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1 INTRODUCTION

1 Introduction

Wireless networks are problematic environments for data communications. The nature
of wireless links is quite different compared to wireline networks; their latency and error-
prone characteristics make it a challenging environment for providing efficient transport.
Excluding many satellite links and some other specific wireless links, the bandwidth is
typically relatively small. This makes the optimization even more important for achieving
better usability and throughput for end users [MDK*00].

Packet losses may occur in the wireless environment more often than in wireline networks
because of multiple reasons. The weather conditions and surrounding buildings may cause
interference resulting in packet losses as well as the hand offs in cellular wireless networks.
Such conditions can also cause excess delays as the radio link layer may locally retransmit
the corrupted segments. Examples of networks that exhibit asymmetry include wireless
cable modem networks and the General Packet Radio Service (GPRS) [BW97]. In these
networks the bandwidth towards the mobile client is usually much lower than in the
opposite direction [BPK97].

Because the underlying IP-protocol [Pos81a] may drop or duplicate packets, the reliability
must be offered at higher layers. The Transmission Control Protocol (TCP) [Pos81b][Ste95]
is widely used by Internet applications. The reliability TCP provides over the ’best effort’
IP networks is the key aspect that has made TCP so useful and the most widely used
form of networking between computers [Hoe95]. The protocol specification is fairly old
(RFC 793, dated September 1981) in terms of data communication. That fact has also
caused problems because the networks of today are very different from the networks that
TCP was built to work on. A lot of supplementary work and specifications have later been
addressed to TCP.

It is a well known fact, that TCP performs poorly over wireless links [KRL*97] [CI95]
[BSAK95]. TCP was specified to perform over fixed links where the latency and error
probability are usually much lower than in the wireless links. Therefore, TCP interprets
all packet losses as notifications of congestion in the network. The corrective actions taken
by the sending TCP, such as lowering the packet transmission rate, reduce the load in
intermediate links and network components. Those actions, however, tend to cause a
suboptimal performance over wireless links; the packet losses and the delays usually are

not caused by congestion, but are due to bit errors, local retransmissions or hand offs.

There have been various proposals that ameliorate the TCP performance in certain scenar-

ios. Some of those enhancements are already included in the updated TCP specifications,
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such as the proposal for a larger initial window [APS99]. Others are still experimental
recommendations, that need more studying before they can possibly be approved as a
part of the TCP standards. Examples of such modifications are a limited receiver window
[DMKMO00] and disabled delayed acks [MDK*00].

Our intention was to test the performance of TCP over a slow wireless link that causes
various errors or delays. In addition, the bandwidth was altered and could be asymmetric.
The link was configured to roughly emulate a GSM link [Rah93], but this study was meant
to be not just GSM specific, but rather “slow wireless” specific. Between the two hosts

there were no intermediate routers that could drop packets due to buffer exhaustion.

We used a modified Linux TCP implementation as a reference implementation and we
repeated the tests with different TCP modifications to achieve knowledge about their
suitability for a wireless environment. Some other proposals, such Mowgli [KRL197] and
I-TCP [BB95], suggest enhancements that break the end-to-end connection by placing a
TCP-aware proxy between the fixed and wireless network. We did not try to cover these
proposals as we concentrated only on studying end-to-end TCP modifications in a plain

wireless environment.

The empirical analysis of the tests is divided into five different areas. First, we concentrate
on packet drops on the link and study the recovery of TCP in an error-prone environment.
We study single packet drops as well as random packet drops. Second, we analyze the end-
to-end performance when a predefined packet is excessively delayed on the link. Third,
the effects of asymmetric and variable bandwidth are analyzed in an error-free link envi-
ronment. Finally, the combinations of packet drops due to corruption and excess delays

as well as asymmetric bandwidth in an error-prone environment are studied.

The contents of this thesis is the following. The wireless networking environment is de-
scribed in Section 2. The Transmission Control Protocol and its problems over a slow
wireless link are outlined and possible enhancements are introduced in Section 3. The test
arrangements and test cases are described in Section 4 and the test results are presented
and analyzed in Section 5. Section 6 gives a summary of this study. Appendix A provides
the full test results. Appendix B describes the TCP in more details, Appendix C intro-
duces our Baseline TCP that is used as a reference implementation when comparing the
test results. Appendix D introduces different TCP enhancements for wireless environment

more widely. Appendix E gives a detailed description of the Seawind emulator.
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2 Wireless Networking Environment

This section describes wireless networking environments in general. There are many dif-
ferent network architectures where the wireless link may be used. We outline the common
components and architectures used in such an environment. Our focus is on the Internet
achitecture and in partical on the transport layer protocol that is used to achieve an end-
to-end connection above the network layer. A traffic analysis in the Internet backbone
reported that on an average 80 % of the flows used Transmission Control Protocol (TCP)
as the transport protocol [TMW97]. Even if we consider a wireless networking environ-
ment, the mobile hosts most probably use TCP as the end-to-end protocol because the
most popular Internet applications, namely World Wide Web (WWW), e-mail and file
transfer, rely on TCP as the transport layer protocol [Lud00].

2.1 Wireless environment

Due to technical development there are many possible environments for personal data
communication. There is, though, a major division between two environments; the char-
acteristics and properties of wireless communications differ substantially from wireline

communication.

Many different wireless technologies exist and they have different properties. The commu-
nication between end hosts was earlier limited by the fact that there had to be a physical
wire between the hosts. Nowadays, the communication can be based on radio or micro
waves, infrared or other media. In addition to the communication medium, the wireless
links differ a lot in bandwidth, latency, and error characteristics. Wireless LANs (WLAN)
offer a bandwidth of megabits per second [Goo97] and some wireless Wide Area Networks
(W-WAN), such as GSM [Rah93], have a line rate of some tens of kilobits per second.
The mobility of the user is one important issue that affects the usability of the wireless
network. Base stations, often called access points, connect the mobile host to the fixed
network through a wireless link. All the communication between the mobile host and the
fixed network goes through a base station. A hand off occurs when a mobile host switches
base stations. This may happen if the mobile host goes out of the coverage area of the
former base station, for example. Stationary or slowly moving terminals are easier to serve
as the hand offs from a base station to another do not happen often. A geosynchronous
satellite can cover one-third of the Earth’s surface and W-LANSs provide high bandwidth
over a range measured in tens of meters [Goo97]. [MDK™00] gives a naming scheme for
two different types of networks. Long Fat Networks (LFNs) are networks that have high
latency (i.e they are ‘long”) and the delay bandwidth product is large. This includes
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geosynchronous satellite links, for example. Long Thin Networks (LTN) have a high la-
tency, but the link capacity is usually rather small. The LFNs and LTNs have similar
characteristics, but do not share all the problem areas. For example, LFNs, such as many
satellite links, may often have a delay-bandwidth product above 64 KBytes, in which case
they cause additional problems to TCP. These problems are further discussed in [BBJ92]
and [PS97].

In this study, we focus on LTNs, slow W-WAN links, that use radiowaves as the transport
medium. GSM is a good example of such a network as it has millions of users across
Europe and Asia, and roaming is possible between different operators. There exist other
similar networks, such as Cellular Digital Packet Data (CDPD)[Sal99] and Code Division
Multiple Access (CDMA)[Lee91]. Later in this study we use the word wireless network to
mean a W-WAN of that type.

A wireless link may be used as an access link to an existing fixed network, usually being
the Internet or a private intranet. In this scenario, the wireless link is often much slower
than the accessed fixed network. There is usually a last-hop router in front of the wireless
link, and it is between two totally different networks. One is slow and error-prone and
the other is much faster and more reliable but it may loose packets due to congestion. As
from an end-to-end point-of-view, it is a challenging environment to provide reliable and

efficient data transportation. This network architecture is shown in Figure 1.

Wireless access link

v
Internet
Remote
Server

Mobile Host

| Connecti on |
I 1

Figure 1: A wireless host connected to a remote server across the Internet

If we consider a proxy server that is located directly at the other side of the wireless link,
we notice that the end-to-end connection may be split into two different parts that are
communicating separately. For example, when the mobile host asks for a web page that
is currently in the buffers of a web proxy, the proxy may send the data to the mobile host
without accessing the global Internet. In this situation we have only one link that needs
to be working efficiently, and the possible congestion problems of the fixed network are

not relevant.
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There are different proxies to solve various problems. A web-proxy may be used as a cache
to give faster responses to the clients. This reduces the load of the remote host and entire
external network. A Performance Enhancing Proxy (PEP) [BKG'00] is used to improve
the performance of the Internet protocols on network paths where native performance
suffers due to characteristics of a link or subnetwork on the path [BKG*00]. This provides
a means to divide the connection between the two different networks. The split connections
are used for easier optimization of the network environment, as the networks with different
properties are separated. A simple and efficient solution might be to use only different
TCP parameters over the wireless link. I-TCP [BB95| is an example of a single PEP split

connection implementation.

Transparent proxies do not require any modifications to the end systems, transport end-
points, or applications. Some other proxies have a different protocol stack for the wireless
link for better performance, like the Mowgli system [KRL"97], for example. Figure 2
shows the situation where the connection is split by using a proxy. The TCP parameters,

or even the protocols, may vary between connections 1 and 2.

Wireless access link

Internet

Mobile Host

| Connection 1 Lo Connection 2 |

Figure 2: Split connection: a wireless host gets the data from the proxy

When using transparent PEPs, the mobile host is unaware of the split connection. From
the mobile host point-of-view, the remote host is situated right next to the wireless link,
as the proxy "imitates" the remote server. If the mobile host is aware of the proxy, the
connection may be even more enhanced to achieve better performance over the wireless
link. The connection parameters or the protocols used by the mobile host affect only
the plain wireless link as the proxy establishes a new connection to the fixed side of the
network. Thus, the problems of fixed networks are not to be considered at the mobile
host as the proxy handles the external connections. Figure 3 shows the situation where
the remote host is located right next to the wireless link. In principle, this is the same

situation as the mobile host sees it, if a transparent proxy is in use.

Another common scenario includes a private intranet, which is accessed through a wireless

link. The remote host is situated next to the last-hop router, and there is no need (or



2 WIRELESS NETWORKING ENVIRONMENT

Wireless access link

Mobile Host
Remote Host

| Connecti on |
\ \

Figure 3: The remote host next to the wireless link

perhaps even any possibility) to access the global Internet. The router is subject to buffer
exhaustion as the link capacity of the fixed network is typically much bigger than of
the wireless link. Therefore the router may discard a packet as the queue limit expands
over the storage space. The end-to-end connection is more dependent of the wireless link
properties, as there are minimal amounts of packet losses due to congestion in the fixed
network. This kind of environment is further studied in [Sar01], [Gur00] and [SP98], for
example. The problems of this scenario are also outlined in [DMKMO00].

This study focuses on an environment, where a mobile host is directly connected to a
remote server over a wireless link. The link does not have intermediate routers that can
discard packet due to buffer exhaustion, for example. The studied network is further

described in Section 4.3.

2.2 Properties of wireless links

Usually the bandwidth of wireless links is some tens of kilobytes per second. This includes
at least links with a bandwidth up to 56 Kbits/second. Such low-bandwidth links are
widely deployed as dial-up modem links to access the global Internet. Our main interest
is in GSM-like data links where the bandwidth is 9.6 Kbps [MP92]. It is clear that on
such links all unnecessary retransmissions are undesirable. The bandwidth may also vary
during the connection. High Speed Circuit Switched Data (HSCSD) in GSM may offer
multiple timeslots for a single user and, using different encoding, the line rate up to 30-
40Kbps can be offered. In addition to that, the new General Packet Radio System (GPRS)
[BW97] networks can allocate one or several timeslots for a connection and thus alter the
bandwidth.

Usually the propagation delay in the wireless networks is much longer than in wireline
networks. The propagation delay means the time spent for a single bit to traverse from
one host to the other. This delay is usually 100-300 ms in W-WAN networks. The
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latency decreases the user’s ability to work interactively as the requests and replies are not
available as quickly as when using a wireline connection. When calculating the round-trip
time (RTT), the transmission delay has to be taken into account. Transmission delay is
the time needed for the network to transmit a packet to the network with given bandwidth.
The length of the transmission delay is proportional to the line rate and packet length.
For example, a packet of 256 bytes (2048 bits) is transmitted to a 4000bits/second network
in 0.512 seconds. Thus, the RTT is the sum of the propagation delays for both up- and

downlink and transmission delays for up- and downlink.

Wireless networks are more error-prone than wireline networks|MDK*00]. There are two
basic approaches to deal with the erroneous link. Forward error correction (FEC) is
used to correct the bit errors by using an encoding algorithm that detects and corrects
the bit errors at the receiving end. All the frames are delivered to the upper layer and
end-to-end protocols need to deal with the errors that are not suppressed by FEC. This
approach is called transparent data transmission in GSM. The other possibility is to use
radio link level error detection (FEC) and link level retransmissions (Automatic Repeat
Request, ARQ) to ensure that the frames are eventually delivered without errors. When
a decoder observes a corrupted frame, the frame retransmitted. This scheme is called
non-transparent data service. The maximum number of retransmits for a single frame is a
link-specific parameter. The disadvantage of the link-level error detection is that it causes
excess delays, while using the transparent mode the transmission rate is constant. There is
a question, should the link level allow re-ordering. While waiting for the corrupted frame
to be retransmitted, the following frames cannot be delivered if out-of-order delivery is not
accepted on the link layer. This causes more delays as the subsequent frames are delayed

even if they were not corrupted.

In GSM, the bit error rate is required to be less than 10~® if a non-transparent mode is
used [KRL97]. Otherwise, in the transparent mode, the bit errors do not trigger local
retransmissions on the link level and the bit error rate is allowed to be as high as 1073. As
noted above, the radio link level retransmissions provide good reliability, but cause excess

delays. Table 1 summarizes the two different approaches.

When the user is mobile, the coverage area of the base station may be exceeded. Therefore,
a hand off should happen that switches the current base station to an other. During the
hand off, the base stations need to exchange connection status information of the mobile
host. Due to this procedure, the end hosts notice excess delays as the packets are not

transferred during the hand off.

In general, wireless networks suffer from non-congestion related packet losses or excess

delays due to link level error recovery and hand offs [BSAK95].
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Table 1: Characteristics of Data Services in GSM

Data Service Technique Transmission | Bit error
rate rate
Transparent Forward Error Correction | Constant 1073
(FEC)
Non-transparent | FEC + ARQ Variable 1078
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3 TCP Over a Slow Wireless Link

This section provides a short summary of the Transmission Control Protocol (TCP)
[Pos81b], which is the transport protocol studied in the thesis. The problems with TCP
over a slow wireless link are outlined. It is a well know fact that TCP does not perform
in an optimal way over links that are error-prone and that have variable delays. The
reader can find this conclusion from many different papers, such as [DMK™*00],[BSAK95]
and [MDK™00]. Finally, we describe possible enhancements that have been suggested in

various studies. A more detailed description of TCP can be found in Appendix B.

3.1 Transmission control protocol

TCP assumes it can obtain a simple, potentially unreliable datagram service from the lower
level protocols. The intermediate routers may discard packets, the packets can arrive to
the destination out of order or the packets may be duplicated by the network. Those are
the situations that TCP was made to recover from. Thus, it provides reliable, connection-
oriented transportation. To provide this service, TCP has to implement facilities in the
following areas: set up the connection, multiplexing, basic data transfer, reliability and
flow control, precedence, and security [Pos81b]. In addition to these, the protocol makes
use of congestion control algorithms to monitor the congestion in the network and reduce
the load in the intermediate links, if needed. These algorithms are crucial for the stability

of the Internet.

The reliability TCP offers is based on cumulative acknowledgments and retransmission
timers. Each transmitted octet is assigned with a unique sequence number. The TCP
receiver acknowledges the next expected octet. Due to the fact that the acknowledgments
(ACKs) are cumulative, an ACK acknowledges all the previous octets, too. If an ACK has
not reached the TCP sender within a certain period of time, the retransmission timer will
expire and cause a retransmission timeout (RTO), and the segment is retransmitted. The
TCP receiver sends a duplicate acknowledgment (dupack), which is an identical ACK to
the previous one, when it receives an out-of-order (OFO) segment. The OFO segments
are buffered at the receiver side until a continuous block of octets can be delivered to the

application layer.

Slow start and Congestion Avoidance are the primary congestion control algorithms that
govern the amount of data the TCP sender may transmit. Congestion window (cwnd)
is the variable that gives the upper limit for the number of outstanding segments in the

network that are not yet acknowledged. After the connection establishment, slow start is
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used to probe the capacity of the network by increasing the cwnd by one segment upon

every new ACK.

After the cwnd has reached the slow start threshold (ssthresh), the congestion control al-
gorithm is changed from slow start to congestion avoidance where cwnd is increased by one
sender maximum segment size (SMSS) per round-trip time (RTT). Upon a RTO, slow start
and ezxponential backoff are invoked; the cwnd is set to one MSS, and the retransmission

timers are backed off by multiplying them by two.

Fast retransmit/fast recovery is an algorithm that uses the information achieved when three
consecutive dupacks have arrived from the TCP receiver. This indicates that a segment
has been dropped in the network. Thus, the segment is retransmitted without waiting for
the retransmission timer to expire. The TCP sender enters fast recovery instead of slow
start. When entering the fast recovery algorithm, the cwnd is halved. Every additional
dupack is interpreted as an indication that a packet has left the network. Therefore, each
dupack temporarily increases cwnd by SMSS. The fast recovery is exited when an incoming
ACK acknowledges new data. In that case, cwnd is deflated back to the halved size and
the connection continues by using congestion avoidance. Fast recovery algorithm is able
to recover from one packet drop in a single window without waiting for a retransmission

timer to expire [APS99].

The NewReno TCP modification enhances the fast recovery algorithm by introducing a way
to recover from multiple losses from a single window without waiting for a RTO [FH99].
A retransmission upon a partial acknowledgment allows the TCP sender to recover from
multiple packet losses without waiting for RT'O to occur. A partial ACK is an incoming ACK
during fast recovery that acknowledges new data, but not all outstanding segments that

have been sent before the fast retransmit.

3.2 Problems due to corruption

The TCP sender makes deductions about the available bandwidth based on the feedback
sent by the TCP receiver [DMK™*00]. The incoming ACK segments report from successful
transfer or packet losses. The retransmission timer is used to make these assumptions more
precise. TCP cannot distinguish between a packet loss due to congestion and a packet loss
due to corruption. As a result, TCP treats every packet loss as a sign of congestion in
the network [DMK™'00] [BSAK95] [BPSK96]. This principle has worked very well in the
Internet community, and has allowed the Internet to expand to its current level without a
drastic decrease in usability. However, it does not take into account the wireless networks

that have higher bit error-rates. As stated in [DMK™00], the users connected to these

10
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networks may not be able to transmit and receive at anything like available bandwidth
because their TCP connections are spending time in congestion avoidance procedures, or
even slow-start procedures, that were triggered by a transmission error in the absence of
congestion. Especially long fat networks (LFNs) suffer from this problem since the large
delay bandwidth product requires a long slow start phase before the full capacity of the
link can be achieved [PS97]. If a packet is dropped due to corruption at the beginning of
the transfer, the probing algorithm becomes linear rather than exponential, and the time

taken to fill the pipe grows even more.

Once a packet loss is detected by receiving three dupacks, the cwnd is halved, and thus,
the transmission rate is decreased by 50 %. If the packet loss was due to congestion, the
reduction of the transmission rate would be reasonable, but often in wireless environments,
the packet losses occur due to corruption. If the congestion window was much larger
than the delay-bandwidth product, the single packet drop does not have any effect on
the throughput as the pipe is kept full. The problem arises, when several packets are
dropped during the connection, each of them halving the current cwnd. This is a common
case on lossy wireless links. While the wireless link’s capacity may be quite small, the
degradation of the transmission rate due to non-existent congestion is undesirable. If the
cwnd is smaller than four segments, the recovery using the fast retransmit/fast recovery
algorithm is not possible, as there are not enough segments in the network that would
trigger three dupacks. In this situation, the TCP sender would have to wait for a RTO
and go to a time-consuming slow start. It has been reported that over 85% of RTOs are
due to small congestion windows that prevent fast retransmissions [LK98]. Although, the
study was made in 1995, the results indicate that small cwnds contrive real problems on

the performance, as fast retransmissions are not always possible.

The NewReno TCP modification is able to recover from multiple packet losses from a
single window without going into slow start. This ameliorates the situation, as an RTO
can be avoided. Nevertheless, the fundamental problem of wireless networking is not
solved, as, in the absence of congestion, the available bandwidth may be underestimated

if the transmission rate is lowered due to corruption [Lud00].

3.3 Problems due to excess delays

The TCP retransmission timer sets an upper limit for the RTT. It is derived from RTT
samples, taking into account the RTT variation (see Appendix B for details). If the
RTT suddenly increases, and a segment is excessively delayed, the RTT estimation may

be exceeded. As a result, a RTO occurs and the segment is retransmitted. Because

11
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the segment was only excessively delayed, not dropped, the retransmission are needless.
Nevertheless, when RT'O occurs, the TCP sender interprets it as a notification of congestion
in the network and lowers the packet sending rate by invoking slow start with a cwnd of
one segment, and the TCP sender is forced into a go-back-N retransmission mode [LK00].
In this scenario the cwnd reduction is not desirable because there was no congestion. The
go-back-N behavior triggers a large number of retransmissions that should be avoided;
when retransmitting after a spurious RTO, the sender retransmits the whole window of
data unnecessarily as no packet were dropped. This scenario may lead to a yet greater
loss of performance, as the retransmitted segments generate dupacks that may trigger a
false fast retransmit. This scenario is further discussed and analyzed in the delay tests in

Section 5.3.

TCP suffers from retransmission ambiguity [KP87]. It means, that the TCP sender does
not know whether an ACK arrives for a retransmitted segment or for the original one
that was interpreted to be dropped. In the case where a full window is unnecessarily
retransmitted due to a spurious RTO, the incoming ACKs that are in fact acknowledging

the first window of data are misread as acknowledgments for the retransmitted window.

If the connection is in congestion avoidance while the RTO happens, the number of trans-
mitted segments in the network grows aggressively due to go-back-N behavior. The TCP
sender invokes slow-start that transmits twice as many segments into the network (as-
suming each segment is acknowledged separately) while the original segments are draining
from the queue [LKO0O0]. This may lead to packet drops at the intermediate routers, as they
become overloaded by the amount of new packets. As the studied environment does not
include a intermediate router, this issue is not considered. Similar problems may occur if
the link interface buffer has limited amount of storage space. However, in this study the

link interface buffer is assumed to have unlimited capacity.

3.4 Problems due to asymmetric and variable bandwidth

As defined in [BPK97], a network is said to exhibit network asymmetry with respect to
TCP performance, if the throughput achieved is not solely a function of the link and traffic
characteristics of the forward (i.e downlink) direction, but depends significantly on those of
the reverse (i.e uplink) direction as well. It is stated that asymmetry does include latency
and packet error rate as well as bandwidth. We declare that in this study we concentrate

on bandwidth asymmetry only.

The asymmetry in pure bandwidth is not the asymmetry that directly affects TCP per-

formance. Normalized asymmetry ratio, k, is defined as the ratio of the pure bandwidths
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divided by the ratio of the packet sizes used in uplink and downlink [LMS97]. For example,
if the bandwidth for the downlink is 1Mbps and for uplink 10Kbps, the pure bandwidth
ratio is then 100. If the data segment size is 1000 bytes and the ACK segment is 40 bytes,
their ratio is 25. So, & is 100/25=4. As TCP is self clocked [Jac88], it uses the arrival
rate of incoming ACKs to control the packet flow in the opposite direction. Therefore, any
interference in the feedback could impair the performance. This means that if there are
more incoming ACKs than one for every k = 4" data segment, the uplink direction will get
saturated before the downlink does [BPK97].

If the delayed ack algorithm is not in use and the ACKs are not dropped, it has been noticed
that whenever k¥ > 1, the TCP self-clocking mechanism breaks down [BP00]. When two
back-to-back sent segments arrive at the receiver, the time interval between the packets
correlates with the downlink bandwidth. The ACKs that are sent in response, should
maintain the same spacing all the way back to the data sender, letting the TCP sender
send new data at the same spacing. As the bandwidth of the uplink (i.e. ACK path) is
much lower than of the downlink (k¥ > 1), the spacing of the ACKs is not the same as it
was while sending them when they reach the sender. The performance on the link is no
longer dependent of the downlink path, but by the rate of incoming ACKs. The growth of

the cwnd slows, too.

If an intermediate router on the ACK path has limited amount of buffer space, the router
queue gets full as the transmission window grows. As a result, some ACKs will get dropped.
This causes bursts at the sender side, as each ACK acknowledges more data than usually.
Moreover, the bursts may cause congestion on the data path. The lost of ACK segments lead
to less efficient use of fast retransmit/fast recovery algorithms, as the information based
on dupacks is not as accurate [BP0O]. Since the studied environment does not include an
intermediate router, and link interface queue is assumed to have unlimited capacity, their

effects are not further discussed.

In general, the slow uplink path that carries the acknowledgments can significantly slow
down the growth of the TCP sender congestion window and affect the utilization rate of the
link [BPK97]. More difficulties arise if the uplink path may drop ACKs due to congestion
in the intermediate routers, for example [BPK97] [LMS97] [BP0O].

The variation in the bandwidth during the connection makes the RTO calculations inac-
curate and may cause unnecessary retransmissions. If the link’s transmission rate drops
significantly during a connection, the TCP sender might end at a RTO. This scenario

would be similar to the excess delay described in the previous section.
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3.5 Suggested enhancements

There are many different proposals for enhancing TCP performance over wireless links.
In general, they can be classified into three different categories [BPSK96]. End-to-end
modifications use well-selected TCP parameters and options that are suitable for wireless
links. This usually requires that the (wireless) host is aware of the link characteristics.
Secondly, split-connection protocols, that break the end-to-end connection into two parts,
separate the wireless link from the wireline network for greater control of the wireless
link. Thirdly, link-layer protocols that provide local reliability are used to minimize the
problems due to bit-corruption. We describe the various enhancements suggested in the
litterature. For a more detailed description about end-to-end modifications employed in

this study, please refer to Appendix D.

For link-layer protocols, one solution is that the link-layer provides a persistently reliable
error correction [Lud00]. That is, all packets are retransmitted until they are correctly
received. This way, the number of transmission errors due to corruption can be reduced.
If the number of local retransmissions is limited, the link is semi-reliable. For example,
the Radio Link Protocol (RLP) [ETS95] in GSM tries to deliver all packets without errors
by using selective rejection and checkpoints and local retransmissions. The number of
retransmits is a network-specific parameter that can be configured [Lud00]. When the
retransmission threshold is reached, the link is reset, and all packets that are currently
at the link-layer are discarded. This leads to wasting available bandwidth because the
transport layer has to retransmit the packets in the same manner as if there would be no
link-level error recovery. However, if the link-layer persistently tries to recover from errors,
the transport layer might end up retransmitting the packets due to a RTO, as the local

retransmissions take time.

When the connection is split into two distinct parts, wireless link and fixed network, an
intermediate prozy may take advantage of knowing the link properties. Indirect TCP (I-
TCP) [BB95] is an example of such a proxy that is functioning at the transport level.
The Mowgli system [KRA96] offers an indirect approach that involves all protocol layers.
It gives an option to use a wireless-specific protocol that replaces the TCP/IP stack.
The header overhead is reduced to 1-3 bytes in common scenarios. It can also work

transparently, so that regular applications can be used without recompilation.

Split solutions may provide better throughput and performance [BKG100]. However, such
proxies are not the preferred solution for wireless networking in general as the end-to-end
connection sometimes might be violated. It is suggested that split connections should

not be used unless there are no end-to-end mechanisms available that can provide similar
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performance enhancements [BKG*00].

ACK congestion control (ACC) [BP00] introduces mechanisms for the receiving end to mini-
mize the problems due to bandwidth asymmetry. It is a TCP enhancement that limits the
number of ACKs sent by the TCP receiver. It is not a pure end-to-end modification, as it
also requires the intermediate routers to apply active queue management. If the network
is asymmetric, the bottleneck router on the ACK path is subject to buffer exhaustion. ACC
makes use of the Explicit congestion notification (ECN) [FR99] bit in the packet headers.
In conjunction with the Random Early Detection algorithm (RED)! [FJ93] at the router,
the router can inform the TCP sender that the router buffers are becoming full by setting
the ECN-bit in the packet headers. The data sender echoes the ECN-bit in the following
segment to the TCP receiver. Therefore, the TCP receiver understands to reduce the rate
at which it sends ACKs. It is proposed that the TCP receiver should send an ACK for every
d segments. The variable d is the delayed-ack factor that is dynamically varying according
to the ECN-bits in the packet headers. Once a packet with the ECN-bit is received, the
receiver increases d multiplicatively. Similarly, for each subsequent RTT during it does not
receive a packet with the ECN-bit, d is decreased linearly. Thus, d imitates the behavior

of the regular congestion control.

The limited transmit TCP enhancement [ABFO1] proposes mechanisms that allow the
TCP sender to recover from a packet loss even if the cwnd is less than four segments. This
scheme has been suggested earlier by the authors of Net Reno [LK98]. They suggest that
the TCP sender should send a new segment upon the first two dupacks. The receiving
end reacts to the new segments by sending dupacks that invoke a fast retransmission at

the sender side.

The FEifel algorithm [LKO00] was designed for making TCP robust against spurious retrans-
missions. As TCP suffers from retransmission ambiguity, it cannot distinguish an ACK for
the original transmission of a segment from the ACK for its retransmission. Eifel makes use
of the TCP timestamp option [BBJ92] to correctly separate the different ACKs.

