TCP Enhancements in Linux

Pasi Sarolahti
Berkeley Summer School
6.6.2002

Outline

L Ay L
TCP details per IETF RFC’s
Pitfalls in the specifications
Linux TCP congestion control engine
Features
Discussion on performance
Aside from Linux: F-RTO
Conclusions

T W W

TCP Basics

Slow start, congestion avoidance

Receiver generates duplicate ACKs when data is

missing

Fast retransmit at third duplicate ACK

Fast recovery to keep the "ACK clock” in pace
Standard Reno (RFC 2581) or NewReno (RFC 2582)

Without SACK at most one retransmission in RTT

Retransmission Timer adjusted smoothly based on

measured round-trip times
SRTT + 4 * RTTVAR

e W

Some TCP Enhancements

SACK: allow several retransmissions in RTT
acknowledge separate blocks of received data
conservative: "holes” are still outstanding
Forward ACKs (FACK): "holes” are considered lost

D-SACK: report duplicate segments using SACK
Timestamps: measure RTT for retransmissions

Eifel: report unnecesary retransmissions using
timestamps

ECN: Explicit Congestion Notification
Limited transmit: Avoid timeouts with small window

Discussion on Specifications

i it i it
= RFC 2581 & RFC 2582: Congestion Control
= Cwnd is artificially increased on duplicate ACKs. It does not
correspond to real number of segments allowed to be in
ﬂlght inflight = SND.NXT — SND.UNA
= SACK congestion control draft
= Separate document that assumes SACK is in use
= Cwnd is not artificially increased e BN — SND.UNA — SAcKad
= We need to implement both? Nah... o ool =SERENA=
= RFC 2988 does not work well with high-granularity
timers
= No one sees this, because RTTs are generally below 1000ms
5
L L L L
RTTVAR <- %* RTTVAR + ¥%* | SRTT —MRTT |
SRTT <- 7/8* SRTT + U8 * MRTT _ -
RTO <-max(1000ms, SRTT + 4 * RTTVAR) wl
= RTO estimator decays m '5
rapidly | 4
= When measured RTT 27 i
drops, RTO goes up Bul) 1\ f Nk
= No one cares, because Y "--1.,-- AW |‘.- LT
= Min limit of 1000ms D T %
= Coarse-grain timers a0 e R il
‘o n m n = |-"1j:=w-l = m = m m
6

T W W

Linux Approach

in flight = packets out — sacked out— lost_out + retrans out

Common congestion control with Reno, SACK, FACK

sacked out: # of segments surely left network
SACK: number of SACKed segments
Reno: number of duplicate ACKs

lost_out: # of segments suspected lost
SACK & Reno: first unacknowledged is considered lost
FACK: holes between SACKs are considered lost

scoreboard markings are updated accordingly

e W

CA States

-CWR ECN 0 Lupacks
v
Disorder ~ »{Recover
reordering>

successive
dupacks
<r eor der i ng> is adjusted when unnecessary retransmission
is detected
by default 3
Window is increased in Open and Loss states

Window is decreased in CWR and Recovery states

Features

L J W L J W

= Implements Explicit Congestion Notification (ECN)

= Congestion window is decreased steadily every
second ACK in CWR and Recovery states
= as in "rate-halving"

= Disorder state implements "Limited transmit" in
practice

= Congestion window validation: If congestion window
is not fully used for a while, it is reduced

= Congestion control state is cached for future
connections

Linux Retransmission Timer

w ™ L W
= Based on RFC 2988 wr i
» min. RTO = 200 ms il T

= min. RTTVAR = 50 ms :.
= RTTVAR reduced once G i.l

per round-trip time g A
= but increased instantly i Y . I' \“--,‘ |'
= if RTT drops TN 'k ; =
significantly, RTTVAR el e M
weight is reduced to Vo
- .._';.._.-_."'u,,"'" "s....n...

