
static, uniform, normal, lognormal, exponential, hyperezponential, 2-phase markov, beta,
gamma, cauchy and user. User distribution is an external file containing numeric values,
which the random function uses uses sequentially. User distribution can be used to repeat
a predefined set of events. Additionally, e.g. single packet drops and single delays can be

caused using the user distribution.

e queue max_length defines the maximum length of the input queue in a number

of packets. If this parameter is not defined, the input queue length is unlimited.

e queue_overflow handling defines what to do when new packets arrive and the
input queue is full. There are three choices that can be made. When DROP is
selected, SP drops packets when they do not fit in the input queue. The STOP mode
causes the router to stop reading when the queue becomes full. FLOW CONTROL
can also be selected, in which case the SP blocks the neighbouring component (another

SP or NPA) from sending new data until there is more room in the SP’s input buffer.

e queue drop policy defines the algorithm to be used in deciding when to drop
packets and which packets are dropped. Currently there are two policies that can be
chosen. TAIL is the traditional tail-drop policy and RED is the RED drop algorithm
[FJ93] and if it is chosen, some additional RED parameters need to be specified.
min threshold specifies the threshold for the number of packets in the input queue,
after which the SP starts dropping packets by a certain packet drop probability. maz
threshold specifies the number of packets allowed in a queue after which all packets
are dropped from the queue. Thresholds are not compared to the actual queue size,
but to a moving average of recent queue length samples. queue weight defines how
much each queue length measurement affects the moving average compared to the
threshold values. The value is defined as a fraction of the total queue length. maz
probability defines the maximum probability for a packet to be dropped when the
average queue length is between the thresholds. A detailed description about the
RED algorithm can be found in [FJ93].

Following two parameters define the sizes of link buffers (LSB and LRB in figure 30).
Sizes are defined in bytes. Link buffers store total packets, even if there would be space in

the buffer to store a fraction of the next packet.

e link send buffer size can be thought of as an extension to the input queue, and

is located next to the input queue, at the sending end of the link.

E TEST ARRANGEMENTS 125

e link receive buffer size defines the size of the link receive buffer, located at the

receiving end of the link.
The next set of parameters define the bandwidth and latency of the emulated link.

e rate_base defines the basic rate in which the data can be transmitted to the link.

It affects the transmission delay calculated for each packet.

e available rate is defined as a multiplier to the rate_ base described above. This is
a distribution parameter and a new random value is chosen following the specified
distribution after intervals defined with the rate change interval parameter. The

* awail, avail being

resulting transmission rate at the emulated link is rate base
randomly selected as defined with this parameter. If this parameter is not defined, a

static transmission rate is used, as defined with rate base parameter.

e rate_change interval defines the distribution for time intervals in which the avail-

able rate is changed.

o mtu parameter for SP defines the size of the units SP reads with a single read () call

from the incoming data socket.

e propagation delay defines the length of the propagation delay which affects each
packet.

The following parameters define the various delays shown in figure 30 and the two

locations in which the errors can be affected (error dropped and output dropper).

e allocation delay is a distribution parameter, applied as described above. The
distribution of allocation delay length is given with this parameter. If this parameter
is not defined, allocation delay does not occur at all.

e error _handling defines the type of action taken by SP when an error occurs for
a packet. The errors are caused at the end of the emulated link, after the other
delays have been finished. The possible types of error handling are dropping the
packet when an error occurs (DROP), delaying the packet for a time specified with
the error_delay _function parameter (DELAY) or corrupting the packet without
dropping or delaying it at this point (FORWARD). If the error parameters are not

defined, no delays, packet drops or data corruption occur at this point of the link.

e error_rate type defines the unit against which the error probability is defined.
The errors can be either bit errors BIT in which case the value given with er-
ror_ probability parameter is the bit error rate of the link, or the error probability
can be defined per packet UNIT.

E TEST ARRANGEMENTS 126

e error_probability is a distribution parameter defining the probability of error,

either per unit or per bit, depending on the value of the error rate type parameter.

e error _delay function is used only when the error_handling parameter is set to
DELAY. 1t defines the distribution of error delay lengths to be applied to the packets
which are affected by the error delay.

e output dropper is a distribution parameter which defines a probability for each
packet to be dropped at the output dropper.