The limited receiver window [DMKMOO] is one possible enhancement in end-to-end cate-
gory that does not need any changes at the sender side. The delay bandwidth-product
is usually quite small in slow wireless links. If we consider a link that has a RTT of 0.5
seconds while the bandwidth is 9600bps, the capacity of the link is 600 bytes in maximum.
Typically, the default receiver’s advertised window is quite big, being 32Kbytes or even
64Kbytes. This means, that the TCP sender is able to probe for a non-existent bandwidth

by growing the congestion window above the delay bandwidth product. An unnecessarily

'RED gateways detect the upcoming congestion by observing the moving average of the queue size.
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large congestion window inflates the RT'O and may also cause a packet loss in the inter-
mediate routers due to buffer exhaustion [DMKMO0]. All packet drops should be avoided

on a slow link, as the transmission rate is dropped by 50 %.

Selective Acknowledgment (SACK) [MMFRY6] is a TCP option that is currently in the
"Standards Track" category in IETF2. As the regular fast recovery algorithm is not able
to recover from multiple packet losses in a single window without going into slow start,
its performance over error-prone wireless links is suboptimal. Due to the fact that the
TCP acknowledgments are cumulative, there is no way to acknowledge separate blocks
of segments that have been correctly received, but are out-of-order. The SACK TCP
option [MMFR96] gives a possibility for the TCP receiver to inform the data sender which
segments have been received. This information can be "piggybacked" in a duplicate ack
segment that is sent when an out-of-order segment is received. It is recommended by
[DMK™00] for erroneous links.

The larger Initial Window [APS99] is an enhancement that needs more evaluation. The
congestion control specifications require the TCP implementations to use an initial window
(IW) of one or two segments [APS99]. However, experimental TCP extensions are allowed
to use a larger initial window, such as three or four segments. When using an IW of
one segment, the slow start phase is time-consuming. A packet loss at the beginning of
the connection would lead to a RTO, as there are not enough packets in the network
to produce three duplicate acknowledgments that would trigger the fast retransmit/fast
recovery algorithm. When using a larger IW, the congestion window would be faster
in a "safe" size (i.e four segments or more). This optimization is further discussed in
[MDK*00].

Disabled delayed acks are used to increase the cwnd faster during the initial slow start.
During the slow start, each incoming ACK increases the congestion window by one SMSS
[APS99]. If delayed acknowledgments are in use, the number of ACKs is smaller, as one ACK
acknowledges two segments. By disabling the delayed acknowledgments at the receiver

side, the TCP sender receives an ACK for each transmitted segment.

®Internet Engineering Task Force is the standardization body of Internet standards.
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4 Test Arrangements

This section describes our test arrangements for running the TCP performance test with
the baseline TCP and different TCP modifications.

4.1 Test objectives

The objective of this thesis is to study the TCP performance implications of those link
characteristics that are typical for slow wireless links. And, in addition to that, to study the
effect of various TCP parameters and to implement some experimental TCP performance

enhancements and study the impact of these enhancements.

We measure and analyze the effects of an unreliable link, which causes packet losses due to
corruption, and a persistently reliable link, which cause excessive delays instead of packet
losses, to a baseline TCP implementation that represents the “best current practice” in the
Internet community. We then employ various mechanisms to improve TCP performance
and compare the measured performance to that of the baseline TCP. The network charac-
teristics are emulated using Seawind emulator. For a detailed description about Seawind,

please refer to Appendix E.1.

It is clear that there is no one single modification that gives an optimal result for all the
different test cases. However, we try to get a clear picture about the effects of different
modifications. A TCP modification has to work well in all test cases, and can especially
not lower the throughput drastically in certain cases. Using one modification we may get

an almost optimal performance on some selected test cases, but bad with other test cases.

4.2 Test environment

We used three different computers on a closed LAN to run the tests. Two of the computers
were working as end hosts and the Seawind emulator was running on the third host. The
computers are equipped with a 400 MHz Intel Celeron processor. The end hosts are
running Linux Red Hat 6.0 as their operating system and the emulator is running on
a Linux Red Hat 6.2. As the emulation is done in real-time, it is important that the
whole testing environment does not produce wrong results due to performance capacity
problems. Therefore, we dedicated these computers to our testing purpose only and there
were no CPU consuming applications running. There was no other disturbing traffic in the
network. While the capacity of the LAN was 10Mbps, Seawind stored and forwarded the

packets at a maximum rate of 40Kbps. We believe that these test conditions were sufficient
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to guarantee the correct results and avoid the wrong analysis due to failed test execution.
Due to the fact that we are not using a real-time operating system, the accuracy of the
various delays cannot be fully guaranteed. Therefore, the emulator writes a warning to
a log file, if a scheduled delay was longer than planned. We used a warning for all the
events, that overslept for more than 10 ms. For detailed description about Seawind, please

see Appendix E.1. Figure 4 shows the testing environment.

Private 10Mops LAN

o o ¢}
Mobile Host Seawind Remote Host
Depart ment LAN
—

—

o

oo

configuration files,
logs

Figure 4: The test network

Figure 5 shows the protocol layering of the test environment. Both end hosts are running
ttcp as the workload generator (highlighted in the figure). The real-time Seawind emulator
is in between the two workload hosts. At the workload hosts, normal TCP/IP packets
are encapsulated at the link layer in Point-to-Point (PPP) [Sim94] frames and transmitted
to the Network Adaptor (NPA). NPA encapsulates a PPP frame to a regular TCP/IP
packet, and sends it to the emulator. Thus, the packet structure between workload hosts
and the emulator is TCP/IP/PPP/TCP/IP. Seawind detects the original IP packet that
includes the TCP payload created at the workload generator (ttcp) by decapsulating the
topmost T'CP/IP packet. After that, the Simulation Process (SP) invokes the mechanisms
to emulate the wireless link according the given parameters. SP is the core of Seawind
that emulates the wireless link. The ticps are unaware of the encapsulation, and transmit
all segments as if it was a regular TCP connection. They are also unaware of the Seawind
emulator; they send and receive the TCP segments as if the link was a slow wireless link

with emulated parameters.

The emulator is run on a Linux kernel 2.2.17. The possible TCP implementation problems
in kernel 2.2.17 are not relevant, as the end-to-end TCP connection that was under study,
was between the end hosts. Therefore, all the TCP enhancement are implemented only
at the workload hosts as they are the acting hosts in TCP point-of-view. The TCP

implementation issues are discussed later in this section.
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Figure 5: Seawind protocol stack

The measurement data was collected from various points. Seawind produced its own log file
that keeps track of all events that the emulation process executes, and tcpdumps®[JLM97]
were collected from end-hosts and the emulator. We used tcptrace [Ost] and tracelook
[PS98] for analyzing the tcpdumps. Some of the measurement tools we made ourselves
to achieve statistics, such as percentiles and minimum and maximum values of certain

variables. Matlab [Mat97] was used for graphical presentation of the results.

On end hosts we use a modified Linux kernel, which is based on the Linux kernel 2.3.99-
pre9. It was the latest development kernel version available at the time when we decided
to start implementing new TCP modifications. The reasons for choosing Linux as the
operating system were obvious. We had good previous knowledge of Linux, it is a popular
operating system, and the source code is available. We are aware of the common belief
that the Linux TCP implementation is not following all the standards and specifications.
Therefore, we have run a considerable amount of preliminary tests to gain knowledge
about the possible problems. The misbehavior problems we have found are corrected,
and we believe that our kernel implements TCP in a way described by [Pos81b], [Brag89],
[APS99] and [FH99]. We have also implemented some of the modifications ourselves,
such as larger initial window, disabled delayed acks, and receiver window sharing. We
call our TCP implementation Baseline TCP as it represents the current "state-of-the-art"
implementation and we think it follows the given TCP specifications. Thus, it can be
used as a reference when comparing the performance of different TCP modifications. The
features of Baseline TCP, including a list of corrected bugs and implemented modifications,
are described in Appendix C. Appendix E describes the test environment, arrangements

and the Seawind emulator in more detail.

3tcpdump is a program that collects all the data going through a defined network interface
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4.3 Wireless link modeling

Because modeling a specific network architecture is not easy due to the number of possible
variables, we used a general model for modeling the wireless network. The basic idea is
to emulate only the wireless link, but no other network components. The properties of
the emulated network are selected to be similar to GSM. However, this study is not GSM-
specific, but rather slow W-WAN specific as the details in GSM architecture are not taken

into account.

The emulated network consists of two hosts that communicate over a slow wireless link.
The link may contain packet drops, and excess delays due to hand offs or local retransmis-
sions. The excess delays and packet drops are considered only at the downlink direction,
although some limited set of tests are run over a link that may drop packets at the uplink
direction, too. The link does not allow packet re-ordering. The link send buffer (LSB) and
link receive buffer (LRB) are for buffering the out-of-order packets if packets are locally
retransmitted due to errors. We assume that there are no intermediate routers between

the two hosts.

Figure 6 shows the emulated wireless link. The hosts are called Mobile Host and Remote
Host. The link between the two hosts is a slow wireless link. The usual emulated bandwidth
is 9600bps, but this varies in some test cases. The propagation delay is set to 200ms, which

is typical for such wireless environments.

TCP data flow

TCP ACK flow
ttcp ttcp
) Excess Delays Packet Drops Variable bandwidth TCcP

N A

Serial S Serid
o H LRB }O Wireless Link > LsB

Mobile Host Remote Host

Figure 6: Emulated network

Figure 7 illustrates the emulation setup in Seawind. The serial buffers of the end hosts
were emulated in the input buffers of Seawind. A serial buffer overflow was not considered,
as the input buffers were set to be arbitrary large. Both link send and receive buffers were
set to 1220 bytes. If a packet is excessively delayed, a burst of segments will follow; the
packets in the link receive buffers are delivered to the TCP receiver back to back. This
is a simplification of the real world; in some cases, as with many W-WAN link interfaces,

the packet are delivered at the rate of the link interface, not at an unlimited rate.
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Figure 7: Emulation setup
Workload and ttcp parameters

Our main focus was on bulk data transfers, therefore we did 100 Kbytes transfers. For
the data we gathered, it was easy to calculate the throughput for smaller transfers, too.
A single unidirectional connection was used in all cases. Because each end represented a
wireless host and there are no routers in between, it did not have any effect which way
we transferred the data. For naming purposes only, we call the other end mobile host and
the other end remote host and do all the unidirectional transfers in the downlink direction

(i.e. from remote host to mobile host).

The TCP senders socket buffer size was left to its default value that is 64 Kbytes. However,
Linux’s TCP does not advertise windows larger than 32 Kbytes, so that is the limit the
other end gets to know. The TCP receiver’s socket buffer size is one of the enhancements

we tested and therefore its value can be changed. In most cases the default size is used.

When the NPA encapsulates the IP packets that contain the workload, it sets a Mazimum
Transfer Unit (MTU) for the PPP frame. The MTU is set to 296 bytes, which leads to
a MSS of 256 bytes®. A MSS of 256 bytes is typical for slow links [Jac90]. The PPP
overhead is typically eight bytes®. Thus, the PPP frames that are transmitted over the

wireless link are 304 bytes.

4.4 Tested TCP enhancements

We used our Baseline TCP as our reference TCP implementation. Refer to Appendix C
for full description of included algorithms and parameters. The tested TCP enhancements

are outlined below.

1A MTU of 296 bytes includes 256 bytes of TCP payload, 20 bytes of TCP headers and 20 bytes is IP

headers.
5The PPP header overhead may vary due to byte-stuffing.
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SACK option The use of SACK is highly endorsed in situations where multiple seg-
ments may be dropped in a single window [MDK'00]. Therefore, it is a good modification
to be tested against Baseline TCP and other enhancements. It has been stated that the
reference TCP implementation (i.e. the Baseline TCP) should include the expected future
TCP algorithms [AF99]. SACK is clearly such a TCP enhancement, as it is in the “Stan-
dards Track” category of IETF. According to a resent study, 40% of the host connected to
a web server used the SACK option [All00]. However, the SACK was not considered to be
included in the Baseline TCP, as it is not implemented in a regular way. The Linux SACK
TCP makes use of forward acknowledgment algorithm (FACK) [MM96], and in addition,

the details of the implementation may have an impact on the performance.

Limited receiver window We selected two window sizes to be tested. Because the
delay-bandwidth product of the link is less than three segments, a 2 Kbytes advertised
window (i.e a window of eight segments, when using a MSS of 256 bytes) is big enough
to fill the pipe. If there are many packet drops during a connection, the cwnd may be
suppressed into a value that is less than four segments. In such a case the fast retransmit
cannot happen. Therefore, we also tested the effects of a receiver window of 4 Kbytes. The

limited receiver window is mentioned as a possible enhancement for slow links [DMKMO0].

Disabled delayed acks This modification acknowledges some predefined number of seg-
ments separately without waiting for the delayed ack threshold to be exceeded or another
data segment to arrive. Disabling many delayed acks at the beginning of the connection
is not encouraged, but we wanted to have a clear case whether it helps the TCP sender
to exit the early slow start faster, and would it be justified to use such a modification in
the future. This modification is used only in limited test cases, where the bandwidth is
increased, because using a bandwidth of 9600bps, the transmission delay for a 256 byte
segment is more than 200ms, which is the delayed ack threshold. An informational IETF
RFC [MDK00] suggests to acknowledge the first incoming segment without any delay on
receivers behind a long thin link. This enhancement should be used only with a justified
reason and if the consequences are well understood; it is stated in TCP Congestion Control

Specifications that “delayed acknowledgments should be used by a TCP receiver”.

Larger initial window The initial window of four segments was tested. The current
specifications allows using an initial window of four segments in experimental implemen-
tations as we are using. The current understanding is that it may be beneficial to use a

larger initial window than two segments [PN98|[SP98].
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Maximum segment size The default MSS is set to 256 bytes. However, limited number
of tests are run to gain knowledge about the effects of a larger MSS of 512 bytes. This

modification is not considered as a TCP enhancement.

Table 2 outlines the parameters of the TCP enhancements.

Table 2: Summary of the TCP enhancements

TCP enhancement
Item Baseline | SACK | Larger IW | rwnd2KB | rwnd4KB | Dis.dACKs | MSS512
NewReno Yes - Yes Yes Yes Yes Yes
Initial window 2 2 4 2 2 2 2
SACK Off On Off Off Off Off Off
rwnd 32KB 32KB 32KB 2KB 4KB 32KB 32KB
MSS 256B 256B 256B 256KB 256KB 256B 512B

4.5 Test cases

The tests are divided into five major categories according to emulated link characteristics:
packet drops tests, delay tests, combined packet drops and delays, bandwidth tests, and
combined bandwidth and packet drops tests. This section describes the exact tests that
are run. To achieve correct information for the statistics, the number of test replications
is 20. If a test case includes randomness in the emulation, the number of the replications

is increased to 50.

Packet drop tests

In these test cases we analyze how the different modifications affect the performance when
a data packet is lost. First, we drop only a single packet during the transfer. The dropped
packet is altered to gain knowledge about possible problems. The different packets dropped
are: first SYN, first data segment, second, third, fifth, seventh, tenth, 15th, 20th, 30th,
40th, 60th, 80th, 100th, 120th, 140th, 160th, 180th, 200th, 240th, 300th, 340th and 400th
data segment. Next, we use random drops according to a uniform distribution where the
packet drop rate is defined. The data packet drop rates are selected to simulate good,
mediocre and bad link conditions. Packet drop rates for the data segments are 2%, 5%
and 10%, respectively. In addition to the Baseline TCP, the tests are repeated with
different TCP enhancements to study their impact on the performance. The included
TCP enhancements are SACK, larger IW of four segments, limited rwnd of 2 Kbytes and
4 Kbytes. However, single packet drop tests are not run with a limited rwnd of 4 Kbytes.
The random tests are repeated by using a larger MSS of 512 bytes. In addition, all the
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random packet drop tests are repeated by applying the packet drops also to the uplink
direction. Table 3 summarizes the packet drop tests. UL and DL denote uplink and

downlink, respectively.

Table 3: The packet drop tests

‘ Packet(s) dropped ‘ Tested TCP enhancements

A single data packet (DL) | Baseline TCP, SACK, IW=4, rwnd=2KB

2% prob.(DL) Baseline TCP, SACK, IW=4, rund=2KB, rwnd=4KB
5% prob.(DL) Baseline TCP, SACK, IW=4, rund=2KB, rwnd=4KB
10% prob.(DL) Baseline TCP, SACK, IW=4, rund=2KB, rwnd=4KB
2% prob.(UL+DL) Baseline TCP, SACK, IW=4, rund=2KB, rund—=4KB
5% prob.(UL+DL) Baseline TCP, SACK, IW=4, rund=2KB, rund=4KB
10% prob.(UL+DL) Baseline TCP, SACK, IW=4, rund=2KB, rwnd=4KB

The number of different single packet drop tests is 23. Each test cases were executed with
four different TCP enhancement (including the Baseline TCP). In total, each 92 different
single packet drop test is replicated 20 times producing 1840 basic tests.

The number of different random drop test cases is six. Each test case is executed with
five different TCP enhancement, and repeated with a MSS of 512 bytes. In total, each 60
different random packet drop test is replicated 50 times producing 3000 basic tests.

Delay tests

In these tests we delay the packet in the wireless link before it reaches the receiver. We use
three different lengths for delayed packet in different test cases. In the fist test case the
delay is set to be little less than a delay that would cause a retransmission due to RTO.
In the second test case the delay will cause one retransmission for the delayed packet and
the third case the delay will cause two consecutive retransmissions for the delayed packet.

The delay thresholds were achieved by running preliminary tests.

The goal is to find a threshold for the retransmission timer to expire and monitor the
behavior of the TCP sender. We remind that all retransmissions in this environment
are unnecessary because no packets are lost, only delayed. Therefore, TCP may behave

improperly or ineffectively.

The packets that are delayed are: first SYN, first data segment, third, fifth, seventh, tenth,
15th, 20th, 30th, 40th, 60th, 80th, 100th, 120th, 140th, 160th, 180th, 200th, 300th, and
400th data segment.
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The TCP settings we used to run the tests are:

1) Baseline TCP (IW = 2, MSS 256)

2) limited rwnd = 4 KB

For the limited rwnd tests we run only the tests that invoke one RTO. Table 4 summarizes

the delay tests.

Table 4: The delay tests

Packet delayed ‘ Delay length Tested TCP enhancements
A single data packet (DL) | less than RTO Baseline TCP

A single data packet (DL) | one RTO Baseline TCP, rund=2KB

A single data packet (DL) | two consecutive RTOs | Baseline TCP

The number of different single packet drop tests is 20¥3=60 of which 20 is executed with
two TCP enhancement, and 40 with only the Baseline TCP. In total, each 80 different
delay test is replicated 20 times producing 1600 basic tests.

Combining errors and delays

In these cases we combine errors and delays. The sending TCP will retransmit packets due
to RTO (i.e excess delays) and duplicate ACKs (i.e. lost packets). The errors are created
using packet drop rates of 2%, 5% and 10%. The probability of a delay is 1% and if it
happens, the length of the delay is always 6 seconds. The length of the delay was chosen

according to the preliminary tests and it usually causes a retransmission timeout.

The TCP enhancement used with these tests are:

1) Baseline TCP

2) Larger initial window (IW) of four segments

3) SACK-option enabled
)

4) limited receiver’s advertised window rwnd = 4KB

Table 5 summarizes all the different tests. Each of these tests is run 50 times because
of the randomness. All the delays and packet drops are executed only in the downlink
direction (i.e. data path). The number of test cases is 12 and the number of basic tests is

600 in total.
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Table 5: Tests with packet drops and delays

Packet drop rate | Delay prob. | Tested TCP enhancements

2% 1% Baseline TCP, IW=4, SACK, rund=4KB
5% 1% Baseline TCP, IW=4, SACK, rund=4KB
10% 1% Baseline TCP, IW=4, SACK, rwnd=4KB

Bandwidth tests

Tests with different bandwidths are made. The emulated link does not have excess delays
or packet drops. The bandwidth may change during the connection and static asymmetric
bandwidth is tested. We monitor only the effects of one rate change in the bandwidth
during the connection. The change is made in two different phases of the connection:

slow-start and steady state.

The different static bandwidths that we use to run the tests are:

- (1/3) * 9600bps i.e 9600bps for the uplink and 28800bps for the downlink
- (2/2) * 9600bps (i.e. 19200bps/19200bps)

- 14400bps/38400bps and

- (2/2) * 14400bps (i.e. 28800bps/28800bps)

The static bandwidth tests are repeated with the following TCP enhancements:

1) Baseline TCP

2) IW =4

3) rwnd = 2 Kbytes

4) rwnd = 4 Kbytes

5) Disabled delayed ACKs up to two, four, six and eight segments. In addition, disabled

delayed ACKs are applied for the whole connection.
The disabled delayed ACKs are performed only over a 14400bps/38400bps link.

Table 24 gives a summary of the static bandwidth tests. The first column of the table,
Bw (uplink), gives the bandwidth of the uplink on the emulated link and the second
column, Bw (downlink), gives the downlink bandwidth. The abbreviation Dis. dACKs
stands for the TCP enhancement (5), disabled delayed acks. The normal behavior of
delayed acknowledgments for the Baseline TCP is explained in Appendix C.

The number of different static bandwidth tests cases is 24, when taking the different TCP
enhancement into account. Each test is repeated 20 times. In total, 480 basic tests are

run.
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Table 6: Static bandwidth tests

‘ Bw (uplink) ‘ Bw (downlink) ‘ Tested TCP enhancements

9600bps 28800bps Baseline TCP, IW=4, rund=2KB, rund=4KB
19200bps 19200bps Baseline TCP, IW=4, rund=2KB, rund=4KB
14400bps 38400bps Baseline TCP, IW=4, rwnd=2KB, rwund=4KB, Dis. dACKs
28800bps 28800bps Baseline TCP, IW=4, rwnd=2KB, rwnd=4KB

The variable bandwidth tests are:

- from (1/3) * 9600bps to (1/1) * 9600bps,

- from (2/2) * 14400bps to (2/2) * 9600bps,

- from (2/2) * 14400bps to (1/1) * 14400bps,
- from (2/2) * 9600bps to (1/1) * 9600bps and
- from (1/1) * 14400bps to (1/1) * 9600bps

In variable bandwidth tests the bandwidth is changed at two different moments: during

slow start and during steady state.

The tested TCP enhancements are:
1) Baseline TCP

2) Larger IW of four segments

3) Limited rwnd of 4 Kbytes

Table 7 shows the variable bandwidth tests. The first column, BwI, tells the bandwidth on
the link (for uplink/downlink) before the change. The Bw2 column outlines the bandwidth
on the link after the bandwidth has been changed. All the changes are from a faster link
to a slower one as it is a normal behavior on some wireless links, such as GSM, when the

link conditions becomes worse.

There are 24 different variable bandwidth tests and using 20 replications the total number

of basic tests is then 480.

Combining errors and bandwidth

In these cases we combine errors and different static (and asymmetric) bandwidths. The
errors are created on random-basis according to different packet drop rates. The packet
drop rates are 2%, 5% and 10%. Packets are dropped only on the downlink direction, so
no ACKs are dropped. The bandwidths we are using in these tests are (uplink/downlink):
- (1/3) * 9600bps (i.e. 9600bps/28800bps)
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Table 7: Variable bandwidth tests
Bwl Bw2 Change Tested TCP enhancements
(up/down) | (up/down)
9600/28800 | 9600/9600 slow start Baseline TCP,IW=4, rund=4KB
9600,/28800 | 9600/9600 steady state | Baseline TCP,IW=4, rund=4KB
28800/28800 | 19200/19200 | slow start Baseline TCP,IW=4, rwnd=4Kb
28800,/28800 | 19200/19200 | slow start Baseline TCP,IW=4, rwnd=4Kb
28800,/28800 | 14400/14400 | slow start Baseline TCP, IW=4, rwnd=4KB
28800/28800 | 14400/14400 | steady state | Baseline TCP, IW=4, rund=4KB
19200/19200 | 9600,/9600 slow start Baseline TCP, IW=4, rwnd=4KB
19200/19200 | 9600,/9600 steady state | Baseline TCP, IW=4, rwund=4KB

~(2/2) * 9600bps (i.e. 10200bps/19200bps)
- (2/2) * 14400bps (i.e. 28800bps/28800bps) and
- 14400bps/38400bps

The different TCP setting for these tests are:
1) Baseline TCP

2)IW =14

3) SACK-option enabled

4) rwnd = 2KB

Table 8 summarizes the tests. The column Bandwidth (uplink/downlink) describes the
bandwidth used for a test case. There are 3000 basic tests in 60 different test cases in this

test run, as the number of replications is 50.

Discussion It is believed that the large amount of tests provides detailed information
about the effects of different link characteristics. The tests cover extensively the modeled
environments. Thus, the conclusions of the test results are more accurate. The total
number of test cases is 332 , including the tests with different TCP enhancements. Overall,

over 10000 basic tests are run, each transferring 100 Kbytes over the emulated link.
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Table 8: Tests with packet drops and different bandwidths

Packet Bandwidth | Tested TCP enhancements

drop rate (up/down)

2% 9600/28800 | Baseline TCP, IW=4, SACK, rund—=2KB, rund—4KB
2% 19200/19200 | Baseline TCP, IW=4, SACK, rund=2KB, rund=4KB
2% 28800/28800 | Baseline TCP, IW=4, SACK, rwnd=2KB, rund=4KB
2% 14400/38400 | Baseline TCP, IW=4, SACK, rwnd=2KB, rund=4KB
5% 9600/28800 | Baseline TCP, IW=4, SACK, rwnd=2KB, rwnd=4KB
5% 19200/19200 | Baseline TCP, IW=4, SACK, rwnd=2KB, rund=4KB
5% 28800/28800 | Baseline TCP, IW=4, SACK, rwnd=2KB, rund=4KB
5% 14400/38400 | Baseline TCP, IW=4, SACK, rwnd=2KB, rund=4KB
10% 9600/28800 | Baseline TCP, IW=4, SACK, rwnd=2KB, rwnd=4KB
10% 19200/19200 | Baseline TCP, IW=4, SACK, rwnd=2KB, rund=4KB
10% 28800/28800 | Baseline TCP, IW=4, SACK, rwnd=2KB, rund=4KB
10% 14400/38400 | Baseline TCP, IW=4, SACK, rwnd=2KB, rwnd=4KB
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5 Test Results and Analysis

This section introduces the results of the tests that are outlined in Section 4.5. The tests
are analyzed, and the reasoning for the problems or benefits of the TCP modifications
is given separately for each test scenario. The test results are described by first report-
ing the behavior and the performance of Baseline TCP |, and then the behavior and the

performance of the TCP enhancements.

5.1 Ideal link condition

The connection between the two hosts under ideal link conditions is unfortunately a rare
case in real world. The link conditions are said to be ideal, if there are no other delays on
the link than the transmission delay, propagation delay, and a possible queueing delay, and
no segments are lost due to congestion or corruption during the whole 100 Kbytes transfer.
The reason for providing such a case is, that it is a good reference when comparing the
effects of excess delays and packet drops on other test cases that are executed. Figure 8
shows a trace of transfer under ideal link conditions, taken from the sender side tcpdump.
Thus, this graph represents the scenario, as the TCP sender sees it. If a segment is
dropped on the link, the TCP sender is not aware of it, until it gets feedback from the
TCP receiver. Therefore, all the segments that the TCP sender has sent, are visible in
the graph, even if they are dropped on the link. The same thing applies to excess delays.
This same format of the graph is used on all the following figures, when showing traces of
connections. The X-axis is the time in seconds. In the graphs, the time is started upon the
initially sent data segments; the segments sent during the connection establishment (i.e
the three-way handshake) are not plotted nor the time spent in this procedure taken into
account, when setting the initial time axis. The Y-axis represents the sequence numbers
relative to the initial value. Each sequence number equals one byte. The line labeled
"data sent" includes markers at the highest sequence number of a data segment. Each
marker represents a data segment, that is sent. The line "ack rcvd" (acknowledgment
received) has markers on the next expected octet, which are equal to the corresponding
ACK, indicating that all segments, up to that point, are correctly received by the TCP
receiver. "Win" is the line that represents the highest sequence number accepted by the
TCP receiver (i.e receiver’s advertised window, rwnd). This line is not present in all of the

graphs, since it does not always have an effect on the behavior of the TCP sender.

Using the Baseline TCP, the connection time from the first SYN-segment to the last FIN-
segment received is 102.05 seconds in average. The total number of data segments is

400, while there are no retransmissions. The RTTs for the first and last data segments are

30



5 TEST RESULTS AND ANALYSIS

approximately 0.7 and 30 seconds, respectively. The RT'T gets inflated due to a large cwnd.
The cwnd grows to 128 segments, and is limited by the rwnd after 32 Kbytes have been
acknowledged by the receiver. The growth of the RTT due to a large cwnd may lead to
problems, which are discussed later. The total throughput is 1003 bytes/second. However,
if the initial window size is set to four segments, the connection time is 101.85 seconds (i.e.
0.2 seconds shorter than with the Baseline TCP), and the throughput is 1005 bytes/second.
The full capacity of the link is in use from the very beginning of the connection, as the
delay-bandwidth product is 840 bytes®. Thus, an IW of two segments cannot fill the link,
but four segments can. This scenario is further discussed in the following chapters, as
it is a factor that affects the performance on several occasions. Table 13 in Appendix A

summarizes the connections under ideal link conditions.
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Figure 8: Optimal transfer using the Baseline TCP

5.2 Effect of packet drop

The results of packet drop tests are given separately for single drops and random drops.

A summary of all packet drop tests is given at the end of this section.