1/32 =

10

T W W

Congestion Window Undoing

TCP sender can make false retransmits, e.g. due to
false RTOs caused by unexpected delay
dupacks caused by reordering in network

False retransmits can be detected by using

TCP timestamps: receiver echoes timestamp of original
segment after retransmission

D-SACKs: a retransmitted segment is acknowledged in
cumulative ACK and in D-SACK

After detecting false retransmission the sender sets
cwnd <- max(cwnd, ssthresh * 2)

ssthresh <- prior_ssthresh

11

e W

Undoing on TCP Timestamps

Without timestamps 7~

A 3-second excessive
delay occurs on 5
256Kbps link

Triggers RTO, but ACKs
for original segments
arrive after RTO
congestion window is .
halved

65 KB acknowledged

between 5 and 10 s. o=t

IEN AT
]

12

=

L]

i &

Undoing on TCP Timestamps

With timestamps

= Next ACK after RTO
echoes timestamp of
original segment

= Spurious timeout is
detected
= continue by
transmitting new data
= revert recent changes
on congestion control
parameters
= 75 KB acknowledged
between 5 and 10 s.

irh

[T}

IEE AT
— askievd

13

=

LTl

Undoing Can Fall

= Link outage: One
window of data
segmenents and ACKs
are dropped

= ACKs echo latest
timestamp that updated
window

= Because ACKs are lost,
sender thinks new ACK
acknowledged earlier
data

= Declares RTO spurious

3

Bepsres reried nie
&

14

T W W =1

Delayed Acknowledgements

Delayed acknowledgements should be used to avoid
silly window syndrome
Linux receiver measures interarrival times and
adjusts delay timer accordingly

goal is to get an ACK out for every second segment
Quick acknowledgements can be used at the
beginning of the connection

causes the sender to increase the window faster

to avoid SWS, no more than (advwin / 2) quick
acknowledgements are allowed

15

e W

Effect of Quick Acks

Without quickacks

256 Kbps, 200 ms delay
=> BW*delay more ‘

than 12 KB 23
4-5 round-trips until the E '
link is fully utilized 2;
every second segment ¢ =
is acknowledged 8

50 KB transmitted in 2.5
seconds 03

dutn. e
ok rvd

16

Effect of Quick Acks

w1 W w1 W

With guickacks

= For the first 32 KB every
segment is
acknowledged
= 50 KB transmitted in 2 %
seconds s
B
i

L

17

F-RTO

iy ¥ L o
= Why should we retransmit everything after RTO?
= Transmit two new segments after the RTO

= |If the resulthing two ACKs advance the window, we
have a suspected spurious timeout in our hands

= If they don't advance the window, reset cwnd to 1 +
RTT's after RTO = 3, and retransmit unacknowledged

= No need for SACK or timestamps
= F-RTO is _not_ about congestion window undoing
...but works well together with Eifel or D-SACK

18

F-RTO Behaviour

At * At *
Delay on thelink o'
= On RTO the first &
segment is s
retransmitted . :
= Next two ACKs advance = # et &
window => continue by : /
transmitting new data g ' _ :
= At least the second ACK .. ! e
was for delayed W el
segment ¥
= Congestion window is A [y S U S eS|
reduced tO half due tO L] [t} w 74 'ﬁhh.l:!. £ iU Fo] F #
RTO
19

M o M o
Burst error on thelink .= : : .
b1 i
= First ACK advances the | ’
window => transmit sal : o
two new segments it N
m Second ACK does not 3?:.- y | { _;‘
=> start retransmitting E il IR e
in slow start S":- B g, TN SRS RS
wt/
!B:I.l'.;
[ey
5 " 12 15 1 1" 16 T " @ p
T 5
20

Performace with Delays

Ihrcaghpet |bytons
T B R
) |

21

Performace with Burst Errors

22

T W W

Concluding Remarks

¥ L ¥ L
Implementation follows packet conservation in
practice

congestion window always holds a valid value
counters try to estimate how many packets really are
outstanding

If the data structures tracking outstanding and

supspected losses are incorrect they are corrected, if

incorrectness is detected

Retransmission timer tries to avoid the pitfalls of the
original algorithm

23