Network Protocol Adapter

The following parameters affect the behaviour of the PPP NPA located at both ends of

the connection path.

e mtu and mru are parameters for PPP, defining the maximum size data unit the
PPP will transmit and receive from the device interface. TCP MSS depends on
this parameter, and is usually the mtu negotiated by the endpoint subtraced by the
TCP/IP header length.

e buflen defines the maximum size of data block that is read by a single read() call
by NPA from the SP or from the PPP daemon.

Example of a parameter set

A GSM-like link with a RLP-like protocol and a last-hop router with a buffer size of 7
packets would be emulated with Seawind by setting the values described in table 49. The

table shows SP settings separately for uplink and downlink flow. Additionally, the chosen
NPA values are shown. These values cause a TCP MSS of 256 bytes to be used.

Note that the given parameters are approximations of a GSM-like link and this setting
makes simplifying assumptions (e.g. for the delays). The SP queue for the downlink is
used to emulate the last-hop router buffer. No queue length limit is specified for the uplink,
but it could be used, for example, to emulate a buffer in a wireless device interface. Link
buffer sizes are somewhat close to the size used in the RLP protocol. Additional delays
are created randomly using error delays. Delays occur at a per-packet probability of 0.01
and their length is uniformly distributed between 500 and 6000 milliseconds. These delays

would emulate e.g. link layer retransmissions in case some data is corrupted.

E TEST ARRANGEMENTS

127

Parameter name

Downlink value

Uplink value

queue__max_length 7 -
queue_overflow handling | DROP -
queue_drop_ policy TAIL -

link send buffer size 1220 bytes 1220 bytes
link receive buffer size | 1220 bytes 1220 bytes
rate_base 9600 bps 9600 bps
available rate - -
rate_change interval - -

mtu 512 bytes 512 bytes
propagation _delay 200 ms 200 ms
allocation_delay - -

error _handling DELAY DELAY
error _rate type UNIT UNIT
error _probability 0.01 0.01

error _delay function
output_ dropper

uniform(500 ms, 6000 ms)

uniform(500 ms, 6000 ms)

NPA: mtu
NPA: mru
NPA: buflen

296 bytes
296 bytes
4096 bytes

296 bytes
296 bytes
4096 bytes

Table 49: An example of chosen parameter values when emulating a GSM-like link.

E TEST ARRANGEMENTS 128

E.1.3 Discussion

The issue of emulation accuracy is worth discussion. Linux, as a non-realtime operating
system can not guarantee an exact response time for user space application, such as Sea-
wind. The critical issue affecting the simulation accuracy is the accuracy of the sleep times
issued from the operating system. When a Linux process is put to sleep (e.g. during the
delay of a packet) for a specified amount of time, it is usually woken up a few milliseconds
late of the time issued. The exact amount of oversleeping varies, so the solution is not as

simple as just subtracting a certain amount of milliseconds from the wanted sleep time.

We have implemented delays so that each sleep issued by Seawind is a parametrised
amount of milliseconds shorter than the actual amount to be slept. The estimated oversleep
time is chosen to be large enough to ensure that the simulation process is usually woken up
before the actual wakeup time is due. We have set this estimate to 7 milliseconds. When
the process is woken up, it checks from the system clock how many milliseconds it still has
to wait before the accurate sleep time is finished. The process spends the rest of the delay
time in a busy loop, exiting it at the time when the issued delay is finished. Additionally,
the timestamps after each sleep are written into the Seawind log, so that the exact sleep
times can be monitored and it is ensured that the results are accurate. Of course, there

must not be any CPU intensive processes at the same host as SP during the test runs.

Another concern related to simulation accuracy is that the PPP frames are transmitted
on top of the TCP protocol between the NPAs and the SP. The frames are small in our
tests (PPP MTU of 296 bytes is usually used), so there is a risk that the Nagle’s algorithm
[Nag84] is activated, causing a frame to be delayed at the sender until more frames are
issued to be sent. Linux allows the Nagle’s algorithm to be turned off by a dedicated socket

option, and we have disabled the Nagle’s algorithm for the internal traffic of Seawind.

E.2 Test setup

In this section we describe the environment used in the IWTCP performance tests.