8A data packet consists of 256 bytes of TCP payload, 40 bytes of TCP and IP headers, and 8 bytes
of PPP overhead = 304 bytes. The sum of propagation delays (2*200ms) and transmission delays for a
304 byte data segment and a 48 byte ACK are approximately 700ms. Thus, the delay-bandwidth product
is 0.7s * 1200bytes/s ~ 840 bytes
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Single packet drops

Baseline TCP In general, the recovery from single packet drops is nearly optimal when
Baseline TCP is used. The NewReno algorithm is triggered after receiving three duplicate
acknowledgments and the lost segment is then retransmitted. After receiving the cumula-
tive ACK that acknowledges all outstanding packets when the third dupack was received,
the algorithm is exited and the connection continues using the congestion avoidance algo-
rithm. The only limiting factor on these cases is the reduction of the cwnd and the entering
of congestion avoidance instead of continuing the slow start. However, these actions do not
diminish the throughput in most of the test cases, since the link is usually filled with the
maximum number of segments even after the packet loss. Under those circumstances, the
median connection time increases only less than 0.3 seconds, when comparing to the ideal
case, where no segments were dropped. The connection time increases due to the trans-
mission delay of the retransmitted segment. Figure 9 shows the trace of the connection

where the 40th data segment was dropped.
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Figure 9: 40th packet dropped

There are two distinct cases, where the recovery is suboptimal. First, if there are less than
four data packets in the network, a fast retransmit is not possible due to the limited number
of possible dupacks in case of a packet drop; the TCP receiver needs to receive three out-
of-order segments to send three dupacks that trigger a fast retransmit at the TCP sender.
The TCP sender has to recover from a missing segment by waiting for the retransmission
timer to expire. Second, if the cwnd has grown well beyond the delay-bandwidth product,
an RTO can occur for the retransmitted packet before the ACK arrives. We explain these

two cases in more detail in the following chapters.
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The reasoning for another minor degradation in the performance is that the link capacity is
not always in full use. The delay-bandwidth product of the link is 840 bytes, as previously
explained in Section 5.1. If the pipe is full, a new ACK is sent every 304bytes/1200bytes/sec
= 0.25 second, as it is the transmission delay of a data segment’. Since the transmission
of an ACK segment takes only 48bytes/1200bytes/sec + 0.2 sec = 0.24 seconds, the ACK is
transferred to the TCP sender before a new ACK has been created. This means that only
one ACK segment is on the link at any time. If the pipe capacity is 840 bytes, three data
segments are needed to fill the pipe®. Thus, the pipe is not fully utilized, if the cwnd has
not grown into six segments before the three dupacks are received, because the cwnd is
halved upon a fast retransmit; a cwnd of six segments leads to a cwnd of three segments,
which keeps the full link capacity in use. We can see this degradation happen, when the

third data segment is dropped. This leads to a 0.65 second longer total connection time.

If the dropped segment is the first, second, or the last data segment of the connection,
a fast retransmit is not possible, as the number of packets in the network is less than

9. To recover for a single packet drop in these three cases, the TCP sender has to

four
wait until the retransmission timer expires. Figure 10(a) shows a microscopic view from
the beginning of a connection where the second data packet was dropped. If the initial
window were one segment, the TCP sender could recover only by going into an RTO for
the third dropped data segment, too. At the end of the transfer, the RT'T and RTO values
get inflated. The retransmission timer expires 40 seconds after the initial transfer of the
last data segment. This leads to a loss of eight seconds in overall connection time, as the

RTT for the segment would have been 32 seconds without the loss.

If the cwnd is relatively big, 60 segments or more, the ACK that acknowledges the retrans-
mitted packet and all outstanding data at the point when the three dupacks were received
by the TCP sender, does not reach the TCP sender before its retransmission timer ex-
pires. The out-of-order segments at the receiving end do not allow the receiver to send
a new ACK to the sender, but only dupacks. When the TCP sender does not get a new
acknowledgment in time, the segment is retransmitted. Figure 11 shows this scenario, that
invokes multiple unnecessary retransmissions, and increases the connection time by 14%
(14.4 seconds). The segment that is retransmitted due to RTO, is highlighted in the figure
(number 1). Because the retransmission timer expires, slow start is invoked and continued
after receiving the cumulative ACK (number 2). This ACK does not acknowledge the seg-

ments that were transmitted during the recovery period (number 3), but the segments that

"This does not hold, if delayed acknowledgments are in use. In that case only every second segment

would trigger a new ACK.
8840bytes/304bytes ~ 2.8segments
®This also applies to the third last and second last segments, but these cases are not included in the

tests.
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Figure 10: The recovery when the second data segment is dropped.

were sent before the three dupacks were received. Therefore, the slow start begins from
the next expected octet indicated by the ACK (number 2) and the segments (number 3) are
retransmitted. The retransmitted segments cause dupacks, because the data receiver gets
them twice. The third dupack triggers NewReno fast retransmit which causes an unneces-
sary retransmission (number 4). This retransmission could have been avoided, if so-called
Careful version of the NewReno bugfix [FH99] was implemented'?. The Careful variant
does not enter fast retransmit/fast recovery if the last acknowledged segment is not higher
than the last segment sent before the RTO occurred (the highest segment indicated by
number 3). Due to this retransmission, TCP sender enters fast recovery and the next ACKs
are interpreted as partial acks, and more segments are retransmitted. When this scenario

ends, the connection continues using congestion avoidance.

If the cwnd reaches the rwnd before the packet is dropped, the scenario changes. Figure
12 shows this case. After receiving the third dupack, the dropped packet is retransmitted.
By that point, the cwnd has already reached the rwnd, and thus, new packets can not be
sent during the recovery period (number 1 in the figure). The retransmission timer expires
for the retransmitted packet as in the previous scenario. Because the data sender could
not send any new data to the network, the next incoming ACK acknowledges all segments
the sender had sent (number 2). The slow start is invoked and only new data is sent
to the TCP receiver. The later part of the connection goes without any problems with
reduced ssthresh. Congestion avoidance is entered right before all the data was sent to

the network (number 3).

10Baseline TCP implements the Less Careful version of the NewReno bugfix. See Appendix C for more
detailed information.
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Figure 12: 140th packet dropped.

If the TCP sender has already transmitted all the transferred data upon the third dupack,
the missing segment is the only segment that is retransmitted. Thus, the recovery is as

optimal as it can be.

Larger initial window Excluding the problematic scenarios, the pipe is kept full all
the time due to the larger initial window (IW), and thus, the median connection times are

approximately 0.2 seconds shorter than in the Baseline tests. Because the four initially
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sent segments fill the pipe, the link capacity is in full use from the very beginning of the

connection, as the four initially sent segments fill the pipe.

When using an IW of four segments, the RT'O can be avoided for the drop of the first or
second data packet unlike for the Baseline TCP case that was explained earlier. Figure
10(b) shows the scenario, when the second data segment was dropped. The TCP sender can
recover from the drop by triggering a fast retransmit because there are enough outstanding

segments in the network to cause three dupacks.

The use of an IW of four segments does not give other benefits. The problem with too large
a cwnd (explained earlier) still exists, leading to numerous unnecessary retransmissions.
As the size of the cwnd is initially larger, the problem occurs a little earlier than with the

Baseline TCP. However, the reasoning behind the problem is exactly the same.

Limited receiver window Limiting the receiver’s advertised window to 2 Kbytes leads
to a maximum cwnd of eight segments'!. The limited receiver window does not benefit the
very beginning of the connection in any way, and thus, an RTO occurs if the first or second
data segment is dropped. The results are the same as with Baseline TCP. Also, the RTO
can not be avoided when the last data segment is dropped. However, the retransmission
timeout is much shorter than in the Baseline TCP tests, because the RTT calculations
have not been inflated by an arbitrary big cwnd. The RTO causes only an extra delay of
0.6 seconds in the overall connection time, while with the Baseline TCP, the extra delay

was 8.8 seconds.

Figure 13 shows a common scenario when using a limited receiver window. The cwnd
reaches the rwnd after the first six segments are acknowledged by the receiver (number 1
in the figure). After that point, the transmissions of new segments during the fast recovery
phase is impossible, since the rwnd does not allow any new segments to be sent before the
retransmitted segment is acknowledged (number 2). This causes a slight deterioration of
the performance, because the link capacity is not in full use for one RTT after exiting the
fast recovery. The new value of the cwnd is derived from the number of packets in flight.
Because there are currently no outstanding segments on the link, the new value of cwnd
is set to two segments!? (number 3). Because the link’s capacity is not in full use if there
are less than three outstanding segments, the cwnd of two segments leads to a minor loss

of the performance. The median throughput is 994 bytes/second in a general situation, as

""When using a MSS of 256 bytes, 8*(MSS) = 2 Kbytes.
12The exact value for the cwnd is calculated from the equation:

cwnd = max(min(flightsize + 1, ssthresh),2). Since the flightsize+1=1, the maximum of 0 and 2 is
selected to be the new value of the cwnd, i.e cwnd=2. For a more detailed description about calculating
the values for the cwnd and ssthresh, please refer to the Appendices B.2.4, B.2.5 and C.1.1.
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it is 1001 bytes/second when using Baseline TCP. The difference is less than 0.7 seconds

in total connection time.

By limiting the rwnd to 2 Kbytes, the RTO due to too large a cwnd can be avoided, because
rwnd limits the growth of the cwnd to eight segments. Therefore, the throughput while
using the limited receiver window stays steady in most parts of the connection, excluding
the RTO scenarios at the beginning and the end of the connection. However, if the last
data segment is dropped, the RTO occurs sooner than with the Baseline TCP. The RTO

calculations are not inflated due to a large cwnd, as the rwnd gives an upper limit for it.
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Figure 13: A limited receiver window of 2 Kbytes. The TCP sender does not use the full
capacity of the link, as the number of outstanding segments after the fast recovery is only

two.

SACK The SACK option was optimized to recover from multiple packet losses in a
single window [FH99]. The third dupack triggers a fast retransmit, for both Baseline TCP
and SACK. Therefore, the SACK results are almost identical to Baseline TCP, even in the
scenarios, where multiple segments were unnecessarily retransmitted. However, there are
minor differences in the recovery. The SACK TCP sender is able the transmit new data
upon the first two dupacks. This behavior is due to FACK algorithm included in SACK.
The dupacks provide information about the received segments that are not acknowledged
in the regular ACK-field. The extra information is carried in the SACK blocks of an ACK
segment. The TCP sender may transmit new segments to the network, as it knows a
segment has reached the receiver. Figure 14 compares the recovery with the Baseline
TCP and SACK, when the fifth data segment is dropped. The segments injected to the

network upon the two dupacks are shown in Figure 14(b). As a result, the new segments
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trigger more dupacks as the Baseline TCP, and more segments are sent during the recovery
period (see Figure 14(b)). In this scenario, the performance implications are minimal, as
the capacity of the link is in full use in both of the cases. However, SACK prevents the
TCP sender to fall to an RTO if the first data segment is dropped, as the number of
possible dupacks increase along the new segments injected. This behavior imitates the
Limited Transmit TCP enhancement [ABFO01].
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Figure 14: The recovery of Baseline TCP adn SACK TCP when the fifth data segment is
dropped.

The statistics for the single packet losses can be seen in Tables 14-16 in Appendix A.

Discussion Considering that only one data segment was dropped during the connection,
one retransmission should have been invoked. Baseline TCP, the larger initial window and
SACK TCP retransmitted more than one segment on some occasions. With the limited
rwnd of 2 Kbytes TCP retransmitted one segment in all the test cases. Figure 15(a) sum-
marizes all the retransmission invoked with the tested modifications. Notice, that packets
up to the 200th are only plotted in the graph. The other packet drop tests are not shown,
because they all resulted only one retransmission. The differences between SACK and the
Baseline TCP are due to implementation issues of the SACK algorithm is Linux. The
behavior is the same, but the number of outstaning segments in the network is different,
as SACK lowers the ssthresh twice if an RTO occurs during the fast recovery period, and
Baseline TCP reduces it only once. Figure 15(b) indicates the median throughputs of the

different TCP enhancements.

The problems due to a large cwnd do not limit to an unnecessary RTO. If the cwnd has

grown well beyond the delay-bandwidth product, the RT'T estimations, and especially the
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Figure 15: The performance of Baseline TCP, rund of 2 KB, IW of four segments and
SACK TCP when a single packet is dropped.

RTO calculations, get heavily inflated. If the TCP sender has to rely on the retransmission
timer to be able to retransmit a missing segment at the end of the connection for more

than once, the time needed becomes excessively long. This scenario is further discussed in
the chapters that follow.

Random packet drops

Packet drop rates of 2%, 5% and 10% were studied. They represent good, mediocre and
bad link conditions, respectively. The focus is on the drops that occur only in the downlink
direction, while the ACK path (i.e uplink) contained no errors. The tests were executed also
over an erroneous link where both up and downlink contained packet drops. In addition
to the Baseline TCP, SACK option, limited rwnd of 2 Kbytes and 4 Kbytes, and IW of

four segments were tested. The tests were repeated using a MSS of 512 bytes.

Baseline TCP It was shown in the previous chapter, that NewReno recovers well from
a single dropped segment. If there are multiple segments that are dropped from a single

window, NewReno is able to retransmit one segment per RTT [FF96].

If the cwnd is reduced to less than four segments, the recovery is not possible without going
into RTO. Each drop reduces the sender data transmission rate by 50% by halving the cwnd
upon the third dupack. A general rule for the maximum number of segments NewReno

is able to recover from, is difficult to provide. The effect of a dropped segment depends
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on the current situation of the TCP sender. For example, in a common case where two
segments are dropped from a window, the transmission rate is not halved twice, because
NewReno can recover from the situation by sending one retransmission per RTT!3. If the
segments are dropped in sequential windows, both of the drops reduce the cwnd. The more
there are dropped segments on the link, the more likely they will eventually reduce the
cwnd to less than four segments. In those cases the TCP sender has to wait for the RTO

to expire to send new segments to the network.

In the single drop cases, a fast recovery was not possible, if the dropped data segments
include the first, second, or last three data segments. While there may be multiple segments
dropped, this rule is extended to include all the possible scenarios, where the number of

possible dupacks is less than three.

There is, however, a special scenario that NewReno is not able to recover from, even the
segments are dropped from the same window. If a retransmitted segment is dropped, the
TCP sender has no possibilities but to wait for the RTO to expire. After the RTO, a slow
start has to be invoked, according to the TCP congestion control specifications [APS99].
If the TCP sender has to rely on the retransmission timer later during the same recovery
phase, the time needed for the RTO is twice as much as for the previous RTO. This is
due to the fact that the retransmission timer is backed off by multiplying the current
value by two upon every RT'O. The backed off value is reset only after the reception of an
ACK that acknowledges new data (i.e. the acknowledged sequence number is higher than
the sequence number of the last segment sent before entering the recovery period). The

following example shows that even a two segment drop may collapse the performance.

If the last data segment of a bulk data transfer is dropped, the TCP sender has to wait for
an RTO before it can retransmit the segment, because there are no outstanding segments
that could trigger three dupacks. After RTO, the sender retransmits the segment, which
it is lost again. After waiting for another RTO, the last segment is delivered successfully.
These two dropped segments caused two RTOs. If we think of the single packet drop test
introduced earlier, RTT for the last segment was 32 seconds, and the corresponding RTO
value, calculated from the RTT, was 40 seconds. Due to exponential backoff, the second
timeout occurs only after 80 seconds of idle time. As the connection time is approximately
110 seconds with one loss, these two well selected losses can increase the connection time
by 73%, from 110 seconds to 190 seconds.

We have outlined the possible problems that may occur during a connection with an

error-prone link, when using the NewReno TCP modification. As all the other TCP

131f the second dropped segment was the one that was retransmitted, this does not apply. See next
chapter for details.
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modifications we tested, except SACK, make use of NewReno, the similar problems are
observed with those modifications, as well. As there still are differences between the

performance of those modifications, they are further analyzed in later chapters.

Under good link conditions (i.e the packet drop rate was 2%), the recovery was good. As
the number of dropped segments is small, a situation where an RTO is needed to recover
from a segment loss is unlikely to happen, but possible. The median connection time of
the transfers was 106.04 seconds; only four seconds (3.9%) longer than under ideal link

conditions. The throughput was 965.5 bytes/second.

If the packet drop rate was 5%, the RTOs occurred more often. The cwnd was reduced
to a small value, and an RTO was needed to recover from a lost segment. The median
connection time was increaced by 12.7% (13.51 seconds) and 17.1% (17.5 seconds) when

compared to the tests over good and ideal conditions, respectively.

Under bad link conditions with 10% packet drop rate, the median connection time in-
creased by 40.3% (from 119.55 seconds to 167.73 seconds) compared to the connection
time under mediocre link conditions. The large number of dropped segments often caused
the TCP sender to rely on the retransmission timer to be able to retransmit a segment.
The size of the cwnd was relatively small throughout the connection, as the dropped seg-
ments required the halving of the transmission rate. In the absence of congestion, this
reduction caused a highly suboptimal performance. The TCP sender was constantly doing
recovery procedures, and hardly got to send new segments to the network. Even several

consecutive RT'Os are likely to happen, as the retransmissions might get dropped, as well.
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Figure 16: Using Baseline TCP, a packet drop rate of 10% leads to multiple RTOs. The
SACK option recovers without any RTOs.
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SACK If there are multiple packet losses from a single window, the SACK option helps
the TCP sender recover in a aggressive way. Due to the cumulative acknowledgments,
without the SACK option, the TCP receiver cannot acknowledge all the segments that
are received, if some segments, up to the highest sequence number, are received. The
additional information given in the SACK blocks help the TCP sender to deduce the
correctly received segments, which still have not been acknowledged by a regular ACK.
Figure 17 shows a microscopic view of a trace under bad link conditions. Notice, that the
sender is able to immediately send new segments to the network after a fast retransmit,
as the SACK blocks carry information about missing segments. By using SACK, multiple
retransmission during one RTT are possible. This saves time, and the probability of several
consecutive RT'Os is highly unlikely, as the number of outstanding segments is usually high.
The Baseline TCP was able to retransmit only one segment during one RTT. As the packet

drop rate augments, the losses of the retrasmitted segments become more likely.

As the Linux SACK implementation uses forward acknowledgments, the sender transmits
more new segments than the correct value of the cwnd would imply. This behavior is
considered to be due to the Linux SACK implementation, and it should not be applied to
the SACK option in general. However, the benefits of SACK are still evident, as it allows

multiple retransmission during one RTT.

Figures 16(a) and 16(b) show the differences between the behavior of the TCP sender,
while (a) uses Baseline TCP, and (b) uses SACK. In 16(a), several consecutive RTOs

occurred due to small cwnd and lost retransmissions.
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Figure 17: SACK is able to retransmit aggressively and to send new segments immediately

after a retransmission.
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Limited receiver window Receiver windows of 2 Kbytes (eight segments) and four
Kbytes (16 segments) were tested. When using a rwnd of 2 Kbytes, under good link
conditions, the minor degradation of the performance resulted in the underutilization of
the link. This is the same scenario that was outlined in single packet drop tests; usually,
the cwnd was being limited by the rwnd, and thus, when recovering from a missing segment,
the number of outstanding segments was only two, which does not take the full capacity
of the link in use. Each lost segment lowers the throughput, and, as there are multiple
dropped segments, this causes the median connection time to grow by 3.9% (4.17 seconds)

compared to the Baseline TCP.

This scenario is not as common if the rwnd is set to 4 Kbytes. The cwnd is not usually
limited by the rwnd, since each dropped segment halves the cwnd. It is unlikely that it
will grow again to 16 segments, which is the limit given by the TCP receiver. Because
the TCP sender is able to transmit new segments during the recovery period, the cwnd is
typically set to three segments, or more, which is enough to fill the link capacity. Figure
18(a) shows a trace, where only at the beginning of the connection the cwnd has reached
the rwnd and, thus, is not using the available capacity of the link. The following fast
recoveries are exited by using a larger cwnd as new segments were transmitted during the
recovery period, and the TCP sender makes use of the full link capacity. Figure 18(b) is
a microscopic view from the middle of the connection. It is noticeable that the number of

outstanding segments, after the fast recovery, is more than two.

The rwnd of 2 Kbytes is too low, if the number of dropped segments is high during a
transfer. The initially small size of the cwnd leads eventually to an RTO, as the lost
segments reduce the cwnd. By using a rwnd of 4 Kbytes, this problem is avoided. The
performance achieved by limiting the receiver’s window to 4 Kbytes, is approximately the

same as of the Baseline TCP’s.

Larger initial window If the cwnd grows faster to safe value (i.e more than three seg-
ments), a fast retransmit is possible without relying on the time-consuming retransmission
timer. The tests show, however, that the benefits are minimal. Under good link condi-
tions, the larger initial window makes use of the full link capacity from the very beginning.
This seems to be the only benefit; the segments are dropped relatively seldom, so the cwnd
is not subject to be reduced under four segments. The difference in median connection
time was less than one second in favor of the larger initial window, when compared to the
Baseline TCP.

The tests, which were run over a link that dropped 5% of the data segments, did not show

any additional improvement in the recovery process. In fact, the results were a little worse
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Figure 18: The cwnd reaches the rwnd only at the beginning of the connection. On later

drops, the TCP sender can send new segments to the network during a fast recovery.

than the ones of the Baseline TCP. Even if this may be due to insufficient sampling size,
50 replications, it is believed, that under such link conditions, a larger initial window of

four segments does not give remarkable benefits.

If the link is heavily unreliable, the performance is again better compared to the Baseline
TCP. An RTO at the beginning of a transfer costs three seconds, as it is the initial value
set for the retransmission timer to expire. Therefore, as there are initially four segments
on the link, the RTO can be avoided even if the first data segment is lost. The TCP
receiver triggers three dupacks for the SYN segment, and the first data segment is then
fast retransmitted. Hence, the benefits of a larger initial window are more evident at the
beginning of the connection. As the link conditions become worse, the possibility of a
dropped packet from the initial window is more likely than over mediocre link conditions.
It is interpreted to be the reason for the performance differences over mediocre and bad

link conditions.

Larger MSS The tests were repeated using a MSS of 512 bytes. The results were
similar, and no other problems were found for any TCP modification. It should be noticed
that the connection time for a transfer is shorter than for the Baseline tests that were
introduced at the beginning of this section. The reason for better throughput is that the
header overhead is smaller. For every segment, TCP, IP and PPP headers are to be added
before the transfer. Therefore, as there is a need to transfer only 200 segments, instead of
400, only half the amount of headers need to be transferred. The difference in pure bytes
to be transferred is then 200 * (20 + 20 + 8) = 9600 bytes. The time it takes to transfer
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9600 bytes over a 9600bits/second link is 8 seconds. However, the use of larger MSS due
to smaller header overhead is not desirable, as the response time gets higher, and it makes
it harder for the end-user to work interactively. In addition, upon a dropped segment, the

number of bytes to be retransmitted, increases.

Discussion The analysis of these tests were based on the test cases, where only the data
segments were dropped. A link, where the ACK-path also contains packet drops, suffers
from the same situations that were described earlier in this section. In addition to these,
three new observations were made. First, a loss of an ACK segment may lead to an RTO
at the TCP sender, if the number of received dupacks is less than three. The larger size
of the cwnd does not guarantee that three dupacks will eventually arrive, in case of a
packet drop. Second, retransmission timeouts are more likely, as the acknowledgment of
a segment may be lost. Third, if several consecutive ACKs are dropped on the link, the
TCP sender eventually receives an ACK that acknowledges multiple segments. This leads to
bursts of data to be transmitted, as the cwnd is suddenly decreased by multiple segments.
Such bursts should be avoided, because they may cause an overflow in an intermediate
router. In the environment under study, however, there was no router that suffered from

buffer exhaustion. That environment is studied in [Gur00] and [Sar01], for example.

Even if a loss of an ACK segment may lead to new problems, the consequences are not
usually very severe; as the acknowledgments are cumulative, every ACK acknowledges the
segments that the previous ACK acknowledged. Obviously, this is not the case for data
segments. Therefore, data segments that are dropped are much more likely to produce
performance problems, since every data segment has to be delivered successfully to the
TCP receiver. The results of the tests, where only the data segments were dropped and
where also ACK segments may be lost, corroborated this deduction. The tests gave similar
median connection times over good and mediocre link conditions. However, if the link
conditions were bad (packet drop rate of 10%), the dropped ACKs caused more RTOs, as

the size of the cwnd was small due to multiple dropped data segments.

The TCP sender has to receive three dupacks to invoke a fast retransmit. If the cwnd is
less than four segments upon a packet loss, the fast retransmit is not possible. A new
TCP enhancement, called Limited Transmit [ABF01], is likely to help the TCP sender in
situations, where the cwnd is less than four segments upon a packet loss, or when a large
number of segments is lost in a single transmission window. The enhancement lets the
TCP sender transmit a new segment upon the arrival of both of the first two dupacks.

Hence, a fast retransmit is possible even if the cwnd is as low as two segments.

It has been stated that the rwnd should not be too large comparing to the delay-bandwidth
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product of the link [DMKMO0]. The tests showed that in absence of congestion, too small
a rwnd reduces the throughput significantly, even the rwnd was over twice as large as the
capacity of the link, when tested over mediocre link conditions. If there would be an
intermediate router, the performance of a limited rwnd might be better over a error-prone
link.
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Figure 19: The achieved throughput for each tested TCP modification

Table 18 summarizes the test results for the random drops tests.

Summary of the packet drop tests

In general, Baseline TCP is able to recover well from a single packet drop. Too large a cwnd
causes numerous unnecessary retransmissions. Limiting the receiver window may have a
positive effect on the performance as too large a cwnd may cause unnecessary retrans-
missions. However, it does not ameliorate the situation when the link condition becomes
worse. The SACK option is the best TCP enhancement to use in such an environment.
When reducing the receiver window, it must not be too small; a window of 16 packets
(4 Kbytes when using a MSS of 256) does not hinder the performance compared to the
Baseline TCP in the studied environment. The overall benefits of a larger initial window
are still debatable, but the results indicate that it ameliorates the performance at least in
situations, where a packet is dropped from the initial window. The Careful variant of the
NewReno bugfix, and Limited Transfer could be the TCP enhancements that would be

interesting to study in the future.
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5.3 Effect of delays

This section provides the analysis for the delay tests. A single segment was delayed. The
occurrence of the delay was altered so that the both phases of a connection, slow start
and steady state, were investigated. Three different delay lengths were tested with each
delayed packet. One delay length was selected to invoke a retransmission timeout for that
packet, one for invoking two consecutive retransmissions and one that does not trigger the
retransmission timeout. Baseline TCP and a limited receiver window of 4 Kbytes were

tested.

Baseline TCP If the delay does not cause an RTO, no segments are retransmitted.
Figure 20(a) shows a connection where the 20th data segment was delayed for 3000 mil-
liseconds. The excess delay causes an idle period, but does not affect the performance in
any other way, i.e. no segments are retransmitted, and the connection continues by using
slow start. Figure 20(b) is a microscopic view from the beginning of the connection. A
small burst of ACKs follow the delay (number 1. in the figure). This is due to the link
buffers. The emulated link ARQ uses these buffers to store data until they are acknowl-
edged. Therefore, the following segments were already received by the TCP receiver, but
not delivered to the upper (TCP/IP) layer to provide the segments in order. Notice, that
the link is configured to avoid re-ordering, as described in Section 4.3. When the delayed
segment is correctly received, all the segments in the link buffers are delivered at the same
time. The link buffer size is 1220 bytes, so it can hold three segments, in addition to the
locally retransmitted one. The small burst is the only consequence that the excess delay

affects.

The basic problem of TCP is that it cannot distinguish between a spurious timeout due
to an excess delay, and a retransmission timeout due to a lost segment. If an RTO occurs
due to an excess delay, the recovery is always the same: the whole window of data is
retransmitted unnecessarily. Figure 21 shows the recovery of the TCP sender when the
20th data was excessively delayed for 3300 milliseconds. The RTO expires right before the
corresponding ACK would have arrived , and slow start is invoked (number 1 in the figure).
A burst of ACKs follows (number 2). These are due to the link buffers, explained earlier.
Since the TCP sender suffers from retransmission ambiguity, the ACKs are interpreted as
acknowledgments for the retransmissions. As a consequence, the whole window of data is
retransmitted (number 3). While the TCP receiver gets the unnecessarily retransmitted
segments, it invokes dupacks, one for each segment (number 4). Due to these, the TCP
sender invokes a false fast retransmit, since the Baseline TCP implements the Less Careful

variant of the NewReno bugfix. The Careful variant would not have done a false fast
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Figure 20: The 20th data segment is delayed for 3000 milliseconds.

retransmit, because the dupacks do not cover more than the highest sequence number sent
before the RT'O (number 5). The Less Careful variant, which was used, checks only that the
dupacks cover the highest sequence number. As the TCP receiver gets the new segments
that were transmitted after the RTO (number 6), it acknowledges them normally (number
7). Because the TCP sender is still doing a (false) fast recovery, those ACKs are interpreted
as partial acks. Therefore, numerous unnecessary retransmissions are sent. Each of the
retransmissions trigger one dupack later in the connection (number 8), but they do not
cause any further unnecessary retransmissions. While the TCP sender has received an
ACK for each of the segments transmitted before the dupacks, the connection continues
normally by using congestion avoidance and a reduced cwnd. Since the full window is
always retransmitted, the larger the cwnd is, the more unnecessary retransmissions are

sent.

If the excess delay causes two consecutive RTOs for a segment, the same scenario occurs.
Ounly the slow start phase is shorter, as congestion avoidance is entered earlier, because
the ssthresh is lowered twice. Therefore, the number of unnecessary retransmissions, due
to the false fast recovery, is not as high, as the number of outstanding segments in the

network (segments 6 in the figure) is smaller at the time of the false fast retransmit.

