
Nordic Journal of Computing 1(1994), 493–515.

HARD GRAPHS FOR THE RANDOMIZED
BOPPANA-HALLDÓRSSON ALGORITHM FOR

MAXCLIQUE

MARCUS PEINADO
Department of Computer Science, Boston University

Boston, MA 02215, U.S.A.

Abstract. A randomized version of the Maxclique approximation algorithm by
Boppana and Halldórsson is analyzed. The Boppana Halldórsson algorithm has the
best performance guarantee currently known for the Maxclique problem. This
paper presents a class of graphs on which the performance ratio of the randomized
version of the algorithm is not better than Ω(

√
n) with probability greater than

1 − 1/nω(1).

CR Classification: F.2.2, G.2.1, G.2.2, G.3

Key words: approximation algorithms, Maxclique, randomization

1. Introduction

Unlike many other NP -hard problems, the Maxclique problem has re-
sisted attempts to find efficient approximation algorithms. Indeed, the well
known result of Arora et al. [1992] proves that no deterministic polynomial
time algorithm can approximate the maximum clique in a graph to within a
factor of nc for some (very small) c > 0 unless P = NP . The performance of
an approximation algorithm A for Maxclique on an input graph G is gen-
erally measured by the ratio of the size of the largest clique in G and the size
of the clique A finds when run on G. The performance guarantee of A is the
maximum such ratio over all inputs. Recently, Boppana and Halldórsson
[1992] have found a subgraph exclusion algorithm to approximate Max-

clique with a performance guarantee of O(n/ log2 n). This is currently the
best performance guarantee known for the Maxclique problem. Much ef-
fort has been devoted to narrowing the gap between the positive and the
negative approximation result. Currently, the sharpest negative bound is
due to Bellare and Sudan [1994]. Assuming NP̃ 6= co-RP̃ , it asserts that
Maxclique cannot be approximated within nc where c = 0.25 − o(1).

Boppana and Halldórsson [1992] also show, non-constructively, that graphs
on which the performance of their algorithm is not better than Θ(n/ log2 n)
have to exist. Indeed, it is not too difficult to construct graphs explicitly on
which the performance of the algorithm is bad. These simple constructions
rely on the fact that the algorithm selects the vertices in one particular

Received May 1994. Accepted September 1994.

494 MARCUS PEINADO

ordering (e.g. lexicographic order). Thus, one might reasonably expect that
if the algorithm selects the vertices at random, its performance might with
high probability improve. A similar idea is the basis of most successful
randomized algorithms: bad worst-case performance of the deterministic
algorithm on few inputs is traded off against a very small probability of bad
performance of the randomized algorithm on many inputs. Kučera [1991]
investigates this idea in the context of the Graph Coloring problem.
He derives a lower bound for the randomized greedy heuristic for Graph

Coloring.
This paper shows that randomization can only have limited success when

applied to the Boppana-Halldórsson algorithm. It displays a class of graphs
which contain cliques of size nα (given any constant α < 1/2) and proves
that the size of the clique found by the randomized version of the Boppana-
Halldórsson algorithm is smaller than nδ (for all δ > 0) with probability
greater than 1 − n−ω(1). Consequently, even with polynomial amplifica-
tion, the probability of finding a larger clique is less than n−ω(1). As an
intermediate step in the proof, it is shown that the central subprocedure of
the algorithm – which in itself is a generalization of the randomized greedy
method – performs worse than nα for all α < 1.

Unlike the results mentioned above which are based on probabilistically
checkable proof techniques, the negative results in this paper apply only
to the algorithm considered here – not to algorithms for the Maxclique

problem in general. This allows us to give a tighter negative bound. In
addition, our result does not depend on any complexity theoretic assumption
like NP̃ 6= co-RP̃ which – although generally believed to be true – is open
and clearly stronger than P 6= NP .

The critical component of the graphs discussed in this paper are random
graphs with a forced clique of size nα (0 < α < 1). These graphs have
been used by Jerrum [1992] to show that the Metropolis process cannot
approximate Maxclique to within a factor nα for any α < 1/2.