E.2.1 Emulation environment

The IWTCP performance tests were run in a isolated LAN (10Mbps Ethernet) with four
network hosts. The machines in the network are 400-Mhz Intel Celerons, running Linux
RedHat 6.1. Three of the machines are used in a single test run. One machine acts

as a mobile end host, another as a remote end host and one machine runs the SP. The

E TEST ARRANGEMENTS 129

mobile and remote end machines have Linux kernel version 2.3.99-pre9, which we have
modified afterwards (see Appendix C for details). The SP host has an unmodified version
2.2.14 of the kernel. The TCP behaviour of the SP host does not have an effect on the
emulation results, as long as it receives and transmits the Seawind data timely (e.g. the

Nagle algorithm is disabled for Seawind emulation data traffic).

E.2.2 Logging

SP generates a log of the actions made during a test. For each log event there is a
timestamp of the event in microseconds, flow direction for which the event occured, event

type, packet id and event description shown. Log events are generated for various reasons:

e Arrival of packet. Each packet received by SP cause this log event. In addition
to the common information described above, the size of the packet (including PPP
overhead), IP address of the source, length of the IP packet (including the header),
TCP port of the source, TCP sequence number and TCP acknowledgement number
are printed.

For each packet received, the size of the input queue is printed each time a packet

arrives.

e Queue drops. Each packet dropped from the input queue generates a log event.
The reason for dropping is printed in addition to the standard output (e.g. Queue
overflow, RED probability hit or RED max threshold exceeded)

e Delays. Each delay that affected packet are written in the log. In addition to the
standard information, the delay type (allocation, transmission, propagation or error)
and the delay length are printed. If the delay event was triggered significantly too

late, a warning is printed.

¢ Random drops. If a packet is dropped either by the error dropper or by the output

dropper, an event is created to the log.

e Rate changes. If the transmission rate is changed, a log event is generated. In

addition to the standard information, the new transmission rate is printed.

e Packet transmissions. After a packet has traversed through the SP emulation
process, it is sent out. A log event is generated for each packet transmitted and
released by the SP. Additionally, the time elapsed from the last SP event to the

return of write() call is printed.

In addition to SP log, the output of WLGs is written to a dedicated log file. This file

contains the application level output, e.g. time measurements made by ttcp tool.

E TEST ARRANGEMENTS 130

Filter logs can be received from SPs and NPAs (i.e. at the connection endpoints).
When TCP traffic is used, filter logs are simply output of the tcpdump tool [JLM97]. For
each TCP segment timestamp in microseconds, the sending and receiving IP address and
TCP port, sequence number, acknowledgement number and TCP flags are shown. If there

were TCP options included, they are also printed.

E.2.3 Workload generation

Any application using the standard socket interface could be used as a workload genera-
tor for Seawind. The application can be attached to Seawind by a plugin script with a
Seawind-compatible command line interface. By executing this script Seawind repeatedly
executes the WLG tool automatically, as specified in the configuration generated by the
user. The WLG applications can be started to run in parallel to make several simultaneous
connections open through the link emulated by Seawind. Seawind is transparent to the
WLG applications, so the networking code of the applications need not be modified in any

way.

We mostly use slightly modified ttcp as a WLG tool. ttcp is a small tool generating
bulk traffic in a single connection. The transmitting ttcp writes data blocks of the specified
size to the TCP socket a specified number of times. The receiving ttcp reads blocks of
the specified size from a TCP socket, until the other end closes the connection. Our
modification of ttcp can also generate bidirectional bulk traffic, in which case there are
transmitting and receiving ttcp processes at both ends of the connection. However, a

single processes is used for both flow directions.

The following parameters are the most used ones in the ttcp-WLG:

e buffer length. The size of the block to be read or written with a single call to
the TCP socket interface. Using a value divisible by the TCP MSS to avoid the silly

window syndrome is recommended.

e number of buffers. The number of buffer_length - sized blocks to be transmitted

to the network. This parameter is used for the transmitting ttcp.

e send sock buffer size. The size of the sending socket buffer. By default this is
32 KB.

e receive sock buffer size. The size of the receiving socket buffer. By default
this is 32 KB.

Usually only buffer length and number of buffers have been specified in IWTCP

E TEST ARRANGEMENTS 131

tests. For example, to create 100 kilobytes worth of bulk data, we could set buffer length
to 1024 bytes and number of buffers to 100.