Limited receiver window Since the size of the cwnd determines the number of unnec-
essary retransmissions, a limited rwnd improves the situation, when a spurious timeout
occurs. Figure 22(a) shows the effect of a smaller rwnd when the 20th data segment is

delayed for 3300 milliseconds. The zoomed Figure 22(b) shows the beginning of the con-
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Figure 21: Baseline TCP: the 20th data segment is delayed for 3300 milliseconds. The

delay causes multiple unnecessary retransmissions.

nection. The rwnd limits the number of segments transmitted by the TCP sender (numbers
1 and 2 in the figure). Naturally, the larger the cwnd would have been in absence of the

limiting effect of the rwnd, the greater are the benefits of reducing the cwnd to 16 segments.
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Figure 22: Limited rwnd of 4 Kbytes: the 20th data segment is delayed for 3300 millisec-

onds. A smaller cwnd reduces the number of unnecessary retransmissions

The use of a limited rwnd prevents the inflation of RTT and RTO calculations. As the

number of outstanding segments does not grow beyond the rwnd, the RTT stays in rea-
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sonable limits. Under normal circumstances, it is favorable. However, if the rwnd is not
reduced, the TCP sender tolerates longer delays, as the RTT estimates, and the equivalent
RTOs, are inflated. For example, a delay that causes one spurious timeout for a segment
when using regular Baseline TCP, may cause two consecutive RTOs for the segment if a

limited rwnd is used?.

Discussion The larger initial window of four segments was not tested, since it would
not have changed the behavior upon a spurious timeout. The NewReno TCP modification
would still have been used to recover from a spurious timeout, like in the Baseline tests.
As the size of the cwnd determines the number of retransmissions, a larger IW would have
reduced the performance, because the number of outstanding segments would have been

higher.

The SACK option does not improve the performance, as no segments are dropped. The
SACK blocks inform the TCP sender of the segments that are correctly received, but
above the sequence number indicated by the corresponding ACK. Such scenarios occur,
when some segments are dropped, but later segments are successfully transmitted to the
receiver. The packet drop tests introduced in earlier chapters affirmed the benefits of SACK
in an error-prone environment. In this current scenario, however, the TCP receiver always
acknowledges the highest sequence number received, because no segments are dropped.
Thus, SACK blocks cannot be transmitted to the TCP sender. The behavior would be
exactly the same as with Baseline TCP. Preliminary tests were run, for both SACK and

larger IW, that affirmed these conclusions.

Since all retransmissions are unnecessary if a segment was only excessively delayed on the
link, the behavior of the Baseline TCP is poor. Figure 23(a) shows the number of retrans-
missions when a segment was delayed. The extra time spent in retransmitting can be as
long as 47 seconds, if the number of retransmissions is 191 segments, as it is in the worst
case'®. Obviously, the time lost is proportional to the number of transmitted segments,
since there were no dropped segments. Figure 23(b) shows the achieved throughput for
the Baseline TCP and limited receiver window of 4 Kbytes. Figure 23(c) shows the length

of the excess delay causing an RTO!®. It can be seen that once the cwnd is stabilized, and

'4This can be seen in Figure 23(a) (discussed later) as a slight reduction in the retransmitted segments,
when the 160th segment was delayed and a rwnd of 4 Kbytes was used. The ssthresh is lowered twice

upon the two RTOs, and, thus, the number of unnecessary retransmits becomes smaller.
'5The lost time is calculated by subtracting the length of the delay and the ideal connection time (102.05

seconds) from the actual connection time. For example, if the RTO occurred for the 200th data segment,

the lost time is achieved by calculating 160.32s — 10.6s — 102.05s = 47.67s
16The reader should refer to the Appendix C.1.3 to be aware of the RTO calculations used in Baseline

TCP.
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limited by the rwnd (after 200th segment), the RTO values begin to lower, as the RTT

variation becomes smaller.
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Figure 23: The statistics of the delay tests

The understanding is that the Careful variant of the NewReno bugfix would cause less
retransmissions, as the Less Careful variant implemented by the Baseline TCP. However,
it would not solve the retransmission ambiguity problem of TCP, as it changes only the
requirements for invoking a fast retransmit. Thus, a full window of data would be re-
transmitted. Further research is needed before making final conclusions about the Careful
variant, because it was not tested for this thesis. The extension to the SACK option,
called D-SACK [FMMPO00], possibly could avoid this problem to some extent, as it helps

the TCP sender recognize the unnecessary retransmissions.
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Summary of the delay tests

Because the full window of data is always retransmitted, the limited advertised window
significantly reduces the number of unnecessary retransmissions as it prevents the conges-
tion window from growing. By setting the receiver window to an arbitrary small size, the
problem of unnecessary retransmits can be avoided, but it will cause great problems on
an erroneous link as the TCP sender may not recover from a packet loss in any other way
than with a retransmission timeout. The SACK option does not help in recovering from
excess delays, if no packets are dropped. Larger initial window was not fully tested, but
it is expected that it will not improve the performance in case of an RTO, but rather the

opposite.

5.4 Combined effects of excess delays and packet drops

These tests were run over a link that contained both packet drops and excess delays. The
probability of a delay of 6 seconds was 1%. In addition, the data packet drop rate of
the link was 2%, 5% or 10%. The tests were repeated using Baseline, SACK, IW of four

segments and a limited receiver window of 4 Kbytes (16 segments).

Baseline TCP Usually, the problems observed in these test cases are the same as out-
lined in packet drop tests (Section 5.2) and delay tests (Section 5.3). Since the link contains
both packet drops and excess delays, the aggregate effects lead to a new problem, when
studying the behavior of the Baseline TCP. In the previously described delay tests and
packet drop tests, the Careful variant of the NewReno bugfix was considered to be better
than the Less Careful variant, in case of a spurious timeout. The timeout was caused by an
excess delay on the link, or by a large cwnd that prevented a new ACK to be received in time.
The requirements for invoking a fast retransmit are more conservative, thus reducing the
possibility of a false fast retransmit. However, it was observed that even the Less Careful
variant may be too conservative, if there are packet drops on the same window, when an
RTO occurs, and the same packet is dropped again, while retransmitting in slow start
after the RTO. The bugfix eliminates the possibility of a fast retransmit in a situation,

where it would be useful. Figure 24 shows one example.

When an RTO occurs due to an excess delay, the TCP sender retransmits the segment
(number 1 in the figure), invokes slow start, and stores the highest sequence number sent
(number 2). Due to segments stored at the receiver’s link buffers, a burst of three ACKs
eventually arrive, and cwnd is grown accordingly (number 3). One segment is dropped

from the same window, when RTO occurred, and the same segment is dropped again,
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Figure 24: Baseline TCP: the effect of the NewReno bugfix

while in slow start after the RTO (segments number 4). The TCP receiver sends dupacks
to the TCP sender (number 5) to report of a missing segment. Because of the NewReno
bugfix, the TCP sender does not invoke a fast retransmit upon the third dupack; the
dupacks do not cover the highest sequence number sent, before the RTO occurred. This
causes a second RTO (number 6), which is twice as long as the previous, because of the
exponential backoff that was invoked due to the first RTO. It must be noticed, however
that this is only one scenario, where the NewReno bugfix does not work well. It is not a
common situation, but possible. If there was an intermediate router, that suffered from
buffer exhaustion, the scenario would be more likely; the router cannot reduce its queue
because of the excess delay, and, as new packets arrive, the router has to discard them.
That environment is studied in [Sar01], for example. Inferring, that the bugfix reduces the

performance on a common level in our environment is an overstatement.

The number of retransmissions and actual packet drops are shown in Figure 25. Under
good link conditions (i.e. the packet drop rate is 2%), the number of retransmissions is
relatively high compared to the number of dropped segments. This is due to spurious
timeouts, as the full window is retransmitted even if no segments were lost. Because only
a few segments are dropped within a connection, the cwnd may grow without being halved
upon a lost segment. Again, the large cwnd leads to numerous unnecessary retransmissions
in case of a spurious retransmission timeout, as the whole window is retransmitted. The

median connection time was 143.74 seconds.

Under mediocre link conditions (i.e. the packet drop rate is 5%), the number of un-
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necessary retransmissions drops heavily, when combining the number of retransmissions
with actual packet drops. Although the spurious timeouts occur as often as they did in
the former situation, all the retransmissions are not unnecessary, as more segments are
dropped more likely. Therefore, invoking the slow start after an RTO does not retransmit
all segments unnecessarily. Secondly, the cwnd is usually smaller due to dropped segments.
Thus, the number of retransmissions is smaller after a spurious RTO. The total number
of retransmissions under mediocre link conditions is even smaller, than under good link
conditions. The median connection time was 163.79 seconds (+13.9% compared to good

link conditions).

When the number of dropped segments increases to 10%, the number of retransmissions
increases. The size of the cwnd stays low throughout the connection, as the dropped
segments often halve the cwnd. Therefore, upon a spurious retransmission timeout, the
number of unnecessary retransmissions is small. The median connection time was 195.13
seconds. The relative increases are 35.7% and 19.1% compared to good and mediocre link

conditions, respectively.
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Figure 25: The number of retransmissions and packet drops over a link that also contains

excess delays

Larger initial window Since a larger initial window does not change the behavior
of the TCP sender, as it still uses the NewReno TCP modification to recover from the
packet drops, the differences in the performance are minimal. The problems due to the
NewReno bugfix still exist. As reported earlier in this thesis, the initially larger cwnd
may prevent an RTO, if a packet drop occurs at the beginning of the connection. The

higher number of outstanding segments allows the TCP receiver to send dupacks that
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may trigger a fast retransmit. Also, the capacity of the link is in full use from the very
beginning of the connection, as the four initially sent segments fill the pipe. In case of
a spurious retransmission timeout, however, the larger cwnd results in more unnecessary
retransmissions, as the window of data is retransmitted. The overall performance is then
dependent of the proportion of the excess delays and dropped segments over the connection.
As the probability of the delay was only 1%, and packet drops occurred more often, the
larger initial window gave minor advantage for the end-to-end performance. Larger IW of
four segments gave 2.5% (3.6 seconds) and 3.3% (5.4 seconds) faster median connection
times, than the Baseline TCP did, over good and mediocre link conditions, respectively.
The results under bad link conditions are considered to be similar for both Baseline TCP

and a larger initial window.

Limited receiver window As reported in Section 5.3, a limited rwnd reduces the num-
ber of unnecessary retransmissions in case of excess delays. A cwnd of 16 segments (i.e
rwund=4Kbytes), is big enough, if the link does not suffer from high packet drop rates;
the cwnd is not often lowered to a value less than four segments which would lead to a
retransmission timeout upon a lost segment. As the number of unnecessary retransmis-
sions can be decreased by reducing the cwnd, the connection times for the limited receiver
window of 4 Kbytes are 4.3% (6.2 seconds) and 6.6% (10.9 seconds) better than Baseline
TCP’s under good and mediocre link conditions, respectively. Under bad link conditions
the connection time was 4.7% longer (9.2 seconds) than when using Baseline TCP. The
difference was interpreted to be caused by the reduced rwnd, as it may occasionally prevent
sending new segments. Although the cwnd is usually at a lower value than 16 segments, in
some situations the cwnd could have inflated to be bigger. As a larger cwnd can prevent an
RTO due to RTT inflation, the effect of excess delays is more harmful over a connection
that has a small cwnd. It should be noticed that in plain random packet drop tests there
were no differences between the Baseline and limited rwnd. The performance implications

of a limited rwnd over an erroneous link that has excess delays need further study.

SACK SACK blocks provide extra information about the segments received by the TCP
receiver. Thus, the TCP sender can retransmit more effectively the missing segments.
The counterproductive effects of the NewReno bugfix are not as bad as they were with
the Baseline TCP, because the SACK TCP sender can transmit new segments upon the
dupacks, as well (see number 5 in Figure 24). Once a spurious RTO occurs, the SACK
TCP sender cannot recover any better than the regular Baseline TCP sender. However,
as there are packet drops during the transfer, the use of SACK option benefits the median
connection times by 6% (8.58 seconds), 12.7% (20.79 seconds) and 20.9% (40.79 seconds)
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over good, mediocre and bad link conditions, respectively.

Discussion A conclusion of the effects of delays can be made while comparing the con-
nection times of these tests to the results of random packet drop tests. The same packet
drop rates were used, but the latter tests did not suffer from excess delays. Table 9 sum-
marizes the median connection times for random packet drop tests and combined packet
drop and delay tests. “At” is the difference in the connection times. This table confirms
the interpretation that the excess delays are more harmful in an environment where the
packet drops occurs less frequently. If the link conditions are bad, the consequences on
retransmitting the whole window upon a spurious RT'O are not that severe, as the packets
would have been retransmitted anyway. Hence the difference between the two connections

is only 16.3%, as it was 37% over mediocre link conditions.

Table 9: A comparison between erroneous connections with and without delays, Baseline
TCP.

Drop Delay Mod time rexmt | At
rate Prob (sec) (Pkts)

2% - Baseline 106.04 | 9.50

2% 1% Baseline 143.74 | 56.50 | +35.6%
5% - Baseline 119.55 | 23.50

5% 1% Baseline 163.79 | 50.00 +37.0%
10% - Baseline 167.73 | 49.00

10% 1% Baseline 195.13 | 64.00 +16.3%

Table 10 shows the same statistics for SACK TCP. The effect of excess delays on the
link is not as dependent of the erroneous link conditions. The median connection time is

increased in the same order of magnitude throughout the different packet drop rates.

Table 10: A comparison between erroneous connections with and without delays, SACK.

Drop Delay Mod time rexmt | At
rate Prob (sec) | (Pkts)

2% - SACK 105.52 | 13.00

2% 1% SACK 135.16 | 44.50 | +28.1%
5% - SACK 111.49 | 22.50

5% 1% SACK 143.00 | 46.50 | +28.2%
10% - SACK 124.11 | 47.00

10% 1% SACK 154.35 | 60.00 | +24.4%

The use of a limited rwund cannot be recommended without better knowledge about the
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link characteristics, as the length of the delay is a significant factor, when comparing the
performance of the TCP enhancements. If the connection suffers from excess delays, that
usually cause RT'Os, the limited rwnd reduces the number of unnecessary retransmissions.
But, since the number of outstanding segments is smaller, the RTT estimates, and retrans-
mission timer values, are much shorter, than in a regular scenario, where the rwnd does
not limit the cwnd. Therefore, an excess delay that causes an RTO when using a limited
rwnd may not cause an RTO on a regular scenario, as the RTT estimates are inflated
due to large cwnd. As an RTO causes a whole window to be retransmitted, the RTOs
should be avoided by all possible means. If the excess delay occurs at the beginning of
the connection, the RTO is more likely to happen in both scenarios, because the RTT
estimates are not yet inflated by the large cwnd. If the delay occurs in later phases of
the connection, where the cwnd has possibly grown and RTT estimations have inflated, a

limited rwnd may cause an RTO, that would not happen if it would not be in use.

Figure 26 summarizes the throughputs of different TCP enhancements. Baseline TCP
was the worst performing TCP over good and mediocre link conditions. The higher the
packet drop rate is, the more the SACK option benefits the connection. The number of
retranmissions presented in Figure 25 correlates to the achieved throughput presented in
Figure 26. Although the number of retransmitted segments is nearly the same with SACK
and other TCP enhancements, SACK is able to retransmit more effectively due to SACK

blocks that provide more information to the TCP sender.
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Figure 26: The throughput of different TCP modifications
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Summary of the combined effects of excess delays and errors

The SACK option suits well in an error-prone environment even if it has excess delays.
Other optimizations cannot reach that level of performance. Because the TCP cannot
distinguish between a packet loss due to corruption or a packet loss due to congestion, the
cwnd is halved upon the three dupacks. On the plain wireless link there was no conges-
tion and the transmission speed was unnecessarily slowed down which led to suboptimal
throughput. The larger initial window and the limited rwnd of 4 Kbytes may have positive

effects over erroneous links that has excess delays.

5.5 Effect of different bandwidths

This section provides the results of the bandwidth tests. The tests included two different
scenarios. First, different static bandwidths were tested (including bandwidth asymmetry).
The bandwidth towards the mobile host (i.e downlink) was set to higher than in the
opposite direction. Second, the bandwidth was subject to change during the slow start
phase, or steady state. These tests are called variable bandwidth tests. The change was
always from a higher bandwidth to a lower bandwidth. The results and analysis are given

in this order, by first explaining the behavior of the Baseline TCP.

Static (and asymmetric) bandwidth

The exact bandwidth ratios that were tested are described in Section 4.5, page 26. The
tests were repeated by using a limited receiver window of 2 and 4 Kbytes, and a larger
initial window of four segments. In addition, a limited set of tests were run to gain

knowledge about the effects of disabling the delayed acknowledgments.

Baseline TCP The normalized asymmetry ratio, k, was introduced in Section 3.4. Since
in the tested environments, the pure bandwidth ratio is at most three, as the greatest
difference in the tested bandwidths is 9600bps for the uplink and 3*9600=28800bps on
the downlink, and the ratio of the packet sizes is 296bytes/40bytes=7.4!7, the normalized
asymmetry ratio, k, is then approximately 3/7.4 = 0.4. As k < 1, the threshold for
saturating the ACK path is not exceeded in any of the test cases. For that reason, no actual
problems were found in the tested scenarios. The median connection times for all the

tested bandwidths were proportional to the bandwidth of the data path, when comparing

"For the data segment: 256 bytes of TCP payload + 40 bytes of TCP/IP headers=296 bytes, and for
the ACK segment: TCP/IP headers=40 bytes.
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them to the regular 9600bps symmetric connection. A lower bandwidth in the uplink
direction did not deteriorate the overall throughput. However, marginal differences were
observed, that were due to bandwidth asymmetry. This can be seen when comparing the
median connection times of the transfers over a 9600bps/28800bps (uplink/downlink) link
versus a 28800bps/28800bps link. The difference is 0.15 seconds in favor of the symmetric
bandwidth scenario. The interpretation is that the lost time is due to the first few ACKs
that propagate slower to the TCP sender than in case if the bandwidth was symmetric.
As the pipe is not full at the beginning, the time spent in waiting for the ACKs to arrive is
lost, as new segments are not injected to the network to make use of the full capacity of
the link. At later phases of the connection, the awaiting of the ACKs does not increase the
connection time, as the pipe is already full. Figure 27 shows the traces of the symmetric
and the asymmetric connections interlaced in the same graph. The bandwidth of the
symmetric connection was 28800bps, and the bandwidth of the asymmetric connection
was 9600bps for the uplink (i.e ACK path) and 28800bps for the downlink. Figure 27(a)
is a microscopic view taken from the beginning of the connection. The TCP sender of
the asymmetric connection cannot send new segments to the network as fast as the TCP
sender that receives the ACKs via a faster uplink. Figure 27(b) shows the differences
between the arrival times of the last ACKs of the transfers. The time lost at the end of the
connection is not longer, as it was already at the beginning. It should be noticed, that if
the transmission delay would be higher than the propagation delay, the differences would
be even more visible. In this environment, the transmission delay of an ACK was only 0.04
seconds, when the uplink bandwidth was 9600bps, while the propagation delay was 0.2

seconds.
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Larger initial window The capacity of the link becomes higher, when the bandwidth
is augmented. For example, if the bandwidth is doubled from 9600bps to 19200bps, the
link capacity is then the sum of propagation delays and transmission delays of the data
and ACK packets multiplied by the bandwidth. This leads to a delay bandwidth product of
1312 bytes'®, which means that five data segments fill the link. Therefore, a larger initial

window improves the performance, as the capacity of the link is faster in full use.

The benefits of an initial window of four segments are greater than in the regular 9600bps
tests. In the earlier tests, the capacity of the pipe was 840 bytes. An initial window
of three segments would have filled the pipe, and the use of a the fourth initially sent
segments did not give any benefits. As the capacity of the link is more than four segments,
each initially sent segment, up to the fourth segment, benefit the connection, as the pipe
becomes more full. Therefore, the throughput increased up to 1.8% when comparing to the
Baseline TCP. In regular 9600bps tests, a larger initial window of four segments gave only
0.2% higher throughput than the Baseline TCP. If the size of the initial window has grown
over the delay-bandwidth product of the link, no further benefits are to be expected. This
conclusion holds for large initial windows only. As reported earlier, an initial window of
four segments helps the TCP sender better to recover from a lost segment at the beginning
of a connection, because the incoming dupacks may trigger a fast retransmit, instead of

falling to an inefficient retransmission timeout.

Limited receiver window By limiting the rwnd to 4 Kbytes, the performance is iden-
tical to the Baseline TCP’s over ideal link conditions. However, the RT'T and RTO cal-
culations are different from when using the Baseline TCP. This may cause problems, if
the link contains packet drops or excess delays. The effects of packet drops is discussed in

Section 5.6.

If the rwnd is set to 2 Kbytes, the median connection time increases by 11.3% (3.0 seconds),
if the bandwidth of the link is 14400bps/38400bps. The capacity of the link is 2352 bytes'?,
so the maximum cwnd of eight segments should be enough. This means that, every time
the TCP sender gets a new ACK, it should immediately send a new segment to keep the
link fully utilized. However, this is not enough, as it takes a short while before a new ACK

is processed at the receiver side due to delayed acknowledgments.

18(2 % 200ms + 304B/2400Bps + 48B/2400Bps) * 2400Bps = 13128
The capacity of the link is: [0.4s 4+ (304B/4800B) + (48B/1800B)] * 4800B = 2352B. Thus,

2352B/304B ~ 7.7 segments fill the pipe.
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Table 11: The benefits of disabled delayed acknowledgments over a 14400bps/38400bps

connection

elapsed time (sec) or A(T)
Dis. delayed ACKs | 2KB 5KB 10KB 20KB 50KB 100KB
up to n segments
n =2 2.13 3.07 4.33 6.85 14.41 27.04
n = 4 (Baseline) -0.07 -0.06 -0.07 -0.06 -0.06 -0.11**
n =20 -0.08 -0.2 -0.21 -0.2 -0.2 -0.2
n =238 -0.04* -0.25 -0.26 -0.25 -0.25 -0.25
n = all segments -0.08 -0.26 -0.27 -0.26 -0.26 -0.26

Disabled delayed acknowledgments This TCP modification was tested only over
an asymmetric connection of 14400bps/38400bps (uplink/downlink). The use of disabled
delayed acknowledgments improves to the start-up phase of the early slow start. The cwnd
grows faster, as each new ACK increases the cwnd by one SMSS. Therefore, as the cwnd
grows faster to a level that fills the pipe, the connection time becomes shorter. However,
the benefits are marginal, when transferring 100Kbytes. When comparing to a connection
that disables the delayed acknowledgments up to the second segment, the improvement is
at most 0.26 seconds (=~ 1%). Table 11 summarizes the connection times for 2, 5, 10, 20, 50
and 100Kbytes. The absolute connection time is marked only for the TCP modification,
which disabled the delayed acknowledgments up to the second data segment. This scenario
is used as a reference. For other disabled delayed acknowledgment modifications, the
differences in connection times compared to the reference connection are provided. The
time saved remains the same after the first 5 Kbytes for all the modifications. The capacity
of the link is fully in use after that, so no further benefits are observed. The connection time
can be decreased by 8.5%, if only five Kbytes are transferred. The number of segments the
TCP receiver should acknowledge immediately depends on the delay-bandwidth product
of the link. As the capacity of the studied link is 2356 bytes??, eight segments fill the pipe.
Therefore, by disabling the delayed acknowledgments more than up to the eighth segment
gives no benefits to the connection. The test results in Table 11 confirm this assumption,
as the results are the same for disabling delayed acknowledgments up to the eighth segment
(n = 8) and totally disabled delayed acknowledgments (n = all segments)?2!

20[(48 B/1800Bps) + (304B/4800Bps) + (2 * 0.2)] * 4800Bps = 2356 B
#1The 0.01 second difference between (n = 8) and (n =all segments) is probably due to inaccuracy in

the emulator. The exact reason is unknown and cannot therefore be provided.
**This result exhibits anomalous behavior, and cannot be interpreted as a correct value.
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Discussion The tests corroborated the assumption that a slower ACK path does not
substantially decrease the throughput, if the normalized asymmetry ratio, k, is less than
one. Obviously, if the data path is slower, the pure bandwidth of the data path determines
the throughput.

The disabled delayed acknowledgments was tested over an asymmetric connection of
14400bps/38400bps. It is assumed that the environment possibly contributes to the ben-
efits of the modification. As the ACK path is slow, the arrival of ACKs is more crucial for
the connection to exit the early slow start phase. However, this is only speculation as no

tests have been executed over a symmetric 38400bps link.

The size of the initial window up to the delay-bandwidth product of the link was considered
to benefit the performance. However, too large a cwnd may lead to severe problems over a
link that has an intermediate router between the hosts. If the router drops packets due to
buffer exhaustion during the slow start, the number of dropped segments is in the order of
half of the cwnd [BP95][Sar01]. Hence, arbitrary large initial windows are not considered
as a good TCP enhancement; the cwnd should be grown according to the slow start that
probes the capacity of the link, not by increasing it by an artificial TCP enhancement,

which does not take the link characteristics into account.

The use of the SACK option was not tested as there was no packet drops during the

transfer.

Variable bandwidth tests

In these tests the bandwidth was lowered during the transfer. The change in the bandwidth
was made on two different occasions: in slow start and in steady state. The full test results
can be found in Appendix A, Table 31.

Baseline TCP The changes in the transmission rate did not trigger a retransmission
timeout. As the emulated link did not contain any packet drops or excess delays, the
change in the transmission rate had an effect only on the throughput. The slow start
phase of the connection becomes longer, if the transmission rate is lowered, as the arrival
rate of the ACKs slows down. This is not an issue in the tested environments, because the

full capacity of the link is already in use.

Larger initial window and limited receiver’s window A larger initial window gave

similar benefits, as in the static bandwidth tests. The four segments sent initially help the
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TCP sender to fill the pipe faster than when using an initial window of two segments. A
limited rwnd of 4 Kbytes did not affect the throughput of the connection, as no packets
were dropped or delayed. However, it affects the RT'T and RTO calculations similarly, as

explained in Section 5.4, because the cwnd is smaller throughout the connection.

Discussion None of the changes in the bandwidths caused any problem. Immediately
after the bandwidth was changed, the TCP sender will notice that the time interval at
which the ACKs arrive, has grown. In the environment tested, there were no excess delays,
but in the presence of additional delays, an RTO might occur, if the delay occurs along
with the rate change. Such scenarios need to be further studied, as they were not included

in these tests.

On some occasions, the TCP sender does not have to lower the transmission rate of new
segments as much as the lowering of the bandwidth would imply. This is possible, if
the TCP receiver changes its acknowledgment policy after the rate has been changed.
An example is shown in Figure 28. The initial bandwidth of 28800bps was changed to
19200bps after 16 seconds (number 1 in the figure 28(a)). This can be seen as a slight
adjustment in the arrival times of the received ACKs and rwnd (numbers 2 and 3). However,
the transmission rate of the data segments does not become visibly lower. The Figure 28(b)
shows a microscopic view of the data trace at the point where the bandwidth was altered.
Before the change, the TCP receiver acknowledges every second segment due to delayed
acknowledgments. As the connection is in slow start, the TCP sender transmits three
new segments upon a new ACK (number 4). After the rate has changed, the TCP receiver
does not acknowledge every second segment. Instead, it starts acknowledging every data
segment, and the TCP sender gets a new ACK sooner than before the bandwidth was
lowered. The transmission delay for two segments is 0.17 seconds (using a bandwidth of
28800bps), and for one segment 0.13 seconds, using the slower bandwidth of 19200bps.
As the ACKs acknowledge only one segment, instead of two, the TCP sender may transmit
two new segments upon a new ACK (number 5). Due to this behavior, the slow start phase

does not take as long as it would have taken without the rate change.

There are at least two different consequences from this behavior. First, as the slow start is
more aggressive, the intermediate routers may become faster overcongested. If the router
overflow occurs in slow start phase, the number of expected packet drops is in the order
of half the size of the cwnd [BP95][Sar01]. Second, if the capacity of the link is not in full
use before the rate change, a more aggressive slow start after the change helps the TCP
sender make full use of the link. Both of these scenarios are out of the scope of this thesis

and they are not further discussed.
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Figure 28: The effects of acknowledging every segment

Summary of the bandwidth tests

An initial widow of four segments gives more benefits if the capacity of the link is four
segments or more; all initially sent segments are needed to fill the pipe. An advertised
window of 4 Kbytes does not affect the performance in any way as there are no packet
losses. By disabling the delayed acknowledgments, the connection time for a 100 Kbyte
transfer decreases only by a fraction (less than 1%). However, when transferring smaller
amounts of data, the connection time can be 8.5% shorter. The bandwidth asymmetry
fractionally hinders the performance, as the slow ACK path prevents the TCP sender from

filling the pipe as fast as it could when using a symmetric bandwidth.

In absence of packet losses and excess delays, the tested changes in transmission rate were
not so big that they would have triggered an RTO. Combining the change in transmission
rate and packet losses (or excess delays), the problem might become actual. The use of a

larger initial window of four segments fractionally improves the performance.