The analysis of the algorithm’s performance on random graphs is com-
plicated by the fact that during its execution, the algorithm destroys (ex-
cludes) certain parts of the graph. As parts of the originally random graph
are removed, it can no longer be assumed that the remaining edges are in-
dependent. Therefore, the well known techniques for the analysis of random
graphs cannot be applied. For this reason, the graphs presented here are
somewhat more complicated. They retain their basic random graph struc-
ture even after a limited number of subgraph exclusions.

The remaining parts of the introduction contain definitions, a description
of the algorithm and an outline of the paper.

1.1 Definitions and Notation

Let G = (V,E) be a graph. If G is not clear from the context, V (G) is
used to denote the vertex set of G. For v ∈ V let the neighborhood of v
in G be NG(v) = {u ∈ V |{v, u} ∈ E} and let the neighborhood of a set

HARD GRAPHS 495

S ⊆ V of vertices be NG(S) =
⋂

v∈S NG(v). Similarly define N̄G(v) = {u ∈
V |{v, u} 6∈ E and u 6= v} and N̄G(S) =

⋂

v∈S N̄G(v). Thus NG(S) is the
set of all vertices v ∈ V which are adjacent to all vertices in S, and N̄G(S)
is the set of vertices which are adjacent to no vertex in S. If the graph G
can be inferred from the context we will simply write N (v), N̄ (v), N (S),
N̄ (S). G(n, p) denotes the distribution of random graphs with n vertices
and edge probability p. In general, given a distribution D, the expression
‘X ∈ D’ is used as a shorthand for ‘generate X according to distribution
D’ or, equivalently, ‘let X be a random variable with distribution D’. P(S)
denotes the power set of the set S. Throughout this paper, n denotes the
number of vertices in the given graph. All logarithms have base 2.

The standard o and ω notation is used in two contexts: g(n) < no(1)

expresses that the function g(n) grows asymptotically slower than nε for all
constant ε > 0. Similarly, n−ω(1) denotes a function that approaches zero
faster than 1/p(n) for any polynomial p(n).

1.2 The Algorithm

We give a brief summary of the presentation of Boppana and Halldórsson
[1992]. The algorithm consists of a subgraph exclusion procedure and a
recursive subprocedure (Ramsey) which is motivated by Ramsey theory
and which, given an input graph, returns a clique and an independent set.
The subgraph exclusion procedure calls Ramsey, stores the clique returned,
and removes the independent set from the graph. This is repeated until the
graph has become empty.

The Ramsey subprocedure is a generalization of the greedy method:

greedy(G):
IF G is empty THEN return 0/
ELSE choose a vertex v

return {v}∪ greedy(N (v))

The selected vertex is called a pivot vertex. The vertex set returned is a
clique because when a vertex is selected, its non-neighborhood is no longer
considered. Ignoring the non-neighborhood can lead to arbitrarily bad re-
sults because it might contain much larger cliques than the neighborhood.

Ramsey improves and generalizes the greedy method by making an addi-
tional call to search the non-neighborhood of the pivot vertex. Thus, each
recursive call has two cliques to choose from: the clique found in the neigh-
borhood of the pivot together with the pivot and the clique found in the
non-neighborhood. Ramsey returns the larger one.

Clearly, the same idea can be used to find an independent set by inter-
changing the terms neighborhood and non-neighborhood. Ramsey returns
both an independent set and a clique in the input graph.

496 MARCUS PEINADO

Ramsey((V,E)):
1 IF (V,E) is empty THEN return (0/, 0/)
2 ELSE choose a vertex v ∈ V
3 (C1, I1) := Ramsey(N (v))
4 (C2, I2) := Ramsey(N̄ (v))
5 return (larger of (C1 ∪ {v}, C2), larger of(I1, I2 ∪ {v}))

Using Ramsey theory, Boppana and Halldórsson [1992] show for the clique
C and independent set I returned by Ramsey(G) that |C| · |I| ≥ log2 n/4.
This bound in itself does not guarantee a minimum size of C since |I| can
be large.