5.6 Combined effects of bandwidths and packet drops

Random data packet drop rates of 2%, 5% and 10% was tested over different links. Sev-
eral bandwidths was used to gain knowledge about the differences in performance. The
bandwidths were the same as in static bandwidth tests. The full test results can be found
in Appendix A, Tables 32-35.
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Baseline TCP The bandwidth asymmetry hinders the performance if the packet drop
rate is high. This is interpreted as a consequence of a slow ACK path, because the TCP
sender is not able to get fast responses from the TCP receiver and make conclusions
about dropped segments. Moreover, as the cwnd is small throughout the connection,
the time lost in situations, where the capacity of the link is not in full use, cumulates
over time. The reasoning for the time loss was given in Section 5.5, page 58. Figure 29
shows the median throughput for each studied bandwidth, when the Baseline TCP was

22 As the normalized asymmetry

used. The ideal link condition is added for reference
ratio, k, is always less than one, the bandwidth of the data path correlates with the
throughput when there are no or only a small amount of packet drops. The asymmetric
bandwidth of 14400bps/38400bps gives the best throughput over good link conditions (i.e.
the packet drop rate is 2%). The throughputs of a 9600bps/28800bps connection and a
28800bps/28800bps connection are equal, as k£ < 1. The worse the link conditions become,
the more the asymmetric connections suffer from the slow ACK path. This can be seen
in the graph, as the performance of all the tested asymmetric connections decrease more

than the performance symmetric connections.
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Figure 29: Baseline TCP: the median throughputs for different bandwidths over ideal,
good, median and bad link conditions

The best achieved throughput (over a 28800bps/28800bps link) was 14.6% better than the
worst throughput (over a 19200bps/19200bps link) over bad link conditions. The gain in
throughput over bad link conditions is much less than the 50% higher bandwidth would
have indicated. This can be explained by using an equation given by Mathis [MSMO97],

22The ideal link conditions are not widely discussed here, as they are already covered in static bandwidth
analyses, in Section 5.5.
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for example (Equation 1)23. It gives an estimate for the throughput (B W), while the packet
drop rate is p. C'is the constant of proportionality, and it is derived from the acknowl-
edgment strategy (delayed acknowledgments vs. ack-every-segment), and loss mechanisms

used by the TCP implementation. If delayed acknowledgments are used, C'is set to %.

_ MSS C

= RIT b M

In the tests, the MSS and p are fixed, and only the RTT changes as the bandwidth is
altered. Moreover, as the RTT constitutes significantly more on the fixed propagation
delay (0.4 seconds) than on the transmission delay (less than 0.1 seconds over a 28800bps
link), the benefits of a higher bandwidth become less important as the packet drop rate p
gets higher. Therefore, the achieved throughputs are not highly related to the bandwidth

of the link when the link conditions become worse.

In addition to these observations, no other problems were found that have not been dis-

cussed earlier in the regular random drop analyses.

Limited receiver’s window As in earlier random drop tests, explained in Section 5.2,
a limited rwnd of 2 Kbytes gave the worst performance. There are two main reasons for
such behavior. Firstly, a rwnd of 2 Kbytes leads to a maximum cwnd of eight segments,
which is too small over an erroneous link. As a packet drop halves the cwnd, the TCP
sender has to eventually rely on the retransmission timer to be able to retransmit a lost
segment, as the packet drop rate augments. Secondly, it is observed that each packet
drop halves the cwnd to a value, which does not use the full capacity of the link; if the
cwnd is limited by the rwnd when a lost segment is observed, the TCP sender cannot send
any new segments during the recovery period. After receiving the new ACK that ends the
fast recovery, the size of the cwnd is set to the minimum value of two segments, as earlier
described in this thesis. An example of such a situation can be found in Figure 13, page
37. If the cwnd is less than eight segments upon a lost segment, the maximum value for

the cwnd after halving it, is three segments.?* Moreover, the capacity of the link is more

23This thesis does not explain the reasoning behind the formula, but simply uses it to comprehend the
results of the tests. The equation is not taken as an exact derivation of the throughput, as it clearly gives
false results if no packets are dropped. Also, the elapsed time consumed by RTOs is not modeled. The
equation is used as a guideline to learn the basic factors that might determine the throughput. Another

similar calculation has been provided in [PFTK98|, for example.
241f cwnd is seven segments upon the third dupack, the new value is rounded to three segments due to

the bitwise shift to the right, that is used for halving the cwnd.
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than three segments over all the tested bandwidths?®, the pipe is underutilized every time

a packet is dropped.

When using a limited rwnd of 4 Kbytes, the throughputs are almost equal with the Baseline
TCP, if the bandwidth is symmetric. Over asymmetric links, the limited rwnd of 4 Kbytes
do not reach the throughput of the Baseline TCP, when tested over good link conditions.
The median connection time is 5.7% (2.4 seconds) longer, when the bandwidth of the link
is 9600bps/28800bps. Similarly, over a 14400bps/38400bps link, the use of a limited rwnd
leads to a 5.2% (1.9 seconds) longer connection time. The reasoning for the suboptimal

performance is the following.

After a packet loss, the maximum size of the cwnd is seven segments, following the same
reasoning as given in the previous chapter. This scenario was outlined also in regular
random packet drop tests, Section 5.2. However, the consequences were not as noticeable
as they are in these scenarios. The reason for the difference is that the pipe capacity is
higher in the current tests. The TCP sender has to send seven segments to fill the pipe over
a 9600bps/28800bps link?®. Because the rwnd limits the cwnd, each packet drop —except
the ones that occur when the cwnd is 14 or 15 segments— lead to underutilization of the
link, as the cwnd is halved upon a lost segment. When using the Baseline TCP, the link
is not underutilized as often, since the cwnd may grow beyond 16 segments, as there are
only a small amount of packet drops. While the ACK path is slow, the consequences are
more noticeable, as the cwnd is increased slower than over a symmetric link. The effects
of a slow ACK path were introduced in Section 5.5. Limited rwnd does not change the fact
that the deterioration of the performance is greater over asymmetric links, as the packet

drop rate gets higher.

Larger initial window A larger initial window of four segments gave an advantage when
tested over good and mediocre link conditions. The reasons are the same as previously
described in this thesis; the cwnd grows faster to a safe size, which allows the TCP receiver
to send three dupacks. The benefit is at most 8.7% (3.17 seconds), if the bandwidth is
14400bps/38400bps, and the packet drop rate is 2%. Usually, however, the advantages are
not as big. The benefits are independent of the bandwidth symmetry.

25 A symmetric 19200bps (2400Bps) link has the smallest capacity out of the studied bandwidths. The
capacity is:[0.4s + (304B/2400Bps) + (48B/2400Bps)] * 2400Bps = 1312B. Therefore, the TCP sender
has to send 1312B/304B = 4.3 segments to fill the link.

28The capacity of the link is [0.4s + (3048/3600B) + (48B/1200B)] * 3600Bps = 1888B. Therefore, the
TCP sender has to send 1888B/304B = 6.2 segments to fill the link.
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SACK As observed earlier, the SACK implementation retransmits aggressively, as it
receives new information in the SACK blocks sent by the TCP receiver upon packet losses.
The deterioration in the throughput is not as big over asymmetric connections, as it is when
using other TCP enhancements. However, the bounding effects of bandwidth asymmetry
are evident. The use of the SACK TCP option benefits the connection more, if the
bandwidth of the link is symmetric.

Discussion The deployment of new W-WAN achitectures, such as GPRS, may lead to
even greater bandwidth asymmetry. The bandwidth per direction may vary from zero
throughput up to over 100 Kbps. GPRS also differentiates flows into four priority classes
[BW97]. When the load in the system increases and the flow differentiation is taken into
account, the bandwidth may become highly variable and therefore will affect the Quality-

of-Service (QoS) of flows. Further research should be addressed for such an environment.

Summary of the combined effects

The advertised window of 2 Kbytes was the worst in all of the cases and SACK gave the
best throughput. The advantages of SACK became explicit as the packet drop rate was
grown. By limiting the advertised window to 4Kbytes, the performance was usually a
little weaker than with the Baseline TCP. The greatest advantage the 4 Kbyte window
gave was 2.7% in the connection time when the packet drop rate of 5% and bandwidth
of 19200bps was used. On the other hand, Baseline TCP was at most 5.4% quicker than
the 4KB window when the asymmetric bandwidth was 9600bps for uplink and 28800bps
for downlink and the packet drop rate was 2%. The initial window of four segments gave
better throughput over symmetric bandwidth when the packet drop rate was 5% when
compared to Baseline TCP. Using the packet drop rate of 10%, the larger initial window
did not give any benefits. Overall, the initial window of 4 segments may narrowly give

better performance than Baseline TCP.

The asymmetry in the bandwidth does not alter the results when there are packet drops
due to corruption compared to the basic GSM data link (9600bps). SACK TCP is the
most useful TCP modification and the benefits or the disadvantages of a limited receiver

window of 4 Kbytes are negligible and debatable.
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5.7 Conclusion

As the evaluation of the TCP modifications has been provided in previous chapters, some
results are gathered from different test scenarios. The focus of this conclusion is to help
the reader to better understand and observe the effects of the link characteristics to the
TCP performance. In addition, the differences between the TCP modifications are easier

to discern, as the results are shown side by side.

The effect of a single event

Three different single events were studied: a packet loss, an excess delay, and a sudden

change in the link’s bandwidth.

The deteriorating effects of a single RT'O and a single packet drop are combined in Figure
30. The graph shows the median throughputs for the tested TCP modifications, when
a single event —a packet drop or an excess delay that causes an RTO- has occurred for
a certain segment. The graph clearly affirms the conclusion that a spurious timeout is
far more detrimental to a connection than a packet drop. Upon an RTO, the whole
window of data is unnecessarily retransmitted. A single packet drop may cause suboptimal
performance, if the cwnd is grown to a large value, thus leading the TCP sender to an
RTO, as the next new ACK does not reach the TCP sender on time. Also, if the number
of outstanding segments on the link is less than four, the TCP sender has to rely on the

retransmission timer to be able to retransmit the missing segment.

The SACK option was not included in the tests, as it does not give any benefit to a con-
nection. Also, larger initial window four segments actually worsens the performance, if a
spurious RTO occurs, as the cwnd is bigger, thus leading to more unnecessary retransmis-
sions. Preliminary tests were run that validated these assumptions, for both SACK and
larger initial window. By limiting the rwnd, the pitfalls of too large a cwnd can be avoided
for both RTO and packet drop.

The tested variations to the bandwidth were not so big that they would have cause any
harmful effects. Especially, an RTO did not occur upon the rate change. However, as
the RTT and RTO calculations are affected by the altered bandwidth, it is expected to
lead to retransmission, if an excess delay occurs at the same time. These scenarios are
left under further study, as they were not included in the tests. The acknowledging policy
implemented by the TCP receiver may contribute to the performance. It was noticed that
by disabling the delayed acknowledgments at the time the rate change may help the TCP
sender to faster fill the link. Additionally, it may lead to a faster buffer overflow at the
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Figure 30: The effects of a single packet drop or a retransmission timeout

intermediate routers.

The analyses of single packet drops, excess delays and variable bandwidth was was given
in Section 5.2, Section 5.3 and Section 5.5, respectively. The full test results can be found
in Appendix A, Tables 14-17, Tables 20-22 and Table 31.

The combined effects of delays and errors

As a spurious RTO leads to numerous unnecessary retransmissions, the combining effects
of packet losses and excess delays have great impact on the performance. Figure 31(a)
shows the achieved throughputs over connections, where the packet drop rate was 2%, 5%
or 10%. Figure 31(b) shows the similar statistics that were achieved over a link that suffers
from excess delays, as well. The probability of a delay of six seconds is 1%. For better
comparison, the graphs are provided in the same scale. In the presence of excess delays,
the median connection time for the Baseline TCP increases by 35.6% (37.7 seconds), 37%
(44.24 seconds) and 16.3% (27.14 seconds) over good, mediocre and bad link conditions,

respectively.

The implications of spurious RTOs becomes less severe when the packet drop rate reaches
a certain threshold. The test results indicate that the threshold limit would be a packet

drop rate of 5%. However, the tests were not sufficient to make exact conclusions.

The SACK option gives more benefits to the performance the more packet drops there
are on the link. The Baseline TCP performs well in an environment that has no excess

delays. In the presence of excess delays, the limited rwnd efficiently reduces the number of
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unnecessary retransmissions, if the packet drop rate is not high. A larger initial window

may benefit the connection if there are excess delays.

The analyses of the combined effects of packet drops and excess delays was given in Section

5.4 and the full test results can be found in Appendix A, Tables 23.
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Figure 31: The deteriorating effects of excess delays and packet drops

The effects of bandwidth and packet losses

For easier comparison, the throughputs of all the tested TCP enhancements over different
bandwidths and packet drop rates are collected in Figure 32. The graphs are categorized
by the packet drop rate. This allows the reader to better compare the effects of the
bandwidth over a certain packet drop rate. All the graphs are provided in the same scale.
Another version of the same statistics can be found in Appendix A, Figure 33, page 102,
where the graphs are categorized by the bandwidth of the link. The effects of different

packet drop rates over a certain bandwidth are easier to compare in that graph.

When looking at Figure 32(a), where no packet are dropped, it can be observed that
the larger initial widow of four segments is the only TCP enhancement, that benefits the
connection. As no packets are dropped, the capacity of the link is faster in full use. If the
delay-bandwidth product of the link is not four segments, or more, the full benefits of a
larger initial window of four segments are not achieved. This can be seen on the graph, as
the advantages of the connections that used an initial window of four segments augment
along with the bandwidth. This conclusion was earlier made in Section 5.5. The limited

rwnd of 2 Kbytes hinders the connection, if the capacity of the link is approximately
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Figure 32: The throughputs of every tested TCP enhancement over links with various

characteristics

eight segments. Even the cwnd is eight segments, the time consumed by the delayed
acknowledgments and processing lead to underutilization of the link, as a segment cannot

be transmitted immediately after an ACK has been received.

As the packet drop rate rises, the bandwidth of the link does not correlate to the achieved
throughput. As explained in Section 5.6, the RTT determines the performance of the
connection. The RTT consists of a fixed propagation delay and the transmission delay of
the segments. As the fixed propagation delay (2 * 200ms = 400ms) is a more significant
factor than the transmission delay (less than 100ms over a 28800bps link), the effects of
the bandwidth are minor compared to the propagation delay. This can be seen throughout
all Figures 32(a-d), as the differences in the throughputs get smaller as the packet drop

rate augments.
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The bandwidth asymmetry exhibits minor performance losses over erroneous link connec-
tions, even if the normalized asymmetry ratio, k, is less than one. However, the observed
differences are small, and cannot be easily seen in the graphs. When the capacity of the
link is not in full use, the slow ACK path hinders the growth of the cwnd. If the link suffers
from numerous packet losses, the cwnd is usually below the value that would make full use

of the link. A more detailed description of the problem was given in Section 5.6.

The analyses of the effects of packet drops over different bandwidths was given in Section
5.6 and the full test results can be found in Appendix A, Tables 32-35. The analyses of
static bandwidths over ideal link conditions was given in Sections 5.1 and 5.5, and the

statistics of the tests can be found in Appendix A, Tables 13 and 24.

Evaluation of the tested TCP enhancement

To give an overview of the suitability of a TCP enhancement over a certain link environ-
ment, the results are gathered in Table 12. It should be remembered that the results given
are heavily generalized, as the behavior of a TCP modification can vary extremely within
the categorized environments. However, some general guidelines can be given. Before
making any conclusions about the suitability of a TCP modification, one should (at least)

read the equivalent chapters, where the behavior of the modification is further explained.

Table 12: The benefits of the TCP enhancement compared to the Baseline TCP

Environment Baseline | 2KB 4KB IW=4 SACK Dis.
TCP delacks

Single drop Varies Good Good Varies Varies -
Random drop Good Bad Good Average Excellent | -

Single delay Bad Good Good Bad Bad -

Drops and Delays Bad - Good Average Excellent | -
Asymmetric bw Good Bad Good Good Good Good
Variable bw Good - Good Good - -

Static bw and Drops Good Bad Average Good Excellent | -
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6 Summary

The performance of different TCP modifications was tested over a slow wireless link. The
empirical tests were run in five major categories. First, the emulated link suffered from
corruption-related packet losses. In the absence of an intermediate router, which could
have dropped packets due to buffer exhaustion, the congestion-related packet drops were
not considered. Both single packet drops and random packet drops were studied. Second,
a persistently reliable link, which caused excess delays due to link level retransmissions,
was studied. Third, the performance implications of a link containing excess delay along
with corruption losses were analyzed. Fourth, the bandwidth of the link was altered.
Bandwidths up to 38400bps were studied, including bandwidth asymmetry and variance
during a connection. Finally, the combined effects of different packet drop rates over
several bandwidths were analyzed. By combining different link characteristics, the possible
problems were observed more comprehensively. The large number of different test scenarios
assisted to expansively understand and observe the behavior of the TCP under various link

conditions; it is the main contribution of this study.

The experiments were made by using a real-time emulator over a dedicated network.
The link characteristics were emulated by the software. Some of the link properties were
selected to be GSM-like. However, the link characteristics are common for most of the
Wireless Wide-Area-Networks. Hence, the results of this thesis can be exploited for all

slow wireless links that suffer from excess delays and corruption losses.

The Baseline TCP was used as a reference TCP. It is based on the Linux TCP implemen-
tation, which was modified to confront the given specifications. The tests were repeated
using several TCP enhancements. The workload used was a bulk data transfer of 100
Kbytes.

Several problems in the behavior of the TCP was found. A large congestion window,
which has grown well beyond the delay-bandwidth product of the link, was observed to
cause suboptimal performance upon a spurious retransmission timeout, in the absence
of packet drops. As the TCP suffers from retransmission ambiguity, the whole window
of data is unnecessarily retransmitted, even if no packets are lost. Moreover, the Less
Careful variant of the NewReno “bugfix” leads to additional unnecessary retransmissions.
Surprisingly, even a single packet drop may cause numerous unnecessary retransmissions,
if the congestion window is too big. The multiple segments that are in the queue to be
transmitted before the gap-filling ACK lead the TCP sender to a retransmission timeout.
As a consequence, several packets are unnecessarily retransmitted. The consequences of

too large a congestion window were efficiently avoided by limiting the receiver’s advertised
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window.

In the case of random packet losses, the TCP sender eventually has to rely on the retrans-
mission timer, if a retransmitted segment is dropped. Several consecutive retransmission
timeouts were often observed over links with a high packet drop rate. The use of the SACK

option was clearly the best out of the tested TCP enhancements in such an environment.

The combined effects of excess delays and random packet drops introduced a new problem.
The NewReno “bugfix” may prevent a retransmission in a situation where it would be
useful, and it forces the TCP sender to rely on the retransmission timer to be able to
send the missing segment. The event was not very frequent, as it heavily depends on the
occurrence of the excess delay and packet drops. However, it is quite usual in environments,
where an intermediate router may drop packets due to buffer exhaustion, as the packet

drops occur more regular basis [Sar01].

The bandwidth asymmetry was noticed to have effects on the performance, in some sit-
uations. Although the normalized asymmetry ratio was less than one, a slow ACK path
prevented the TCP sender to efficiently fill the link at the beginning of the connection.
The delay-bandwidth product of the link was observed to have effects on the benefits of a

larger initial window, limited receiver’s window, and disabled delayed acknowledgments.

The benefits of the SACK option was observed to be unquestionable over error-prone
links. However, as it does not resolve the retransmission ambiguity problem of TCP,
the deteriorating effects of a spurious retransmission timeout are still existing. Future
research has to be addressed to D-SACK, as it helps the TCP sender recognize unnecessary

retransmissions.
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A FULL TEST RESULTS

A Full Test Results

This appendix describes the summarized test results for the tests that were run over a plain
wireless link. Thus, all the packet losses were due to corruption. Congestion related packet
drops did not exist. We give three different percentiles, first quartile (25% percentile),
median (50% percentile) and third quartile (75% percentile) for the connection time (in
seconds) for each test we ran. If the link contained random packet drops, the median value
of dropped packets is given. Abbreviations are used in the tables to keep it more simple.
Baseline means Baseline TCP outlined in Appendix C, w4 stands for larger initial window
of four segments, Qn is the modification that disables the delayed acknowledgments up to
nth segment, Dis.delacks demotes that the disabled delayed acks are applied throughout
the connection, 2KB and 4KB mean the size of the limited receiver’s advertised window,
and SACK is used for the selective acknowledgment option. tput (throughput) and rezmt
(retransmitted packets) are also the median values. drops (the number of dropped packets

on the link) is derived from the log file of the Seawind emulator.
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A FULL TEST RESULTS

Table 13: The statistics for a 100 Kbytes transfer under ideal link conditions

elapsed time (sec)
Link Mod 25% | 50% |75 % | tput rexmt drops
(Bytes/s)| (Pkts) (Pkts)
Ideal link | Baseline 102.05 | 102.06 | 102.06 | 1003.00 0.00 0.00
Ideal link | 4kb 102.05 | 102.06 | 102.07 | 1003.00 0.00 0.00
Ideal link | iw4 101.85 | 101.85 | 101.85 | 1005.00 0.00 0.00
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Table 14: Single packet drop tests: Baseline TCP, 20 replications

elapsed time (sec)
Packet Setting 25% | 50% | 75 % | tput rexmt drops
dropped (Bytes/s)| (Pkts) (Pkts)
402nd Baseline 111.07 | 111.08 | 111.09 | 922.00 1.00 1.00
342nd Baseline 102.31 | 102.32 | 102.34 | 1001.00 1.00 1.00
302nd Baseline 102.31 | 102.31 | 102.32 | 1001.00 1.00 1.00
242nd Baseline 102.98 | 102.99 | 103.02 | 994.00 1.00 1.00
202nd Baseline 102.98 | 102.98 | 103.00 | 994.00 1.00 1.00
182nd Baseline 102.98 | 102.99 | 103.00 | 994.00 1.00 1.00
162nd Baseline 102.97 | 102.98 | 103.00 | 994.00 1.00 1.00
142nd Baseline 102.98 | 102.99 | 103.00 | 994.00 2.00 1.00
122nd Baseline 106.09 | 106.10 | 106.13 | 965.00 16.00 1.00
102nd Baseline 116.18 | 116.19 | 116.20 | 881.00 56.00 1.00
82nd Baseline 116.68 | 116.69 | 116.70 | 878.00 58.00 1.00
62nd Baseline 115.68 | 115.68 | 115.69 | 885.00 54.00 1.00
42nd Baseline 102.31 | 102.31 | 102.32 | 1001.00 1.00 1.00
32nd Baseline 102.32 | 102.33 | 102.71 | 1001.00 1.00 1.00
22nd Baseline 102.31 | 102.32 | 102.33 | 1001.00 1.00 1.00
17th Baseline 102.31 | 102.32 | 102.33 | 1001.00 1.00 1.00
12th Baseline 102.31 | 102.32 | 102.33 | 1001.00 1.00 1.00
9th Baseline 102.31 | 102.32 | 102.33 | 1001.00 1.00 1.00
Tth Baseline 102.34 | 102.35 | 102.36 | 1001.00 1.00 1.00
5th Baseline 102.98 | 102.99 | 102.99 | 994.00 1.00 1.00
4th Baseline 107.44 | 107.44 | 107.46 | 953.00 1.00 1.00
3rd Baseline 105.34 | 105.34 | 105.36 | 972.00 1.00 1.00
1st Baseline 105.62 | 105.63 | 105.65 | 969.00 1.00 1.00
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Table 15: Single packet drop tests: limited receiver’s window of two Kbytes, 20 replications

elapsed time (sec)
Packet Setting 25% | 50% | 75 % | tput rexmt drops
dropped (Bytes/s)| (Pkts) (Pkts)
402nd 2kb 103.56 | 103.56 | 103.58 | 989.00 1.00 1.00
342nd 2kb 102.98 | 102.99 | 103.01 | 994.00 1.00 1.00
302nd 2kb 102.98 | 102.98 | 102.99 | 994.00 1.00 1.00
242nd 2kb 102.98 | 102.99 | 103.00 | 994.00 1.00 1.00
202nd 2kb 102.97 | 102.98 | 103.00 | 994.00 1.00 1.00
182nd 2kb 102.97 | 102.97 | 103.00 | 994.00 1.00 1.00
162nd 2kb 102.97 | 102.99 | 103.02 | 994.00 1.00 1.00
142nd 2kb 102.97 | 102.98 | 103.00 | 994.00 1.00 1.00
122nd 2kb 102.97 | 102.98 | 102.99 | 994.00 1.00 1.00
102nd 2kb 102.97 | 102.98 | 103.00 | 994.00 1.00 1.00
82nd 2kb 102.97 | 102.99 | 102.99 | 994.00 1.00 1.00
62nd 2kb 102.97 | 102.99 | 102.99 | 994.00 1.00 1.00
42nd 2kb 102.97 | 102.98 | 103.02 | 994.00 1.00 1.00
32nd 2kb 102.98 | 102.98 | 102.99 | 994.00 1.00 1.00
22nd 2kb 102.98 | 102.99 | 103.01 | 994.00 1.00 1.00
17th 2kb 102.98 | 102.98 | 102.99 | 994.00 1.00 1.00
12th 2kb 102.97 | 102.98 | 102.99 | 994.00 1.00 1.00
9th 2kb 102.97 | 102.98 | 102.99 | 994.00 1.00 1.00
7th 2kb 102.34 | 102.35 | 102.36 | 1000.00 1.00 1.00
5th** 2kb 106.58 | 106.60 | 106.61 | 961.00 1.00 1.00
3rd 2kb 105.32 | 105.33 | 105.35 | 972.00 1.00 1.00
1st 2kb 105.61 | 105.62 | 105.63 | 970.00 1.00 1.00

**These results were due to a implementation bug, and the TCP sender was not able to do a fast

retansmit. Thus, a RTO occured.
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Table 16: Single packet drop tests using IW of four segments, 20 replications

elapsed time (sec)
Packet Setting 25% | 50% | 75 % | tput rexmt drops
dropped (Bytes/s)| (Pkts) (Pkts)
402nd iw4 110.84 | 110.85 | 110.86 | 924.00 1.00 1.00
342nd iw4 102.10 | 102.10 | 102.11 | 1003.00 1.00 1.00
302nd iw4 102.09 | 102.10 | 102.10 | 1003.00 1.00 1.00
242nd iw4 102.77 | 102.77 | 102.78 | 996.00 1.00 1.00
202nd iw4 102.77 | 102.78 | 102.79 | 996.00 1.00 1.00
182nd iw4 102.76 | 102.77 | 102.78 | 996.00 1.00 1.00
162nd iw4 102.76 | 102.77 | 102.78 | 996.00 1.00 1.00
142nd iwd 102.77 | 102.78 | 102.79 | 996.00 2.00 1.00
122nd iw4 104.87 | 104.88 | 104.89 | 976.00 12.00 1.00
102nd iw4 114.96 | 114.97 | 114.97 | 891.00 52.00 1.00
82nd iw4 116.47 | 116.75 | 116.98 | 877.00 59.00 1.00
62nd iw4 115.46 | 115.47 | 115.47 | 887.00 54.00 1.00
42nd iw4 102.10 | 102.10 | 102.11 | 1003.00 1.00 1.00
32nd iwd 102.10 | 102.11 | 102.11 | 1003.00 1.00 1.00
22nd iwd 102.10 | 102.10 | 102.11 | 1003.00 1.00 1.00
17th iwd 102.10 | 102.10 | 102.11 | 1003.00 1.00 1.00
12th iwd 102.10 | 102.11 | 102.23 | 1003.00 1.00 1.00
9th iw4 102.09 | 102.10 | 102.11 | 1003.00 1.00 1.00
7th iw4 102.09 | 102.10 | 102.10 | 1003.00 1.00 1.00
5th iw4 102.10 | 102.10 | 102.11 | 1003.00 1.00 1.00
4th iw4 102.63 | 102.64 | 102.65 | 998.00 1.00 1.00
3rd iw4 102.76 | 102.77 | 102.78 | 996.00 1.00 1.00
1st iw4 105.61 | 105.62 | 105.64 | 969.50 1.00 1.00
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Table 17: Single packet drop tests: SACK, 20 replications

elapsed time (sec)
Packet Setting 25% | 50% | 75 % | tput rexmt drops
dropped (Bytes/s)| (Pkts) (Pkts)
402nd SACK 111.07 | 111.08 | 111.09 | 922.00 1.00 1.00
342nd SACK 102.32 | 102.32 | 102.33 | 1001.00 1.00 1.00
302nd SACK 102.32 | 102.32 | 102.34 | 1001.00 1.00 1.00
242nd SACK 102.98 | 103.00 | 103.01 | 994.00 1.00 1.00
202nd SACK 102.99 | 103.00 | 103.00 | 994.00 1.00 1.00
182nd SACK 102.99 | 103.00 | 103.01 | 994.00 1.00 1.00
162nd SACK 102.98 | 103.00 | 103.02 | 994.00 1.00 1.00
142nd SACK 102.99 | 102.99 | 103.01 | 994.00 2.00 1.00
122nd SACK 104.59 | 104.60 | 104.63 | 979.00 10.00 1.00
102nd SACK 114.67 | 114.68 | 114.69 | 893.00 50.00 1.00
82nd SACK 114.92 | 114.93 | 114.94 | 891.00 51.00 1.00
62nd SACK 113.15 | 113.17 | 113.19 | 905.00 44.00 1.00
42nd SACK 111.14 | 111.15 | 111.15 | 921.00 36.00 1.00
32nd SACK 102.32 | 102.33 | 102.34 | 1001.00 1.00 1.00
22nd SACK 102.33 | 102.34 | 102.38 | 1001.00 1.00 1.00
17th SACK 102.32 | 102.33 | 102.34 | 1001.00 1.00 1.00
12th SACK 102.33 | 102.33 | 102.34 | 1001.00 1.00 1.00
9th SACK 102.32 | 102.32 | 102.33 | 1001.00 1.00 1.00
7th SACK 102.42 | 102.43 | 102.44 | 1000.00 1.00 1.00
5th SACK 102.42 | 102.43 | 102.44 | 1000.00 1.00 1.00
4th SACK 102.64 | 102.65 | 102.68 | 997.50 1.00 1.00
3rd SACK 102.91 | 102.92 | 102.93 | 995.00 1.00 1.00
1st SACK 105.62 | 105.64 | 105.65 | 969.00 1.00 1.00
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Table 18: Random drop tests, 50 replications

elapsed time (sec)

Drop | Settings 25% | 50% | 75 % | tput rexmt drops
Rate (Bytes/s)| (Pkts) | (Pkts)
2% Baseline 104.51 | 106.04 | 108.89 | 965.50 9.50 9.00
2% 2kb 107.11 | 110.21 | 113.27 | 929.00 8.00 8.00
2% 4kb 104.79 | 106.19 | 108.93 | 964.00 8.00 8.00
2% iw4 103.64 | 105.23 | 107.96 | 973.00 9.00 8.00
2% sack 104.23 | 105.52 | 110.69 | 970.50 11.00 8.00
5% Baseline 115.17 | 119.55 | 127.01 | 856.50 23.50 21.50
5% 2kb 120.66 | 128.68 | 136.36 | 796.00 23.50 22.50
5% 4kb 114.71 | 121.03 | 126.21 | 846.00 22.00 21.00
5% iw4 116.57 | 123.71 | 131.70 | 828.00 24.00 22.00
5% sack 109.44 | 111.49 | 114.07 | 918.50 23.50 22.00
10% Baseline 158.45 | 167.73 | 183.88 | 610.50 49.00 46.00
10% 2kb 159.37 | 169.62 | 185.26 | 604.00 48.00 45.00
10% 4kb 156.46 | 166.89 | 191.51 | 613.50 50.50 46.00
10% iw4 146.14 | 159.38 | 178.60 | 642.50 47.00 43.50
10% sack 119.99 | 124.11 | 131.60 | 825.50 47.00 44.00
2% mssb12 95.47 96.41 99.74 1062.00 4.50 3.50
2% mssb12, 2kb | 96.85 98.04 101.96 | 1044.50 4.00 4.00
2% mssb12, 4kb | 96.43 97.38 98.84 1051.50 4.00 4.00
2% mssb512, iwd | 96.04 96.62 99.12 1059.50 5.00 5.00
2% mss512, sack | 95.93 96.86 100.98 | 1057.00 5.50 4.00
5% mss512 100.37 | 104.98 | 112.06 | 975.50 11.00 11.00
5% mss512, 2kb | 107.37 | 110.22 | 117.39 | 929.00 11.00 10.50
5% mss512, 4kb | 102.07 | 107.22 | 115.22 | 954.00 10.00 10.00
5% mssb12, iw4d 101.87 | 105.02 | 119.04 | 975.50 12.00 10.50
5% mssb12, sack | 98.89 101.27 | 104.08 | 1011.00 11.50 10.50
10% mss512 124.75 | 138.61 | 149.48 | 739.00 25.00 22.00
10% mssb12, 2kb | 135.44 | 147.51 | 170.31 | 694.00 25.50 24.00
10% mss512, 4kb | 129.52 | 145.29 | 173.16 | 705.00 26.00 24.00
10% mssb512, iwd 118.75 | 137.53 | 164.03 | 744.50 24.50 22.50
10% mss512, sack | 105.89 | 109.20 | 113.39 | 937.50 23.50 22.00
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Table 19: Random drops: packet drops occur on both up- and downlink, 50 replications

elapsed time (sec)

Drop | Settings 25% | 50% | 75 % | tput rexmt drops
Rate (Bytes/s)| (Pkts) | (Pkts)
2% Baseline 104.07 | 106.29 | 112.00 | 963.00 9.00 17.00
2% 4kb 105.06 | 107.25 | 110.04 | 954.50 8.00 16.00
2% iw4d 104.15 | 105.97 | 109.76 | 966.50 11.00 18.00
2% sack 104.92 | 107.26 | 111.11 | 955.00 13.00 15.50
5% Baseline 120.13 | 125.01 | 135.20 | 819.00 23.00 41.00
5% 4kb 117.56 | 124.82 | 136.00 | 820.50 21.00 42.00
5% iw4d 116.11 | 124.44 | 136.38 | 822.50 22.50 41.00
5% sack 109.97 | 112.65 | 115.23 | 909.00 22.50 43.00
10% Baseline 196.12 | 217.38 | 249.20 | 471.00 54.00 89.50
10% 4kb 180.75 | 208.26 | 234.35 | 491.50 52.00 88.00
10% iw4d 178.06 | 210.22 | 248.58 | 487.00 55.50 85.00
10% sack 128.16 | 137.42 | 146.00 | 745.00 47.00 84.00
2% mss512 95.50 | 96.71 99.58 1058.50 4.00 7.50
2% mss512, 4kb | 96.04 98.07 103.47 | 1044.00 3.00 8.00
2% mssb12,iw4d | 96.38 96.85 98.39 1057.00 5.00 8.00
2% mssb12, sack | 95.47 96.40 99.18 1062.00 5.00 8.00
5% mss512 105.01 | 111.15 | 124.11 | 921.00 11.50 21.00
5% mss512, 4kb | 104.82 | 114.26 | 126.34 | 896.50 11.00 21.00
5% mssb12,iw4 | 101.05 | 108.59 | 121.86 | 943.00 11.50 21.00
5% mss512, sack | 99.18 100.91 | 103.05 | 1014.50 11.00 20.50
10% mss512 151.55 | 181.01 | 223.77 | 566.00 26.00 43.00
10% mss512, 4kb | 145.81 | 164.22 | 199.57 | 623.50 25.50 45.00
10% mss512, iwd | 156.60 | 186.36 | 206.37 | 549.50 26.50 44.00
10% mss512, sack | 108.66 | 116.70 | 124.05 | 877.50 24.00 43.00
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Table 20: Delay tests - Baseline TCP, 20 replications. Three different delays are tested:one
that does not lead to a RTO, one that triggers a RTO, and one that triggers two RTO
consecutive RTOs: Table A

elapsed time (sec)

Packet | Length 25 % | 50 % | 75 % | tput rexmt
de- (ms) (Bytes/s)| (Pkts)
layed

402nd 90000 | 192.13 | 192.13 | 192.14 | 533.00 2.00
402nd 9000 111.09 | 111.10 | 111.11 | 922.00 1.00
402nd 8000 110.06 | 110.06 | 110.07 | 930.00 0.00
302nd 89000 | 216.32 | 216.34 | 216.35 | 473.00 102.00

302nd 10000 | 137.08 | 137.09 | 137.10 | 747.00 101.00
302nd 7500 109.00 | 109.00 | 109.01 | 939.00 0.00
202nd 82000 | 219.58 | 219.58 | 219.59 | 466.00 143.00
202nd 10600 | 160.31 | 160.32 | 160.34 | 639.00 191.00
202nd 10000 | 111.49 | 111.50 | 111.51 | 918.00 0.00
182nd 75000 | 212.58 | 212.58 | 212.59 | 482.00 143.00
182nd 9500 159.21 | 159.22 | 159.23 | 643.00 191.00
182nd 9000 110.50 | 110.51 | 110.52 | 927.00 0.00
162nd** | 139000 | 276.57 | 276.58 | 276.59 | 370.00 143.00
162nd** | 35000 | 184.71 | 184.72 | 184.74 | 554.00 191.00
162nd** | 31000 | 132.50 | 132.51 | 132.51 | 773.00 0.00
142nd 61000 | 198.50 | 198.51 | 198.52 | 516.00 143.00
142nd 8600 158.32 | 158.33 | 158.34 | 647.00 191.00
142nd 8000 109.49 | 109.50 | 109.50 | 935.00 0.00
122nd 55000 | 191.03 | 191.04 | 191.05 | 536.00 137.00
122nd 7500 143.62 | 154.91 | 154.91 | 661.00 182.00
122nd 7000 108.50 | 108.50 | 108.51 | 944.00 0.00
102nd 50000 | 180.48 | 180.49 | 180.49 | 567.00 115.00
102nd 8000 147.81 | 147.81 | 147.82 | 693.00 152.00
102nd 7500 109.00 | 109.01 | 109.01 | 939.00 0.00

82nd 40000 | 165.19 | 165.20 | 165.21 | 620.00 94.00
82nd 6400 138.65 | 138.65 | 138.66 | 739.00 122.00
82nd 6000 107.50 | 107.50 | 107.51 | 953.00 0.00
62nd 33000 | 152.64 | 152.65 | 152.66 | 671.00 72.00
62nd 6000 130.69 | 130.70 | 130.71 | 783.50 92.00
62nd 5600 107.10 | 107.10 | 112.96 | 956.00 0.00

**These values are due to a implentation problem in the RTO calculations. Please, refer to the Appendix
C.1.3 for the details.
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Table 21: Delay tests - Baseline TCP, 20 replications: table B

elapsed time (sec)
Packet | Length |25 % |50 % | 75 % | tput rexmt
de- (ms) (Bytes/s)| (Pkts)
layed
42nd 27000 141.10 | 141.11 | 141.11 | 726.00 50.00
42nd 5000 122.13 | 122.13 | 122.14 | 838.00 62.00
42nd 4500 106.00 | 106.00 | 106.01 | 966.00 0.00
32nd 24000 135.34 | 135.34 | 135.76 | 757.00 39.00
32nd 4400 117.75 | 117.75 | 117.77 | 870.00 47.00
32nd 4000 105.50 | 105.50 | 105.51 | 971.00 0.00
22nd 18000 126.56 | 126.57 | 126.58 | 809.00 28.00
22nd 3300 112.87 | 112.88 | 112.89 | 907.00 32.00
22nd 3000 104.50 | 104.50 | 104.51 | 980.00 0.00
17th 11000 118.04 | 118.05 | 118.05 | 867.00 22.00
17th 2500 110.04 | 110.05 | 110.06 | 930.50 24.00
17th 2000 103.50 | 103.51 | 103.52 | 989.00 0.00
12th 7700 113.23 | 113.24 | 113.25 | 904.00 16.00
12th 2000 107.53 | 107.54 | 107.54 | 952.00 16.00
12th 1800 107.33 | 107.34 | 107.35 | 954.00 16.00
9th 9000 113.78 | 113.78 | 113.79 | 900.00 13.00
9th 2800 107.58 | 107.59 | 107.60 | 952.00 13.00
9th 2000 103.50 | 103.51 | 103.52 | 989.00 0.00
7th 7000 109.81 | 109.82 | 109.82 | 932.00 10.00
7th 2600 105.86 | 105.86 | 105.87 | 967.00 7.00
7th 2200 103.70 | 103.70 | 105.46 | 987.00 0.00
5th 13000 116.52 | 116.52 | 116.53 | 879.00 8.00
5th 4000 107.32 | 107.32 | 107.33 | 954.00 7.00
5th 3700 105.46 | 105.47 | 105.49 | 971.00 0.00
3rd 10000 113.06 | 113.07 | 113.08 | 906.00 6.00
3rd 2400 104.83 | 104.84 | 104.86 | 977.00 2.00
3rd 2200 104.25 | 104.26 | 104.28 | 982.00 0.00
1st 10000 112.62 | 112.62 | 112.63 | 909.00 2.00
1st 2500 105.15 | 105.16 | 105.18 | 974.00 1.00
1st 2000 104.05 | 104.06 | 104.07 | 984.00 0.00
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Table 22: Delay tests - Limited advertised window of 4KB, 20 replications. The test were

run only for the cases where one RTO occurred.

elapsed time (sec)

Packet | Length 25 % | 50 % | 75 % | tput rexmt
de- (msec) (Bytes/s)| (Pkts)
layed

402nd 9000 111.09 | 111.10 | 111.11 | 922.00 1.00

302nd 10000 | 117.80 | 117.81 | 117.81 | 869.00 25.00
202nd 10600 | 118.40 | 118.42 | 118.45 | 865.00 25.00
182nd 9500 117.30 | 117.30 | 117.32 | 873.00 25.00
162nd** | 35000 | 142.05 | 142.05 | 142.06 | 721.00 22.00
142nd 8600 116.40 | 116.41 | 116.42 | 880.00 25.00

122nd 7500 115.30 | 115.31 | 115.33 | 888.00 25.00
102nd 8000 115.80 | 115.80 | 115.81 | 884.00 25.00
82nd 6400 114.20 | 114.21 | 114.22 | 897.00 25.00
62nd 6000 113.80 | 113.80 | 113.81 | 900.00 25.00
42nd 5000 112.80 | 112.81 | 112.82 | 908.00 25.00
32nd 4400 112.20 | 112.21 | 112.21 | 913.00 25.00
22nd 3300 111.10 | 111.11 | 111.11 | 922.00 25.00
17th 2500 110.05 | 110.06 | 110.18 | 930.00 24.00
12th 1800 107.33 | 107.33 | 107.35 | 954.00 16.00
9th 2800 107.58 | 107.59 | 107.60 | 952.00 13.00
Tth 2600 105.86 | 105.87 | 105.88 | 967.00 7.00

5th 4000 107.31 | 107.32 | 107.33 | 954.00 7.00

3rd 2400 104.83 | 104.84 | 104.85 | 977.00 2.00

1st 2500 105.15 | 105.16 | 105.18 | 974.00 1.00

**These values are due to a implentation problem in the RTO calculations. Please, refer to the Appendix
C.1.3 for the details.
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Table 23: Tests with combined errors and delays on the link, 50 replications. If the delay

occurs, its length is 6 seconds.

elapsed time (sec)

Drop Delay | Mods 25% | 50% |75 % | tput rexmt drops
rate Prob (Bytes/s)| (Pkts) (Pkts)
2% 1% Baseline 136.08 | 143.74 | 155.67 | 712.50 56.50 9.00
2% 1% 4kb 125.35 | 137.52 | 157.05 | 744.50 45.00 9.00
2% 1% iw4 131.84 | 140.13 | 153.66 | 730.50 51.50 9.00
2% 1% sack 126.12 | 135.16 | 147.90 | 757.50 44.50 9.00
5% 1% Baseline 150.91 | 163.79 | 178.57 | 625.00 50.00 23.50
5% 1% 4kb 141.83 | 152.94 | 167.61 | 670.00 44.50 21.00
5% 1% iw4 143.36 | 158.35 | 167.52 | 646.50 47.00 22.50
5% 1% sack 134.73 | 143.00 | 152.55 | 716.50 46.50 21.00
10% 1% Baseline 177.91 | 195.13 | 216.10 | 525.00 64.00 45.00
10% 1% 4kb 187.95 | 204.30 | 221.76 | 501.50 65.00 45.00
10% 1% iw4d 179.73 | 195.50 | 216.61 | 523.50 62.50 46.00
10% 1% sack 142.21 | 154.35 | 165.70 | 663.50 60.00 45.00
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Table 24: The results of the static bandwidth tests, 20 replications.

elapsed time (sec)
Bw Mod 25% | 50% | 75 % | tput rexmt | drops
(up/down) (Bytes/s) | (Pkts)| (Pkts)
1-1-96 Baseline 102.05 | 102.06 | 102.06 | 1003.00 0.00 0.00
1-1-96 iw4 101.85 | 101.85 | 101.85 | 1005.00 0.00 0.00
1-1-96 2kb 102.05 | 102.07 | 102.08 | 1003.00 0.00 0.00
1-1-96 4kb 102.05 | 102.06 | 102.07 | 1003.00 0.00 0.00
1-3-96 Baseline | 35.17 | 35.18 | 35.19 | 2011.00 | 0.00 | 0.00
1-3-96 iw4 34.78 | 34.78 | 34.80 | 2944.00 | 0.00 | 0.00
1-3-96 2kb 35.18 35.19 35.19 2910.00 0.00 0.00
1-3-96 4kb 35.16 35.18 35.18 2911.00 0.00 0.00
2-2-96 Baseline 51.70 51.71 51.72 1980.00 0.00 0.00
2-2-96 iw4 51.38 51.39 51.39 1993.00 0.00 0.00
2-2-96 2kb 51.70 51.71 51.72 1980.00 0.00 0.00
2-2-96 4kb 51.71 51.71 51.72 1980.00 0.00 0.00
2-2-144 Baseline 35.02 35.03 35.04 2923.00 0.00 0.00
2-2-144 iw4 34.67 34.67 34.68 2953.00 0.00 0.00
2-2-144 2kb 35.06 35.07 35.08 2920.00 0.00 0.00
2-2-144 4kb 35.03 35.04 35.04 2923.00 0.00 0.00
144-38 Baseline 26.92 26.93 26.94 3802.00 0.00 0.00
144-38 iw4 26.45 26.45 26.46 3871.00 0.00 0.00
144-38 2kb 29.97 29.98 30.00 3415.50 0.00 0.00
144-38 4kb 26.92 26.93 26.94 3802.50 0.00 0.00

Table 25: The disabled delayed acknowledgments tests, first 2KB. qn stands for disabled
delayed acks up to the nth data segment. Dis.ACKs means, that every segment is separately

acknowledged through the connection.

elapsed time (sec)
Bw Mod 25 % 50% | 75 % | tput rexmt | drops
(up/down) (Bytes/s) | (Pkts)| (Pkts)
14400/38400| Baseline (g4) | 2.06 2.06 2.08 1276.53 0.00 0.00
14400/38400| g2 2.12 2.13 2.13 1226.96 0.00 0.00
14400/38400| g6 2.04 2.05 2.06 1288.58 0.00 0.00
14400/38400| 8 2.08 2.09 2.10 1260.74 0.00 0.00
14400/38400| Dis.delacks 2.04 2.05 2.06 1296.63 0.00 0.00
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Table 26: The disabled delayed acknowledgments tests. First 5KB

elapsed time (sec)

Bw Mod 25 % 50% | 75 % | tput rexmt | drops
(up/down) (Bytes/s) | (Pkts)| (Pkts)
14400/38400| Baseline (q4) | 2.99 3.01 3.02 2007.71 0.00 0.00
14400/38400| g2 3.06 3.07 3.08 1962.17 0.00 0.00
14400/38400| g6 2.85 2.87 2.87 2125.07 0.00 0.00
14400/38400| ¢8 2.81 2.82 2.83 2165.46 0.00 0.00
14400/38400| Dis.delacks 2.80 2.81 2.82 2179.37 0.00 0.00
Table 27: The disabled delayed acknowledgments tests. First 10KB
elapsed time (sec)
Bw Mod 25 % 50% | 75 % | tput rexmt | drops
(up/down) (Bytes/s) | (Pkts)| (Pkts)
14400/38400| Baseline (gq4) | 4.25 4.27 4.28 2688.12 0.00 0.00
14400/38400| g2 4.32 4.33 4.34 2646.45 0.00 0.00
14400/38400| g6 4.11 4.13 4.13 2790.70 0.00 0.00
14400/38400| ¢8 4.07 4.08 4.09 2825.27 0.00 0.00
14400/38400| Dis.delacks 4.06 4.07 4.08 2837.09 0.00 0.00
Table 28: The disabled delayed acknowledgments tests. First 20KB
elapsed time (sec)
Bw Mod 25 % 50% | 75 % | tput rexmt | drops
(up/down) (Bytes/s) | (Pkts)| (Pkts)
14400/38400| Baseline (q4) | 6.77 6.79 6.80 3235.74 0.00 0.00
14400/38400| q2 6.84 6.85 6.86 3205.39 0.00 0.00
14400/38400| g6 6.63 6.65 6.65 3308.95 0.00 0.00
14400/38400| 8 6.59 6.60 6.61 3333.01 0.00 0.00
14400/38400| Dis.delacks 6.58 6.59 6.59 3341.33 0.00 0.00
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Table 29: The disabled delayed acknowledgments tests. First 50KB

elapsed time (sec)
Bw Mod 25 % 50% | 75 % | tput rexmt | drops
(up/down) (Bytes/s) | (Pkts)| (Pkts)
14400/38400| Baseline (q4) | 14.33 14.35 14.36 3686.34 0.00 0.00
14400/38400| q2 14.40 14.41 14.42 3670.50 0.00 0.00
14400/38400| g6 14.19 14.21 14.21 3723.87 0.00 0.00
14400/38400| 8 14.15 14.16 14.17 3736.10 0.00 0.00
14400/38400| Dis.delacks 14.14 14.15 14.15 3740.18 0.00 0.00

Table 30: The disabled delayed acknowledgments tests: full connection (100KB), 20 repli-

cations
elapsed time (sec)
Bw Mod 25 % 50% | 75 % | tput rexmt | drops
(up/down) (Bytes/s) | (Pkts)| (Pkts)
14400/38400| Baseline (gq4) | 26.92 26.93 26.94 3802.00 0.00 0.00
14400/38400| q2 27.03 27.04 27.05 3788.00 0.00 0.00
14400/38400| g6 26.82 26.84 26.84 3815.00 0.00 0.00
14400/38400| 8 26.78 26.79 26.80 3822.00 0.00 0.00
14400/38400| Dis.delacks 26.77 26.78 26.78 3823.00 0.00 0.00
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Table 31: The results of variable bandwidth tests: 20 replications. Notice that the time

of the rate change was measured from the beginning of the emulation. As the emula-

tion begins before the connection is eshtablished, the actual time is a little shorter when

measuring from the beginning of the connection.

elapsed time (sec)

Bwl Bw2 Rate Mod 25% | 50% |75 % | tput rexmt | drops
changed (Bytes/s)| (Pkts)| (Pkts)
(sec)
2 96 1 96 10s Baseline | 97.00 97.01 97.14 1056.00 0.00 0.00
2 96 1 96 10s 4kb 96.99 97.01 97.14 1056.00 0.00 0.00
2 96 1 96 10s iw4 96.42 96.43 96.43 1062.00 0.00 0.00
2 96 1 96 25s Baseline | 81.99 82.00 82.03 1249.00 0.00 0.00
2 96 1 96 25s 4kb 81.99 82.00 82.02 1249.00 0.00 0.00
2 96 1 96 25s iw4 81.42 81.42 81.44 1258.00 0.00 0.00
1 144 1 96 10s Baseline | 99.47 99.48 99.49 1029.00 0.00 0.00
1 144 1 96 10s 4kb 99.47 99.47 99.49 1029.00 0.00 0.00
1 144 1 96 10s iw4 99.03 99.04 99.04 1034.00 0.00 0.00
1 144 1 96 30s Baseline | 89.47 89.47 89.48 1144.50 0.00 0.00
1 144 1 96 30s 4kb 89.47 89.48 89.49 1144.00 0.00 0.00
1 144 1 96 30s iw4 89.03 89.04 89.05 1150.00 0.00 0.00
1 3-96 1 1-96 10s Baseline | 92.64 92.65 92.69 1105.00 0.00 0.00
1 3-96 1 1-96 10s 4kb 92.64 92.65 92.66 1105.00 0.00 0.00
1 3-96 1 1-96 10s iw4 91.41 91.42 91.60 1120.00 0.00 0.00
1 3 96 1 1-96 25s Baseline | 62.57 62.74 62.76 1632.00 0.00 0.00
1 3 96 1 1-96 25s 4kb 62.57 62.74 62.75 1632.00 0.00 0.00
1 3 96 1 1-96 25s iw4 61.50 61.51 61.52 1665.00 0.00 0.00
2 144 1 144 10s Baseline | 63.70 63.71 63.73 1607.00 0.00 0.00
2 144 1 144 10s 4kb 63.71 63.72 63.72 1607.00 0.00 0.00
2 144 1 144 10s iw4 63.01 63.01 63.03 1625.00 0.00 0.00
2 144 1 144 27s Baseline | 46.74 46.74 46.74 2191.00 0.00 0.00
2 144 1 144 27s 4kb 46.74 46.74 46.75 2191.00 0.00 0.00
2 144 1 144 27s iw4 45.96 45.96 45.99 2228.00 0.00 0.00
2 144 2 96 10s Baseline | 49.36 49.37 49.38 2074.00 0.00 0.00
2 144 2 96 10s 4kb 49.36 49.37 49.38 2074.00 0.00 0.00
2 144 2 96 10s iw4 48.83 48.84 48.85 2097.00 0.00 0.00
2 144 2 96 27s Baseline | 40.83 40.89 40.90 2504.00 0.00 0.00
2 144 2 96 27s 4kb 40.87 40.88 40.89 2505.00 0.00 0.00
2 144 2-96 27s iw4 40.31 40.31 40.38 2540.00 0.00 0.00
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Table 32: Tests with different bandwidths and random packet drops, 50 replications: table

A
elapsed time (sec)

Bw Drop Rate | Mod 25 % 50% | 75 % | tput rexmt | drops
(up/down) (Bytes/s) | (Pkts)| (Pkts)
1-3-96 2% iwd 39.27 42.20 | 44.35 | 2426.50 8.00 8.00
1-3-96 2% 2kb 47.10 49.66 | 52.50 | 2062.00 9.00 9.00
1-3-96 2% 4kb 41.80 44.40 47.30 2306.00 8.00 8.00
1-3-96 2% sack 37.43 39.30 42.43 2605.50 7.00 7.00
1-3-96 2% Baseline 37.22 42.00 45.70 2438.00 8.00 8.00
1-3-96 5% iw4 54.69 60.43 65.26 1694.50 21.50 20.00
1-3-96 5% 2kb 61.60 66.25 71.11 1545.50 23.00 22.00
1-3-96 5% 4kb 57.49 62.83 | 72.23 | 1630.00 22.00 | 22.00
1-3-96 5% sack 52.09 55.84 | 59.99 | 1833.50 22.00 | 21.00
1-3-96 5% Baseline 54.89 61.11 | 68.15 | 1676.00 22.00 | 21.00
1-3-96 10% iwd 93.06 100.94 | 112.19 | 1014.50 50.00 | 46.50
1-3-96 10% 2kb 97.04 105.55 | 116.69 | 970.50 50.00 | 46.00
1-3-96 10% 4kb 92.02 99.23 | 108.75 | 1032.50 47.00 | 43.50
1-3-96 10% sack 70.01 75.10 79.89 1363.50 47.00 45.00
1-3-96 10% Baseline 91.78 100.15 | 110.58 | 1022.50 47.00 44.00
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Table 33: Tests with different bandwidths and random packet drops, 50 replications: table

B
elapsed time (sec)

Bw Drop Rate | Mod 25 % 50 % | 75 % | tput rexmt | drops
(up/down) (Bytes/s) | (Pkts)| (Pkts)
144-38 2% iw4 31.71 33.45 38.47 3061.50 8.00 8.00
144-38 2% 2kb 40.27 43.15 46.72 2373.50 7.50 7.50
144-38 2% 4kb 35.36 38.52 41.82 2659.00 8.00 8.00
144-38 2% sack 30.78 34.87 38.35 2936.50 8.00 8.00
144-38 2% Baseline 32.46 36.62 39.27 2796.50 8.00 8.00
144-38 5% iw4 49.26 55.92 60.29 1831.50 22.00 22.00
144-38 5% 2kb 55.53 61.73 66.67 1659.00 23.00 22.00
144-38 5% 4kb 52.27 57.22 62.19 1790.00 20.50 20.50
144-38 5% sack 47.68 51.00 54.56 2008.00 22.00 21.50
144-38 5% Baseline 49.84 57.37 63.09 1785.00 22.00 21.00
144-38 10% iw4 87.32 94.07 103.17 | 1088.50 49.00 46.00
144-38 10% 2kb 85.72 97.24 105.88 | 1053.00 46.00 43.50
144-38 10% 4kb 88.13 94.52 104.20 | 1083.50 49.00 45.00
144-38 10% sack 65.49 69.08 74.15 1482.00 47.00 46.00
144-38 10% Baseline 82.57 90.66 103.00 | 1129.50 46.00 42.00
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Table 34: Tests with different bandwidths and random packet drops, 50 replications: table

C
elapsed time (sec)

Bw Drop Rate | Mod 25 % 50 % | 75 % | tput rexmt | drops
(up/down) (Bytes/s) | (Pkts)| (Pkts)
2-2-144 2% iwd 37.43 40.35 | 43.34 | 2538.00 9.00 9.00
2-2-144 2% 2kb 44.19 47.48 51.32 2156.50 9.00 9.00
2-2-144 2% 4kb 39.72 41.02 44.97 2496.50 7.00 7.00
2-2-144 2% sack 37.13 39.74 41.29 2576.50 9.00 8.50
2-2-144 2% Baseline 38.88 41.70 45.05 2455.50 8.50 8.00
2-2-144 5% iwd 53.29 57.31 | 62.57 | 1786.50 22.00 | 21.50
2-2-144 5% 2kb 60.03 64.18 | 67.70 | 1595.50 23.00 | 22.00
2-2-144 5% 4kb 53.85 59.66 | 64.91 | 1716.50 22.00 | 21.00
2-2-144 5% sack 48.58 53.40 | 56.00 | 1917.50 24.00 | 22.50
2-2-144 5% Baseline | 55.78 59.91 | 66.52 | 1709.50 23.00 | 22.00
2-2-144 10% iwd 88.31 96.97 | 102.98 | 1056.00 49.00 | 46.00
2-2-144 10% 2kb 88.62 99.75 | 107.74 | 1026.50 51.00 | 48.00
2-2-144 10% 4kb 86.24 93.88 | 100.26 | 1090.50 47.00 | 42.00
2-2-144 10% sack 63.77 68.26 74.24 1500.00 48.50 46.00
2-2-144 10% Baseline 82.92 89.75 100.27 | 1141.00 46.50 42.00
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Table 35: Tests with different bandwidths and random packet drops, 50 replications: table

D
elapsed time (sec)

Bw Drop Rate | Mod 25 % 50 % | 75 % | tput rexmt | drops
(up/down) (Bytes/s) | (Pkts)| (Pkts)
2-2-96 2% iwd 53.71 54.89 | 56.76 | 1865.50 10.00 | 9.00
2-2-96 2% 2kb 57.06 59.59 | 62.59 | 1718.50 8.00 8.00
2-2-96 2% 4kb 54.43 55.71 57.47 1838.00 8.00 8.00
2-2-96 2% sack 53.37 54.69 56.05 1872.50 11.00 8.00
2-2-96 2% Baseline 53.19 54.82 57.86 1867.50 10.00 8.00
2-2-96 5% iwd 62.39 68.06 | 72.75 | 1504.50 21.00 | 20.50
2-2-96 5% 2kb 68.57 72.65 | 76.81 | 1409.50 21.00 | 20.00
2-2-96 5% 4kb 64.57 68.61 74.33 1492.50 22.00 20.50
2-2-96 5% sack 59.37 60.86 | 63.99 | 1682.50 23.00 | 21.00
2-2-96 5% Baseline 64.71 70.74 76.84 1448.00 23.50 22.00
2-2-96 10% iw4 97.19 103.21 | 116.37 | 992.00 48.00 44.00
2-2-96 10% 2kb 97.32 106.69 | 116.37 | 960.00 50.00 | 46.00
2-2-96 10% 4kb 97.66 106.17 | 111.93 | 964.50 48.50 | 45.50
2-2-96 10% sack 72.52 76.23 81.11 1343.00 48.00 44.50
2-2-96 10% Baseline 95.91 102.87 | 111.43 | 995.50 47.00 43.00
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B Transmission Control Protocol

We assume that the reader has a basic knowledge about Transmission Control Protocol
(TCP). The basics can be found, for example, in [Ste95] and [Com95]. However, we go
through the fundamentals.

B.1 General Overview

TCP assumes it can obtain a simple, potentially unreliable datagram service from the lower
level protocols. The intermediate routers may discard packets, the packets can arrive to
the destination out of order or the packets may be duplicated by the network. Those are
the situations that TCP was made to recover from. Thus, it provides reliable, connection-
oriented transportation. To provide this service, TCP has to implement facilities in the
following areas: set up the connection, multiplexing, basic data transfer, reliability and
flow control, precedence, and security [Pos81b]. In addition to these, the protocol makes
use of congestion control algorithms to monitor the congestion in the network and reduce
the load in the intermediate links, if needed. These algorithms are crucial for the stability

of the Internet. The congestion control algorithms are discussed in Appendix B.2.

Connections

For reliability and flow control TCP needs state information for each data stream. This
includes information about window sizes, sequence numbers etc. In the beginning of
the communication, the TCPs establish a connection and initialize the status informa-
tion by executing a three-way handshake. Figure 34 shows the segments sent during the
handshake. During the handshake, the initial sequence numbers, and possibly maximum
segment sizes (MSS) and TCP options are negotiated. In Figure 34 the first transmitted
packet is the SYN segment that tells the receiver that the sender wishes to establish a
connection. In addition, the initial sequence number is provided (X in the figure). The
receiver sends a SYN segment that contains the receiver’s initial sequence number (Y), and
the acknowledgment for the sender’s initial sequence number (X+1, i.e. the next expected
sequence number). Finally, the TCP initiator acknowledges the receiver’s initial sequence
number (Y+1). After this procedure the connection is established and data transfer may

begin. The MSS and TCP options are “piggybacked” with the SYN messages, if used.
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(1) SYNX
Remote Host / Mobile Host

(2) SYNY,ACK X+1

\

(3) ACKY+1

Figure 34: The three-way handshake at the beginning of the connection

Multiplexing

To allow many processes to use TCP simultaneously, TCP provides multiple ports to be
used within a single host. Concatenated with the IP-address this forms a socket. A pair
of sockets identifies a connection, so a single socket can be used in different connections at

the same time.

Basic Data Transfer

TCP is able to transfer a continuous stream of octets in each direction between its users.
It packages some number of octets into segments and forwards them to the lower layer for

transportation through the Internet.

Reliable transportation

The TCP recovers from data that is damaged, lost, duplicated, or delivered out of order by
the Internet communication system. This is achieved by assigning a sequence number to
each octet transmitted, and requiring a positive acknowledgment (ACK) from the receiving
TCP. The initial sequence numbers are negotiated between the hosts at the beginning of the
connection (see Figure 34). In the ACK segment the next expected octet is indicated using
the sequence number. The acknowledgments are cumulative, so each ACK acknowledges all

previous segments, too.

TCP makes use of timers to monitor the flow of incoming ACKs. If the acknowledgment
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has not arrived within a certain time interval, a retransmission timeout (RTO) occurs and
the segment is retransmitted. The TCP sender constantly monitors the round-trip time

(RTT) and calculates the RT'O value using the following equations[Jac88|:

Diff = New RTT — SRTT
SRTT = SRTT + 6 = Dif f

DEV = DEV + p«(|Dif f| — DEV)
RTO = SRTT +n* DEV

In the above equations New RTT is the round-trip time measured from the latest packet,
SRTT stands for “Smoothed round-trip time” and DEV is estimated mean deviation. ¢
and p are constants between 0 and 1 to be chosen by the implementation. [PA0QO] states
that 0 should be set to 1/8, p set to 1/4 and 7 should be set to 4. These values are
also widely used in the present TCP implementations. The equations presented above
were introduced in [Jac88], as the original algorithm introduced in [Pos81b] turned out
to be inadequate with congested internetworks. Later RFC [Bra89] states that a TCP
implementation must follow the rules mentioned above. The retransmission timer must
be reseted when an ACK is received that acknowledges new data. This way the timer will
expire one round trip time later, after RT'O seconds. For a more detailed description, refer
to [PA0O].

At the receiver, the sequence numbers are used to correctly order segments that may be
received out of order and to eliminate duplicates. Data corruption is handled by adding a
checksum to each segment transmitted, checking it at the receiver, and discarding damaged

segments.

In-order delivery is achieved by buffering the received segments at the receiving end until
the expected octet of data are obtained to be delivered to the receiving application. The
TCP receiver does not acknowledge the incoming segments if some previous octets have not
yet arrived. In that case, receiving TCP sends a duplicate acknowledgment every times it
gets a new segment until the missing segment is received. The duplicate acknowledgment is
an ACK that acknowledges the same segment as the previous ACK (i.e. the sequence number
is the same). The behavior of the TCP sender, as well as the whole algorithm called fast

retransmit /fast recovery, is described in more detail in Appendix B.2.4.

So-called delayed acknowledgment is used to reduce traffic over the network. An ACK is not
sent immediately after the arrival of a data segment. This makes possible to piggy-back

data or window updates. Every second full-sized segment should be acknowledged and the
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ACK can not be delayed for more than 500 ms [APS99]. A usual delay threshold for the
delayed acknowledgments is 200ms which is more user friendly in interactive connections
where the response time is more important. Delayed acknowledgments slow down the slow-
start phase because the number of incoming ACKs is decreased, so the congestion window
does not grow as quickly. To improve the feedback from the receiver, it is stated that
duplicate acknowledgments should be sent immediately to the TCP sender[APS99]. Also,
the receiver should send an immediate ACK when it receives a data segment that fills in all

or part of a gap in the sequence space[APS99].

Flow control

TCP provides a means for the TCP receiver to control the amount of data sent by the
sender. This prevents the sender to overfill the receiver’s storage space (i.e. socket buffer)
in case the receiver is not capable to consume the data as quickly as the sender provides
new segments. This is achieved by returning a "window" with every ACK indicating a
range of acceptable sequence numbers beyond the last segment successfully received. The
receiver advertised window (rwnd) indicates an allowed number of octets that the sender
may transmit before receiving further permission. In many implementations the socket
receive buffer size determines how large a window the receiver advertises. The socket
buffer size has system dependent default value but can usually be set directly by the
application. In addition to the advertised window, several congestion control algorithms,
such as slow-start and congestion avoidance, control the number of segments sent to the

receiver.

Precedence and security

TCP makes use of the IP type of service field and security options to provide precedence

and security to TCP users.

B.2 Congestion control

The basic congestion control mechanisms are described in this section. These algorithms

were not included in the earliest TCP specifications.
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B.2.1 Background

As noted before, IP networks may drop packets, for example, when the router buffers
become full and no storage space is available for the incoming packet. It causes a TCP
retransmission as the TCP senders retransmission timer expires because the acknowledg-
ment for the packet has not arrived. The sender will send the packet again - and cause
more congestion in the routers. This was the situation earlier as the congestion control
algorithms were not yet in use. The receiver’s advertised window was the only way to

reduce the data flow.

The first congestion collapses started to occur in October 1986 when the data throughput
decreased in factor-of-thousand from 32 Kbps to 40 bps[Jac88]. At that time, research was
carried out to understand the background of the collapses. As a result of the study, algo-
rithms called slow-start and congestion avoidance were introduced[Jac88|. This statement

outlined the principles when designing the algorithms:

"If packet loss is (almost) always due to congestion and if a timeout is (almost) always due

to a lost packet, we have a good candidate for the ‘network is congested’ signal."[Jac88]

B.2.2 Slow-Start and Congestion Avoidance

Slow-start and congestion avoidance were first introduced by Jacobson [Jac88] and they
were quickly made mandatory [Bra89]. It allows the TCP sender to probe the capacity of
the network by increasing the sending frequency to probe the network capacity. The slow
start algorithm is used for this purpose at the beginning of a transfer, after repairing loss

detected by the retransmission timer, and after idle periods.

To implement these two algorithms we need to add two state variables: congestion window

(cwnd) and slow-start threshold (ssthresh).

cwnd is a sender-side limit on the amount of data the sender can transmit into the
network before receiving an ACK, while the receiver’s advertised window (rwnd) is a receiver-
side limit on the amount of outstanding data. The minimum of cwnd and rwnd governs

data transmission [APS99].

ssthresh is needed to determine whether to use slow-start or congestion avoidance. If
cwnd is smaller than ssthresh, then slow start is used. Otherwise the TCP sender uses

congestion avoidance.
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The initial value of cwnd, called initial window (IW), must be no more than two segments?’.
After the connection establishment, the TCP sender transmits as many segments to the
network as the value of IW permits. Before the sender receives an ACK the sender is blocked
and cannot send any new data. After receiving the ACK, the number of new segments to
be sent is equal to the number of "acked" segments plus one segment due to the increase

of the cwnd.

During slow-start, a TCP sender starts with a cwnd of one or two segments and increases
the cwnd by at most sender maximum segment size (SMSS) bytes for each ACK received that
acknowledges new data. Slow-start ends when cwnd reaches ssthresh or when congestion
is observed. The sender may observe the congestion in two ways: the retransmission timer
expires or after receiving three consecutive duplicate acknowledgments (dupack). The data
receiver sends a dupack after receiving an out-of-order segment. When the third dupack

has arrived, the TCP sender goes to a fast retransmit/fast recovery algorithm.
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Figure 35: A trace of slow start with the IW size of two segments, without delayed
acknowledgments.

In Figure 36 we see the slow-start phase ending when it reaches the receiver advertised
window after 68 seconds (i.e. the point in the figure where the line sent seqhigh reaches

the line receiver window).

During congestion avoidance, cwnd is incremented by one full-sized segment per round-
trip time (RTT). That means that the cwnd is increased only after a full window of data

is acknowledged. Congestion avoidance continues till the end of the connection or until

*TIn experimental TCP extensions, values three and four are accepted, as well [APS99]
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Figure 36: A 130KB transfer

congestion is detected by RTO. A commonly used formula to update cwnd is [APS99]:

cwnd+ = SMSS x« SMSS/cwnd (2)

Figure 35 shows this situation as the TCP sender sends two new segments the the networks
after receiving an ACK. If delayed acknowledgments were in use, the sender would send three
segments instead of two because the incoming ACK acknowledges two segments. After the
cwnd has reached ssthresh the slow start is exited and congestion avoidance is invoked.
After successfully sending a whole window of data (eight data segments), cwnd is increased

by one segment.

B.2.3 Recovery from Retransmission Timeout

As noted before, TCP makes use of timers to monitor the flow of incoming ACKs. The

equations used to achieve the RTO were described in Appendix B.1.

When a RTO occurs, the TCP sender interprets it to have two meanings. First, the
segment that was not acknowledged in time is missing and, second, the loss is due to
congestion in the network. Thus, the TCP sender will retransmit the segment and invoke
slow start with a cwnd of one segment [APS99]. In addition, ssthresh is updated to be half
the current number of segments outstanding in the network (flightsize) and the ezponential

backoff [KP87] algorithm is used to re-initialize the retransmission timer.
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Because ssthresh is lowered, the congestion avoidance phase will start sooner. This way
the capacity of the network is not exceeded as quickly as with a longer slow start. The

correct formula to calculate the new value of ssthresh is [APS99]:
ssthresh = max(flightsize/2,2 x SMSS) (3)

Figure 37 shows an artificial trace of the congestion window before and after a retrans-
mission timeout. The connection starts with slow start and proceeds using congestion
avoidance until the retransmission timer expires. As a result, cwnd is set to one segment
and slow start is invoked again. The new value of ssthresh is visible as the congestion

avoidance starts in an earlier phase than before the RTO.
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Figure 37: The trace of cwnd after a retransmission timeout

Each time the RTO has occurred, the new RTO value has to be the old RTO multiplied by
a constant value, which must be at least 2[PA00]. This, so-called ezponential backoff algo-
rithm, is used after RTO has expired to avoid future RTOs to be triggered unnecessarily.
Also, the retransmissions may cause more congestion to the network, so the threshold when

to retransmit data should be higher every time the TCP sender has detected congestion.

The SRTT estimate should be updated only after new segments have been acknowledged,
the acknowledgments for the retransmitted TCP segments should not be taken into ac-
count. This is to avoid the problem caused by an old acknowledgment arriving for the
first packet just after a retransmission has been triggered by a RTO, causing the RTT

measurement to be invalid.
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B.2.4 Fast Retransmit/Fast Recovery

This algorithm provides a quicker way to recover from a single packet loss. The latest
TCP congestion control specification [APS99] states that these algorithms should be im-
plemented. Before this algorithm was in use, the retransmission timeout (RTO) was the

only way to observe a packet loss.

The TCP receiver is required to send a duplicate acknowledgment (dupack) immediately
when an out-of-order segment arrives. The dupack is identical to the previously sent
ACK, i.e. the acknowledged sequence number is the same. The purpose of a dupack is to
inform the sender that a segment has received out-of-order and which sequence number
is expected. The dupacks can be caused by different reasons, not just a packet loss. The
network may have re-ordered the data segments, or the ACKs (or data segments) may have
been replicated by the network [Pax97]. When the TCP sender receives the first dupack,
it cannot yet retransmit the segment because the dupacks can be caused by a number of
network problems, not just a dropped segment. There is other information in the ACK,
too. The receiver can only generate one in response to a segment arrival. A dupack means
that a segment has left the network (it is now cached at the receiver)?8. Thus, if the sender
was limited by the congestion window, a segment can now be sent. This is the reason why
the sender does not have to go to into slow-start. The fast retransmit algorithm uses three
dupacks (four identical ACKs without any other intervening segments) as an indication of

a lost segment.

Taking these different aspects into account, the fast retransmit and fast recovery algorithms

are usually implemented as follows [APS99]:

1. When the third dupack is received (4 identical ACKs without any other intervening

segments) , set ssthresh to no more than the value given in equation 3.

2. Retransmit the lost segment. Set cwnd = ssthresh + 3« SMSS. This “inflates” the
congestion window by the number of segments (three) that have left the network and

the receiver has buffered.
3. Increase cwnd by one SMSS for each additional dupack received.
4. Transmit a segment if allowed by the new cwnd or rwnd.

5. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh (the

value set in step 1). This is termed "deflating" the window.

The ACK received in step 5 should be due to the retransmission of the segment in step 1.

If so, the retransmitted segment was the only one to be missing. It is well known that fast

28 A large duplication of segments by the network can invalidate this conclusion.
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retransmit and fast recovery algorithms do not work well if multiple segments are dropped
within a single window[FH99][MMFR96]. This is because the algorithm retransmits only
the first segment without waiting for the RTO after the third dupack. While in fast
recovery phase, all other packet losses are observed using the retransmission timer. A
single retransmit timeout might result in the retransmission of several data packets, but
each invocation of the Reno fast retransmit algorithm leads to the retransmission of only a

single data packet[FH99]. A more detailed description is presented in [Hoe96], for example.

Figure 38 shows the recovery from a lost segment. The x-axis is the time and y-axis is the
highest sequence number of a segment. Both, sent segments and received ACKs, are printed.
The figure is drawn from the sender’s TCP dump?® and the dropped segment was the 15th
segment. The received dupacks are clearly visible as a horizontal line after 5 seconds of
transfer and the fourth dupack triggers the single retransmission. After retransmitting the
expected segment the TCP sender has halved the cwnd. After 7.5 seconds the TCP sender
may transmit new segments even if the retransmitted one is not yet acknowledged. This
is due to the constant flow of dupacks that increase the cwnd to a value that allows new
segments to be sent to the network. Once the new ACK arrives at the TCP sender, the

connection continues by using congestion avoidance.
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Figure 38: Recovery from a missing segment using the fast retransmit/fast recovery algo-

rithm

29 A software that is used to monitor the network traffic going through the computer
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B.2.5 NewReno TCP modification

The basic problem of fast retransmit is that it invokes only one fast retransmission without
waiting for the retransmission timer to expire. Therefore, the recovery from situations
where multiple segments are dropped from a single window, is not good. There is not
much information available for the TCP sender for making retransmission decisions during
fast recovery. However, a response to so-called partial acknowledgments (described later)

ameliorate this situation.

Many different modifications for the regular fast recovery algorithms exist. The NewReno
modification is specified in [FH99] and it was first introduced in [Hoe95] by Janey Hoe. This
modification is based on the information achieved when the first acknowledgment of new
data after three consecutive duplicate acknowledgments is received. If there were multiple
packets dropped, the acknowledgment for the retransmitted segment will acknowledge
some but not all of the segments transmitted before the segment retransmitted by the fast

retransmit. This packet is a partial acknowledgment.

NewReno modification makes use of a new variable called recover that is set to the highest
sequence number sent before receiving three duplicate ACKs. The steps of NewReno
modification are mostly the same as in regular fast retransmit and fast recovery described
in Appendix B.2.4, page 111. The only changes are in step 1 where the highest sequence
number sent is recorded in the variable recover and in step 5 where responses to partial
acknowledgments are produced. The response to the partial ACKs (step 5) is explained
below. If the incoming ACK acknowledges all segments up to and including the sequence
number in recover, cwnd is set to ssthresh as in regular fast recovery. The fast recovery
procedure may be exited. A second option is to set the cwnd to flightsize (the value in
step 5) + MSS.

Recovery from partial acknowledgments

During the recovery period, when an ACK arrives that acknowledges new data, it could be
the ACK elicited by the retransmission of step 2 (due to dupacks) or later retransmissions.
Different actions are made if the ACK acknowledges all the segments sent up to the variable
recover or if it is just a partial ACK. If the acknowledgment is a partial ACK, retransmit
the first unacknowledged segment. Deflate the cwnd by the amount of new acknowledged
data and add back one segment. This is so called “partial window deflating”. Reset also the
retransmission timer, but only for the first partial ACK that arrives during fast recovery.

The fast recovery procedure does not end, so later duplicate ACKs received invokes steps
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3 and 4.
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C Baseline TCP

The TCP implementation we use to execute the tests is based on Linux kernel 2.3.99-pre9.
The situation with Linux kernel was quite inconsistent since the final stable release 2./
had not yet been published (and still has not). Many new patches came every week. We
decided to take the pre9 version and start working with it because we did not have the
time to wait for the final release that we still might have to patch to achieve a TCP that
works like we would wish. This section outlines the modifications we have made to the pre9
kernel. We call this modified TCP version Baseline TCP, as it represents the standard
behaving TCP that is outlined in [Pos81b], [Bra89] and [APS99].

C.1 TCP parameters, options and settings

The TCP standards let the TCP implementations choose some of the parameters and for
their own convenience. This section outlines the behavior of Baseline TCP in more detail.
Because NewReno TCP modification is accepted as a possible fast recovery modification
in [APS99], we have included it in the Baseline TCP as it represents the "best current

practice".

C.1.1 NewReno TCP modification

When receiving a partial ack the TCP sender retransmits the following segment immedi-
ately. The question is, should the congestion window be suppressed. It is not clearly stated
in [FH99] if a retransmissions is counted as a new transmitted segment which should be
taken into account by lowering the cwnd by one SMSS. The alternative interpretation is
that retransmissions do not count when calculating the new value for cwnd. In this case, a
new segment may be transmitted in addition to the retransmitted one. We took the latter
interpretation and so the Baseline TCP sends a new data segment after receiving a partial

acknowledgment.

After the TCP sender has received the ACK that acknowledges all segments up to and
including the variable recover, the fast recovery period is ended. [FH99] gives two possible
values for the new value of the cwnd: it can be set to ssthresh or flightsize + SMSS.
We chose the latter alternative as it reduces the possible burst that may follow after the
recovery period. After fast recovery is exited, the cwnd is raised by one SMSS upon every
incoming ACK until ssthresh is reached, as in regular slow start. However, if the cwnd
is exactly four segments, while the third duplicate acknowledgment arrives, the cwnd is

not reduced after exiting the algorithm upon the new ACK that acknowledges all the four
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segments. Thus, after the recovery, the cwnd is retained, and congestion avoidance is used
to further increase the cwnd. By doing this, the cwnd is not lowered beyond four segments,

and the possibility to use fast retransmits is maintained3.

The NewReno specification [FH99] describes a “bugfix”. The question is, how to avoid
multiple fast retransmits. Because the data sender remains in fast recovery until all of the
data outstanding when fast retransmit was entered has been acknowledged, the problem
of multiple fast retransmits can only occur after a retransmission timeout. After RTO, the
highest segment sent during the recovery period is recorded to a new variable send_high.
If the data sender receives three dupacks that do not cover send_high, fast retransmit
is not triggered. Two different variants of exists for the “bugfix”, called Careful and Less
Careful FH99]. The Less Careful variant triggers fast retransmit if the ACKs covers the
variable send_high and the Careful variant enters fast retransmit only if the ACK covers

more than send_high. Baseline TCP implements Less Careful variant of the “bugfix”.

C.1.2 Recovery from RTO

Linux kernel was modified to implement “BSD style” RTO recovery3!. The exact behavior

is explained in Section B.2.3.

C.1.3 RTO calculation

The RTO calculations were not changed from original Linux kernel 2.3.99-pre9. However,
there are some occasions, where the RTO calculation is not accurate. Linux uses the cwnd
as a parameter, when setting the RTO. Due to Intel Celeron’s processor achitecture and
undefined functionality in C-programming language conserning right shift operations, a
cwnd that is multiple of 32, creates very high RTO values. When analyzing the tests, the

effect of invalid RTOs were observed, and excluded from the test results.

C.1.4 Delayed acknowledgments

Baseline TCP makes use of delayed acknowledgments. The threshold for delaying an ACK
is 200ms. Using a bandwidth of 9600bits/second, the time between the arrival of two

consecutive data segments of size 296 bytes is more than 200ms. Therefore, in most of

30If the cwnd is less than four segments, there are not enough segments in the network that would

produce three duplicate acks to trigger a fast retransmit.
31'We call it BSD style, because Baseline TCP imitates the behavior that was used in the 4.4BSD-Lite

version, checked from [WS95].
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our tests each data segment is acknowledged separately. When using higher bandwidths,
two segments are "quickacked" 32 in the beginning of the connection before the delayed

acknowledgments are taken into use.

C.1.5 Receiver’s advertised window

Due to implementation problems, Linux kernel 2.3.99-pre9 advertised a window of 32Kbytes
in maximum even if the socket buffer size was bigger. We have not modified this in any
way and therefore, Baseline TCP has a socket buffer of 64Kbytes of which 32 Kbytes is
advertised. This feature does not affect the tests and the tests should be interpreted sim-
ilarly as a "regular" TCP connection with a socket buffer and advertised window of 32
Kbytes. When we run tests with a reduced advertised window, the size announced is the

size of the advertised window, not the size of the socket buffer.

C.1.6 Disabling control block interdependence

Linux kernel 2.3.99-pre9 used control block interdependence for ssthresh, RTT and RTT

variance. We disabled this feature and made it a sysctl option.

Table 36 summarizes the algorithms, parameters and their values used in Baseline TCP.

Table 36: Baseline TCP

Item ‘ Value and explanation

Slow start As defined in [APS99]

Congestion Avoidance As defined in [APS99]

Initial window (IW) Initial window of 2 segments

NewReno As defined in [FH99] and Appendix C.1.1
cwnd after exiting NewReno flightsize + SMSS (Appendix C.1.1)
NewReno “Bugfix” Less Careful variant (Appendix C.1.1)
Recovery from RTO 'BSD’ style (Appendix B.2.3)

Delayed ACK threshold 200ms (Appendix C.1.4)

Quickacks Two segments in the beginning of the connection
Advertised window (rwnd) 32Kbytes (Appendix C.1.5)

Control Block Interdependence | Disabled by default (Appendix C.1.6)
SACK SACK option is disabled

Timestamps timestamps are disabled

32 A term used to describe that each data segment is acknowledged separately
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C.2 Implementation issues

This section describes the modifications which were made to Linux kernel version 2.3.99-

pre9. There are two types of modifications: bug fixes and new TCP options added for the
IWTCP project.

C.2.1 New TCP options

Linux provides a mechanism to set kernel-specific options at runtime. We added a set

of new TCP options for the purposes of IWTCP. These options can be accessed in

/proc/sys/net/ipv4 in the Linux filesystem.

iwtcp cbi. Control Block Interdependence for congestion control variables was
used in the unmodified Linux. We added this parameter to make Control Block

Interdependence a user-selectable option.

iwtcp iw. This parameter can be used to set the initial congestion window in the

beginning of the connection.

iwtcp newreno. Unmodified Linux used NewReno unconditionally. However, we
added this option to follow the regular Reno congestion control policy instead of

NewReno.

iwtcp quickacks. The parameter sets the number of quickacks used to quickly exit
the early slow start phase. If the value is set to 0, the regular Linux-behavior is used.
(i.e. number of quickacks is rwnd / (2 * MSS)).

iwtcp srwnd addr. This parameter is used to activate the shared advertised
window for connections originating from specified IP address. The user may specify
the least meaningful octet of the peer IP address, for which the connections use
shared advertised window. Only the connections from 10.0.0.* address family may
be shared. This might not be the correct functionality for the real world (in which
case the sharing should be done per device interface), but for the IWTCP purposes
we decided to follow the above mentioned logic when deciding whether to share the
advertised window or not.

The TCP receiver calculates the advertised window following the standard proce-
dures, but after the calculation it checks whether the sender’s IP address was same
than what specified with this parameter. In such case, the receiver calculates the
current amount of shared advertised window and sets minimum of the original and

shared window to the TCP window advertisement field.
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e iwtcp srwnd _size. This parameter specifies the size of the advertised window
in bytes to shared among the connections originating from the IP address specified
by iwtcp srwnd_ addr parameter. For the sharing purposes, our modification keeps
track of the number of connections open from the specified source address. When
a connection sharing the window receives data, the available space in the window
is decreased by the amount of data received. When application reads data from a
connection sharing the window, available space in the window is increased by the
amount of data read by the application. The size of the window advertisement for
each acknowledgement is min(real _wnd,avail _shared/connection _count), where
real_wnd is the calculated window which would normally be advertised, based on
the available buffer size for the socket, avail shared is the amount of shared window
space currently available and connection_count is number of connections sharing the

window.

If there are new connections opened to share the advertised window, the available win-
dow for old connections would decrease, because connection_ count would increase.
However, the advertised window will not be shrinked in such a case, but if a con-
nection was advertising more than its share, no new window space will be advertised
when new data arrives. This way the connection’s advertised window will gradually

decrease when new data arrives.

e iwtcp rto behaviour. With this parameter the user may choose from three poli-
cies of how to act when retransmission timeout occurs. LINUX (1) is the unmodified
Linux behavior, which allowed new data to be sent while retransmitting the seg-
ments from retransmission queue. In particular, duplicate ACKs increased cwnd,
which made this possible. HOLDCWND (2) holds the cwnd value as 1 during the
transmission from post-RTO retransmission queue. BSD (3) is the default used in
the IWTCP performance tests, named after BSD because it mimics the BSD style
go-back-N behavior when RTO expires. This is achieved by making to alternations to
the LINUX style: the duplicate ACKs do not increase the cwnd when retransmitting
from post-RTO retransmission queue, and only the number of originally sent packets
is compared to cwnd when deciding on whether to send new data. Original Linux

compared the sum of original transmissions and retransmissions to the cwnd.

C.2.2 Bug fixes

Following fixes were made to the Linux kernel version 2.3.99-pre9 before running the

IWTCP performance tests.
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e Linux keeps the data received or to be transmitted in data blocks called sk buffs.
Each sk_buff has over 100 bytes of control data in addition to the segment data.
Additionally, Linux allocates a fixed size memory block (usually 1536 bytes) for each

IP packet it receives, instead of using the actual MTU in allocation requests.

The user may limit the amount of memory allocated for each connection by setting
socket options for sending and receiving socket buffer size. If the MTU is significantly
smaller than the size of the fixed memory block allocated, the socket buffer limits will
be reached, even though the amount of actual data received is significantly smaller.
However, Linux uses the amount of actual data received for the basis of receiving
window advertisements, which causes the receiver to advertise more it is allowed
to receive when the MTU size is small. As a result, if the Linux receiver gets more
segments than it has allocated space in its buffers, it discards all packets in its current

out-of-order queue.

As this behavior was not acceptable, we modified the TCP code to use actual data

size in sending and receiving buffer allocations instead of the fixed predefined size.

e When exiting from fast recovery, unmodified Linux sender set cwnd to the value of
ssthresh. In many situations, this caused a burst of ssthresh packets, harmful in en-
vironments with limited last-hop buffer space. We fixed this to set max(packets_in_ flight, 2)
to cwnd when exiting fast recovery. packets in_flight is the amount of unacknowl-

edged packets in network, including retransmissions.

e The unmodified Linux forced the minimum advertised segment size to be 536 bytes
by default (unless changed by sysctl route/min_adv_mss). We changed this to be
256 bytes.

e When a burst of segments arrives, Linux does not acknowledge every second segment
violating SHOULD in RFC [FH99]. The reason for this may be treating segments of
the size less than 536 bytes as a not full sized segments independently on the MSS of

the connection.

e The unmodified Linux did not reduce the congestion window when partial ACKs were
received during fast recovery, as required in [FH99]. We fixed this to decrease the
congestion window by the amount of new data acknowledged with the partial ACK.
After decreasing cwnd, it is increased by one. As a result, one new segment is trans-
mitted in addition to the first unacknowledged segment next to the one acknowledged
with partial ACK.

e Unmodified Linux did not parse TCP option field for incoming segments unless it
was about to send some options. This made, for example, SACK unusable. We fixed

it to parse option fields for all incoming segments.

120



C BASELINE TCP

e Linux grows the congestion window above the receiver window. This can lead to

bursts and should not be done.

e Unmodified Linux did not use an ACK that confirms both a retransmitted and a new
segment to collect an RTT sample. It is possible to collect a valid RT'T sample in this
situation (i.e. there is no contradiction to Karn’s algorithm) and it is quite helpful
for reseting backed off RTO. We fixed it.

e Linux uses a single variable seq high for two purposes instead of two recommended
variables [FH99]. The the variable recover should be used for New Reno, while
the variable send_high should be used for preventing Fast Retransmits after RTO.
Mixing those two variables leads to a non-conformant behavior for example when

several packets are dropped in the middle of the current FlightSize.
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D TCP Enhancements

In this section we discuss enhancements that possibly improve the TCP performance in
our environment. First, appropriate values of the standard TCP control parameters are
considered. Second, we describe two TCP extensions that optimize the protocol operation.

Finally, the active queue management in the router buffer is described.

D.1 TCP Control Parameters

D.1.1 Increasing initial congestion window

The TCP protocol starts transmitting data in the connection by injecting the initial win-
dow number of segments into the network. The initial window of one or two segments is
allowed by the current congestion control standard [APS99]. An experimental extension
allows an increase of the initial window to three or four segments [AFP98]. However, the
number of segments sent after RT'O, the loss window, is fixed at one segment and remains

unchanged.

The increased initial window size has the advantage of saving up to three RTTs from
the connection time. It also decreases the time when the FlightSize of the connection is
smaller than necessary to trigger the fast retransmit if a packet loss occurs. This decreases
the probability of the connection experiencing RTOs. The increased initial window may
have a possible disadvantage for an individual connection in an increased probability of a
congestion loss in the connection start-up when the router buffer size is small. A study
has been made to evaluate a connection with the initial window of four segments when the
router buffer size is three packets [SP98|. The study shows that the four-packet start is no
worse than what happens after two RT'Ts in the normal slow start with the initial window
of two segments. Another simulation study has evaluated the effect of the increased initial
window on the network [PN98]. The study concludes that the increased initial window
size does not significantly increase congestion losses but improves the response time for

short-living connections.

Using an increased initial window can be beneficial in our environment because of the high
RTT of the wireless link and presence of error losses. We expect that the performance
increases with increasing the initial window, but the improvement only affects the begin-
ning of connections. In addition, interesting questions are, whether the number of RTOs
is reduced and whether the start-up buffer overflow is worsened by the increased initial

window.
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D.1.2 Receiver’s advertised window

The amount of outstanding data, the FlightSize, is limited at any time of a connection
by the minimum of the congestion window and the receiver’s advertised window. The size
of the receiver window is a standard control parameter of TCP [Pos81b]. By advertising
a smaller window the receiver can control the number of segments that the sender is
allowed to transmit. The basic analysis of the effect of the receiver window on a protocol

performance can be found e.g. in [Sta00].

If the receiver window is limited to an appropriate value that reflects the available network
capacity, then congestion losses are prevented. The receiver rarely has any knowledge of
the underlying network properties and current state. However, when a host knows that it
is connected to a last-hop wireless link, it could limit the advertised window [DMKMOO].
Limiting the receiver window also prevents excessive queueing in the network (overbuffer-
ing). Overbuffering occurs when the size of the router buffer is much larger than required

to utilize the link.

It is interesting to examine whenever the limited receiver window prevents the start-
up buffer overflow, whether error recovery is disturbed and what the appropriate size
of the receiver window is for a given size of the router buffer. We expect that when the
receiver window is limited to an appropriate value, TCP performance is improved, but
the improvement only affects the beginning of connections and is more visible for a larger
router buffer. When the receiver window is larger than appropriate, we expect TCP to
perform similar to the baseline. The receiver window which is too small can adversely

affect TCP performance.

D.1.3 Maximum segment size

The Maximum Segment Size affects TCP performance [MDK™00]. The Maximum Transfer
Unit (MTU) of the network path imposes an upper limit for MSS; in certain cases using
a smaller MSS is desirable. For example, with an MSS of 1024 bytes, each segment
will occupy a 9600-bps link for almost a second. This is unacceptable for an interactive
application, because a large file transfer packet can delay a small telnet packet for a time
much longer than the human-perceptible delay. Links that rely on the end-to-end TCP
error recovery also demand a small MSS. For a fixed BER, the probability of segment
corruption increases with its size. On the other hand, the header overhead grows with a
smaller MSS, especially in the absence of the TCP/IP header compression. A MSS value
of 256 bytes for a 9600-bps link is often used as a compromise.

123



D TCP ENHANCEMENTS

It is interesting to examine the effect of a larger MSS on the TCP congestion and error
control. TCP grows the congestion window in units of segments, independently of the
number of bytes acknowledged. Using a larger MSS allows a connection to complete the

slow start phase faster.

We expect that TCP throughput increases with a larger MSS in our environment. The
router will drop less packets, because the router buffer limit is in terms of packets, not
bytes. Our error model also favors larger packets, because the error loss probability is
independent of packet size. Due to these factors we cannot directly compare the results of

tests with increased MSS with other optimizations.

D.2 TCP Optimizations
D.2.1 Selective Acknowledgments

TCP acknowledgments are cumulative; an ACK confirms reception of all data up to a
given byte, but provides no information whether any bytes beyond this number were re-
ceived. The Selective Acknowledgment (SACK) option [MMFR96] in TCP is a way to
inform the sender which bytes have been received correctly and which bytes are miss-
ing and thus need a retransmission. How the sender uses the information provided by
SACK is implementation-dependent. For example, Linux uses a Forward Acknowledg-
ment (FACK) algorithm [MM96]. Another implementation is sometimes referred to as
“Reno+SACK” [MMFR96, MM96]. SACK does not change the semantics of the cumula-
tive acknowledgment. Only after a cumulative ACK, data are “really” confirmed and can
be discarded from the send buffer. The receiver is allowed to discard SACKed, but not
ACKed, data at any time.

The FACK algorithm uses the additional information provided by the SACK option to
keep an explicit measure of the total number of bytes of data outstanding in the net-
work [MM96]. In contrast, Reno and Reno+SACK both attempt to estimate the number
of segments in the network by assuming that each duplicate ACK received represents one
segment which has left the network. In other words, FACK assumes that segments in
the “holes” of the SACK list, are lost and thus left the network. This allows FACK to
be more aggressive than Reno+SACK in recovery of data losses. In particular, the fast
retransmit can be triggered already after a single DUPACK in FACK implementation if
the SACK information in the DUPACK indicated that several segments were lost. In
contrast, Reno+SACK will wait for three DUPACKSs to trigger the fast retransmit.

A loss of multiple segments from a FlightSize of data often presents a problem for TCP [FH99].
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As one option, the sender either have to retransmit outstanding segments using the slow
start; most of the segments could be received correctly already and thus are unnecessarily
retransmitted. As another option, the sender can recover by one segment per RTT as
the cumulative acknowledgment number advances. In the presence of SACK, the sender
knows exactly which segments were lost and thus can recover multiple segments per RTT
without unnecessary retransmits. SACK TCP has been shown to perform well even at a
high level of packet losses in the network [MM96].

D.3 Active Queue Management

A method that allows routers to decide when and how many packets to drop is called the
active queue management. The Random Early Detection (RED) algorithm is the most
popular active queue management algorithm nowadays [FJ93]. A RED router detects
incipient congestion by observing the moving average of the queue size. To notify connec-
tions about upcoming congestion, the router selectively drops packets. TCP connections

reduce their transmission rate when they detect lost packets and congestion is prevented.

The RED algorithm solves two problems related to congestion losses: overbuffering and
fair sharing of resources. RED is recommended as a default queue management algorithm
in the Internet routers [BCC*98]. This is motivated by the statement that all available
empirical evidence shows that the deployment of RED in the Internet would have sub-
stantial performance benefits. There are seemingly no disadvantages to using the RED

algorithm, and numerous advantages [FJ93].

RED may not be useful in our environment. The major advantages of RED in providing
fair sharing of resources and the low-delay service for interactive applications simply are
not needed in the case of a single bulk data transfer. It is probable that RED does not
prevent the start-up buffer overflows. Still, we would like to evaluate the effect of RED on
TCP performance in our environment, because RED can improve the performance of two
concurrent bulk connections and the algorithm is expected to be widely deployed in the

Internet.

Here we provide some details about the RED algorithm for an interested reader. The
algorithm contains two parts. The first part is to compute the moving average of queue
size avg that determines the degree of burstiness allowed in the router queue. The second
part is to determine the packet-dropping probability, given the moving average of the queue
size. The general RED algorithm is shown in Figure D.3. The moving average of the queue
size is computed by a low-pass filter giving the current queue size a certain weight in the

result. When the moving average is below the minimum threshold min;, no packets are
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for each packet arrival
calculate the moving average of the queue size avg
if maing, < avg < mazyy,
calculate probability p,
with probability p,:
drop the arriving packet
else if maxy, < avg

drop the arriving packet

Figure 39: The general algorithm of the Random Early Detection (RED).

dropped, and when it is above the maximum threshold mazy,, every arriving packet is
dropped. Between these boundary conditions, each packet is marked with a probability
pq that depends on the moving average. During congestion the probability that the router
drops a packet from a connection is roughly proportional to the bandwidth share of that
connection. By default the RED algorithm measures the queue size in packets, not in

bytes.
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E Test arrangements

In this section we describe the characteristics of the environment where we run the perfor-
mance tests. The characteristics are somewhat similar to data transfer over a GSM link,
but the goal of the performance tests is not to exactly model the behaviour of GSM or any
other wireless communication technology. The environment is emulated using Seawind

wireless network emulator.

E.1 Seawind emulator

In this section we describe Seawind [AGKM9S]|, a real-time software network emulator
developed at the University of Helsinki. Networks with various properties can be emu-
lated with Seawind by altering different simulation parameters affecting, for example, the
bandwidth, latency and reliabilty of the emulated network. Seawind can be programmed
to run several test configurations automatically, making it possible to run tests for several

hours without human interruption.

E.1.1 General overview

Seawind is a real-time emulator which can be run on any common Unix system. It is
transparent to the network applications which are used to generate traffic into the emulated
network, and therefore any application can be used in performance tests to test different
workload patterns. Seawind can be distributed on multiple hosts, which is an important
property, because our goal is to achieve accurate results on top of non-realtime operating
systems, and thus avoid competing processes to exist in the hosts which are used in the

emulation.

Seawind consists of a number of components with a specified role in the emulation. The
Seawind architecture is illustrated in figure 40. For the user, it provides a Graphical User
Interface (GUI), which can be used to define the test parameters and control the test runs.
GUTI is closely tied with Control Tool (CT) which controls the execution of automated test
runs, passing the appropriate information to the different components and collecting the
log information generated by the components. Two types of log information is collected:
Seawind log, which shows a detailed description (e.g. queue size, delays and other events for
each packet) of the actions taken by Seawind in the emulation, and filter log which shows
the relevant protocol information about the packets injected to Seawind. For example,
when TCP traffic is transmitted through Seawind, the filter log output is similar to the
output generated by the widely used tcpdump [JLM97] tool. The filter log is generated by
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both connection endpoints and all SPs used for the simulation.
******* = Control interaction
— Workload path

— Process creation

— Log information

socket
interface

socket
interface

log storage

Figure 40: Architecture of the Seawind emulator.

Simulation of the target network is done by Simulation Process (SP), which can be used
to simulate a link with given rate and reliability properties, as well as a limited input
buffer separately at both ends of the link. More complicated networks can be emulated
by attaching several SPs as a pipeline of components, of which each can be used to model,
for example, a node or a subnetwork in the connection path. Network Protocol Adapters
(NPA) are located at both connection endpoint hosts and they take care of routing the
data generated by applications through the pipeline of SPs to the NPA at the other end
of the emulated network path. The NPAs catch the data after it has been handled by the
network code of the operating system, thus making the transfer transparent to the appli-
cations. In effect, the applications behave as if they really were used over the emulated
link. Additionally, NPAs take care of inserting the data into link layer frames using a spec-
ified link layer protocol, such as PPP [Sim94]. Workload Generator Controller (WLGC)
controls the applications at the endpoint hosts, executing the applications automatically
and collecting the output generated by the application. WLGCs are needed to make it
possible to run automated tests. Additionally, we denominate the applications (or tools)
which are used to generate the workload with a generic term, Workload Generator (WLG).
Seawind daemon is required in the hosts that are to be used in emulation to manage the
TCP connections used to pass the control information and to create and tear down the

components used during the emulation.

Various configuration files can be defined using the GUI to define the properties of the
different components described above. In addition to having configuration files for each SP
used in emulation, WLGs and NPAs at both ends have their own configuration file. The
parameters used for these components depend on the tool used for workload generation

and the link layer protocol used at the NPA. Additionally, there is a network configuration
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file, which defines how the components are distributed in the hosts used in the emulation.

The combination of these configuration files is called a configuration set.

Because Simulation Process is the core of the emulation, we describe its functionality in
more detail. The internal logic of SP can be also thought as a pipeline, because different
operations are done for each packet in a defined order. Figure 41 shows the emulation
events triggered for each packet arriving in SP and finally transmitted out to the next SP
or to the NPA. All of the events shown in the figure are optional and can be skipped from
the emulation. Both directions of the traffic flow are processed through the similar set of

events independently.

LINK

ALLOC| TRANS PROP | ERROR
incoming data outgoing data

H[ I[ I[ I[ ]’ LRB HOUTDROPPER}H

Figure 41: Ordering of events for a packet in a simulation process.

When a packet arrives to SP, it is appended to the end of the input queue. If the size of
the input queue is limited and the input queue is full, the packet can either be dropped
(thus implementing a drop tail policy), or the receiving of new data may be suspended
until there is more room in the input queue again. If there is room for packets in the link
send buffer (LSB), the packets are taken from the head of the input queue and appended
to the link send buffer. In effect, the input queue will not be filled up before the link send
buffer is full.

The packets are taken from the link send buffer to the virtual link one at a time. When
a packet is on a link, it can be affected by various delays before it is transmitted out
from the SP, or dropped to emulate a transmission error on the link. First, an allocation
delay can be issued for the packet, which occurs when the packet arrives at an empty link.
After the allocation delay is finished, the packet is put under transmission delay, which
is used to model a defined bandwidth of the link. The length of the transmission delay
depends on the size of the packet and the sending rate the user has chosen. After the
transmission delay is finished, the packet is put under a propagation delay. The length of
the propagation delay is the same for every packet, regardless of the size of the packet. At
the same time, the next packet can be taken from the link send buffer under a transmission

delay (an allocation delay is not needed, because the link is not idle).

After the propagation delay, an error delay can be issued on the packet. This is commonly
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used to model link layer retransmissions on a reliable link layer protocol. Error delay occurs
on a packet randomly, which makes it possible for packets to get reordered at this point
of emulation. However, the packets are ordered again at the link receive buffer (LRB) and
therefore, packets following the error-delayed packet will also be affected by the delay to
some extent. Alternatively to the error delay, the packet may also be dropped or corrupted

by a certain probability at this point.

An alternative location to drop a packet is just before it would be sent out (output dropper
in figure 41). Various distributions can be chosen for the probability for dropping a packet
at the output dropper.

Seawind can also be used to predefine various configuration sets that can be tested auto-
matically. The group of configuration sets that are used in a test run are called test set.
This is an important feature, because each test run usually takes minutes to complete, as
the test environments are emulated in a real-time basis. Each configuration set can be
tested repeatedly for a defined number of replications (we call one repetition a basic test).
After all replications have been run, the next configuration set in the test set is chosen
and a number of test runs are run with it. Logs of each configuration set are collected into

a separate file to be analysed later.

E.1.2 Emulation parameters

In this subsection we describe the most important parameters of Seawind which are used
to emulate various environments in the IWTCP performance tests. SP parameters are
chosen separately for uplink and downlink traffic. NPA parameters are common in both

flow directions, but are chosen separately for mobile and remote ends.

Simulation Process

The following three parameters define the properties of the input queue, in which the
packets arrive first, when SP receives them. The input queue can be used to emulate, for

example, the last-hop router buffer.

There are three types of parameters. Some of the parameters contain a set of literal values,
of which one is chosen. Other parameters have a single numeric value. A third type of
parameters are distribution parameters, for which a random distribution with parameters
specific to that distribution is chosen. The actual parameter values are chosen randomly
based on the selected distribution. The following distributions may be chosen: static,

uniform, normal, lognormal, exponential, hyperexponential, 2-phase markov, beta, gammea,
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cauchy and user. User distribution is an external file containing numeric values, which
the random function uses uses sequentially. User distribution can be used to repeat a
predefined set of events. Additionally, e.g. single packet drops and single delays can be

caused using the user distribution.

¢ queue max_length defines the maximum length of the input queue in a number

of packets. If this parameter is not defined, the input queue length is unlimited.

e queue overflow handling defines what to do when new packets arrive and the
input queue is full. There are three choices that can be made. When DROP is
selected, SP drops packets when they do not fit in the input queue. The STOP mode
causes the router to stop reading when the queue becomes full. FLOW CONTROL
can also be selected, in which case the SP blocks the neighbouring component (another

SP or NPA) from sending new data until there is more room in the SP’s input buffer.

e queue drop policy defines the algorithm to be used in deciding when to drop
packets and which packets are dropped. Currently there are two policies that can be
chosen. TAIL is the traditional tail-drop policy and RED is the RED drop algorithm
[FJ93] and if it is chosen, some additional RED parameters need to be specified.
min threshold specifies the threshold for the number of packets in the input queue,
after which the SP starts dropping packets by a certain packet drop probability. max
threshold specifies the number of packets allowed in a queue after which all packets
are dropped from the queue. Thresholds are not compared to the actual queue size,
but to a moving average of recent queue length samples. queue weight defines how
much each queue length measurement affects the moving average compared to the
threshold values. The value is defined as a fraction of the total queue length. max
probability defines the maximum probability for a packet to be dropped when the
average queue length is between the thresholds. A detailed description about the
RED algorithm can be found in [FJ93].

Following two parameters define the sizes of link buffers (LSB and LRB in figure 41). Sizes
are defined in bytes. Link buffers store total packets, even if there would be space in the

buffer to store a fraction of the next packet.

¢ link send buffer size can be thought of as an extension to the input queue, and

is located next to the input queue, at the sending end of the link.

¢ link receive buffer size defines the size of the link receive buffer, located at the

receiving end of the link.

The next set of parameters define the bandwidth and latency of the emulated link.
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e rate base defines the basic rate in which the data can be transmitted to the link.

It affects the transmission delay calculated for each packet.

e available rate is defined as a multiplier to the rate_ base described above. This is
a distribution parameter and a new random value is chosen following the specified
distribution after intervals defined with the rate change interval parameter. The

resulting transmission rate at the emulated link is rate base *

avail, avail being
randomly selected as defined with this parameter. If this parameter is not defined, a

static transmission rate is used, as defined with rate base parameter.

e rate_change interval defines the distribution for time intervals in which the avail-

able rate is changed.

e mtu parameter for SP defines the size of the units SP reads with a single read () call

from the incoming data socket.

e propagation delay defines the length of the propagation delay which affects each
packet.

The following parameters define the various delays shown in figure 41 and the two locations

in which the errors can be affected (error dropped and output dropper).

e allocation delay is a distribution parameter, applied as described above. The
distribution of allocation delay length is given with this parameter. If this parameter

is not defined, allocation delay does not occur at all.

e error _handling defines the type of action taken by SP when an error occurs for
a packet. The errors are caused at the end of the emulated link, after the other
delays have been finished. The possible types of error handling are dropping the
packet when an error occurs (DROP), delaying the packet for a time specified with
the error delay function parameter (DELAY) or corrupting the packet without
dropping or delaying it at this point (FORWARD). If the error parameters are not
defined, no delays, packet drops or data corruption occur at this point of the link.

e error_rate type defines the unit against which the error probability is defined.
The errors can be either bit errors BIT in which case the value given with er-

ror_probability parameter is the bit error rate of the link, or the error probability
can be defined per packet UNIT.

e error _probability is a distribution parameter defining the probability of error,

either per unit or per bit, depending on the value of the error_rate type parameter.

e error _delay function is used only when the error_handling parameter is set to
DELAY:. Tt defines the distribution of error delay lengths to be applied to the packets
which are affected by the error delay.
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e output dropper is a distribution parameter which defines a probability for each

packet to be dropped at the output dropper.

Network Protocol Adapter

The following parameters affect the behaviour of the PPP NPA located at both ends of

the connection path.

e mtu and mru are parameters for PPP, defining the maximum size data unit the
PPP will transmit and receive from the device interface. TCP MSS depends on
this parameter, and is usually the mtu negotiated by the endpoint subtraced by the
TCP/IP header length.

e buflen defines the maximum size of data block that is read by a single read() call
by NPA from the SP or from the PPP daemon.

Example of a parameter set

A GSM-like link with a RLP-like protocol and a last-hop router with a buffer size of 7
packets would be emulated with Seawind by setting the values described in table 37. The
table shows SP settings separately for uplink and downlink flow. Additionally, the chosen
NPA values are shown. These values cause a TCP MSS of 256 bytes to be used.

Note that the given parameters are approximations of a GSM-like link and this setting
makes simplifying assumptions (e.g. for the delays). The SP queue for the downlink is
used to emulate the last-hop router buffer. No queue length limit is specified for the uplink,
but it could be used, for example, to emulate a buffer in a wireless device interface. Link
buffer sizes are somewhat close to the size used in the RLP protocol. Additional delays
are created randomly using error delays. Delays occur at a per-packet probability of 0.01
and their length is uniformly distributed between 500 and 6000 milliseconds. These delays

would emulate e.g. link layer retransmissions in case some data is corrupted.

E.1.3 Discussion

The issue of emulation accuracy is worth discussion. Linux, as a non-realtime operating
system can not guarantee an exact response time for user space application, such as Sea-
wind. The critical issue affecting the simulation accuracy is the accuracy of the sleep times

issued from the operating system. When a Linux process is put to sleep (e.g. during the
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Table 37: An example of chosen parameter values when emulating a GSM-like link.

Parameter name

Downlink value

Uplink value

queue _max_length 7 -

queue overflow handling | DROP -

queue drop policy TAIL -

link send buffer size 1220 bytes 1220 bytes
link receive buffer size | 1220 bytes 1220 bytes
rate_base 9600 bps 9600 bps
available rate - -
rate_change interval - -

mtu 512 bytes 512 bytes
propagation delay 200 ms 200 ms
allocation _delay - -

error _handling DELAY DELAY
error rate type UNIT UNIT
error _probability 0.01 0.01

error delay function
output_dropper

uniform (500 ms, 6000 ms)

uniform (500 ms, 6000 ms)

NPA: mtu
NPA: mru
NPA: buflen

296 bytes
296 bytes
4096 bytes

296 bytes
296 bytes
4096 bytes

134




E TEST ARRANGEMENTS

delay of a packet) for a specified amount of time, it is usually woken up a few milliseconds
late of the time issued. The exact amount of oversleeping varies, so the solution is not as

simple as just subtracting a certain amount of milliseconds from the wanted sleep time.

We have implemented delays so that each sleep issued by Seawind is a parametrised amount
of milliseconds shorter than the actual amount to be slept. The estimated oversleep time
is chosen to be large enough to ensure that the simulation process is usually woken up
before the actual wakeup time is due. We have set this estimate to 7 milliseconds. When
the process is woken up, it checks from the system clock how many milliseconds it still has
to wait before the accurate sleep time is finished. The process spends the rest of the delay
time in a busy loop, exiting it at the time when the issued delay is finished. Additionally,
the timestamps after each sleep are written into the Seawind log, so that the exact sleep
times can be monitored and it is ensured that the results are accurate. Of course, there

must not be any CPU intensive processes at the same host as SP during the test runs.

Another concern related to simulation accuracy is that the PPP frames are transmitted
on top of the TCP protocol between the NPAs and the SP. The frames are small in our
tests (PPP MTU of 296 bytes is usually used), so there is a risk that the Nagle’s algorithm
[Nag84] is activated, causing a frame to be delayed at the sender until more frames are
issued to be sent. Linux allows the Nagle’s algorithm to be turned off by a dedicated socket

option, and we have disabled the Nagle’s algorithm for the internal traffic of Seawind.

E.2 Test setup

In this section we describe the environment used in the IWTCP performance tests.

E.2.1 Emulation environment

The IWTCP performance tests were run in a isolated LAN (10Mbps Ethernet) with four
network hosts. The machines in the network are 400-Mhz Intel Celerons, running Linux
RedHat 6.1. Three of the machines are used in a single test run. One machine acts
as a mobile end host, another as a remote end host and one machine runs the SP. The
mobile and remote end machines have Linux kernel version 2.3.99-pre9, which we have
modified afterwards (see Appendix C for details). The SP host has an unmodified version
2.2.14 of the kernel. The TCP behaviour of the SP host does not have an effect on the
emulation results, as long as it receives and transmits the Seawind data timely (e.g. the

Nagle algorithm is disabled for Seawind emulation data traffic).
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E.2.2 Logging

SP generates a log of the actions made during a test. For each log event there is a
timestamp of the event in microseconds, flow direction for which the event occured, event

type, packet id and event description shown. Log events are generated for various reasons:

e Arrival of packet. Each packet received by SP cause this log event. In addition
to the common information described above, the size of the packet (including PPP
overhead), IP address of the source, length of the IP packet (including the header),
TCP port of the source, TCP sequence number and TCP acknowledgement number
are printed.

For each packet received, the size of the input queue is printed each time a packet

arrives.

¢ Queue drops. Each packet dropped from the input queue generates a log event.
The reason for dropping is printed in addition to the standard output (e.g. Queue
overflow, RED probability hit or RED max threshold exceeded)

e Delays. Each delay that affected packet are written in the log. In addition to the
standard information, the delay type (allocation, transmission, propagation or error)
and the delay length are printed. If the delay event was triggered significantly too

late, a warning is printed.

¢ Random drops. If a packet is dropped either by the error dropper or by the output

dropper, an event is created to the log.

e Rate changes. If the transmission rate is changed, a log event is generated. In

addition to the standard information, the new transmission rate is printed.

e Packet transmissions. After a packet has traversed through the SP emulation
process, it is sent out. A log event is generated for each packet transmitted and
released by the SP. Additionally, the time elapsed from the last SP event to the

return of write() call is printed.

In addition to SP log, the output of WLGs is written to a dedicated log file. This file

contains the application level output, e.g. time measurements made by ttcp tool.

Filter logs can be received from SPs and NPAs (i.e. at the connection endpoints). When
TCP traffic is used, filter logs are simply output of the tcpdump tool [JLM97]. For each
TCP segment timestamp in microseconds, the sending and receiving IP address and TCP
port, sequence number, acknowledgement number and TCP flags are shown. If there were

TCP options included, they are also printed.
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E.2.3 Workload generation

Any application using the standard socket interface could be used as a workload genera-
tor for Seawind. The application can be attached to Seawind by a plugin script with a
Seawind-compatible command line interface. By executing this script Seawind repeatedly
executes the WLG tool automatically, as specified in the configuration generated by the
user. The WLG applications can be started to run in parallel to make several simultaneous
connections open through the link emulated by Seawind. Seawind is transparent to the
WLG applications, so the networking code of the applications need not be modified in any

way.

We mostly use slightly modified ttcp as a WLG tool. ttcp is a small tool generating bulk
traffic in a single connection. The transmitting ttcp writes data blocks of the specified
size to the TCP socket a specified number of times. The receiving ttcp reads blocks
of the specified size from a TCP socket, until the other end closes the connection. Our
modification of ttcp can also generate bidirectional bulk traffic, in which case there are
transmitting and receiving ttcp processes at both ends of the connection. However, a

single processes is used for both flow directions.

The following parameters are the most used ones in the ttcp-WLG:

¢ buffer length. The size of the block to be read or written with a single call to
the TCP socket interface. Using a value divisible by the TCP MSS to avoid the silly

window syndrome is recommended.

e number of buffers. The number of buffer_length - sized blocks to be transmitted

to the network. This parameter is used for the transmitting ttcp.

e send sock buffer size. The size of the sending socket buffer. By default this is
32 KB.

e receive _sock buffer size. The size of the receiving socket buffer. By default
this is 32 KB.

Usually only buffer length and number of buffers have been specified in IWTCP tests.

For example, to create 100 kilobytes worth of bulk data, we could set buffer length to
1024 bytes and number_of buffers to 100.
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