The purpose of the subgraph exclusion algorithm is to modify the graph
such that, eventually, |I| will be small. This is achieved by repeatedly calling
Ramsey and excluding (removing) the returned independent sets:

IS Removal(G):
i := 1
(Ci, Ii) := Ramsey(G)
WHILE G 6= 0/

G := G \ Ii

i := i + 1
(Ci, Ii) := Ramsey(G)

return maxj≤i Cj

A clique in G can lose at most one vertex per iteration because a clique
and an independent set can share at most one vertex. If the graph has a
large enough clique, a constant fraction of the graph will be left even if all
independent sets of a certain minimum size k are excluded. If Ramsey is
run on the resulting graph, the size of I can be at most k. This implies
a lower bound on |C| ≥ log2 n/(4k). If the largest clique is small, the
performance of the algorithm on the graph is trivially good. The result
of this analysis is a performance guarantee of O(n/ log2 n) (cf. Boppana
and Halldórsson [1992] for details). Furthermore, Boppana and Halldórsson
[1992] show non-constructively that this performance guarantee is tight, i.e.
that graphs have to exist on which the performance of the algorithm is not
better than Θ(n/ log2 n).

An important concept in the analysis of Ramsey which was used in Bop-
pana and Halldórsson [1992] and which will be used frequently in this paper
is the tree of recursive calls made by Ramsey. We call this tree the compu-
tation tree. Each node in the computation tree corresponds to a recursive
call made by Ramsey. If the input graph to the recursive call is empty,
Ramsey returns in line 1 and the corresponding node has no children. Oth-
erwise, the node has two children corresponding to the two recursive calls
of lines 3 and 4. We adopt the convention of identifying the recursive call of
line 3 which searches the neighborhood with the left child and of identifying
the call in line 4 (non-neighborhood) with the right child. We will ignore
all nodes corresponding to recursive calls with an empty input graph. Each

HARD GRAPHS 497

1 2

3 4
5

1
2

3 4
5

Fig. 1: The computation tree (labeled by the pivots) that results from running Ramsey
on the graph on the left-hand side and choosing the pivots according to the lexicographic
order.

node can be labeled with the pivot vertex chosen in line 2 or with the input
graph to the corresponding recursive call. We will use both kinds of labels
to identify nodes. Fig. 1 shows a five vertex graph and the computation tree
which results if the pivots are chosen in lexicographic order. The cliques
and independent sets found by Ramsey are closely related to the paths in
this tree. Given any path from the root to a leaf, the leaf and the parents
of all left edges form a clique. Similarly, the leaf and the parents of all right
edges form an independent set. Thus, the size of the largest clique plus the
size of the largest independent set limits the maximal possible path length.

The algorithm as described by Boppana and Halldórsson is determinis-
tic. The pivots are selected according to some predefined ordering (e.g.
lexicographic). It is relatively easy to construct graphs (together with an
ordering of the vertices) on which the algorithm performs badly. This sim-
ple construction which depends on the fact that the algorithm chooses the
vertices in the order given, breaks down if the pivot vertices are chosen at
random. In this paper, we analyze a randomized version of the algorithm
in which Ramsey chooses the pivots at random, i.e. in each recursive call
the pivot is chosen uniformly at random from the vertex set of the input
graph to the recursive call. We call the randomized Ramsey subprocedure
R-Ramsey. Furthermore, we allow polynomial amplification, i.e. we an-
alyze a procedure PaR-ramsey, which calls R-Ramsey nO(1) times and
returns the largest clique and the largest independent set found in all runs.
Thus, if R-Ramsey finds a clique of a certain size with probability at least
n−k for some k ∈ IN, then PaR-ramsey will return a clique of that size
with probability arbitrarily close to one. Finally, let PaR-IS-exclusion

denote the subgraph exclusion procedure which calls PaR-ramsey instead
of Ramsey. The main result of this paper is:

Theorem 1. There is a function h(n) < no(1) such that for all α ∈ (0, 1/2)
and infinitely many n ∈ IN there are graphs G of size |V (G)| = n with cliques
of size nα such that

P(PaR-IS-exclusion(G) finds a clique larger than h(n)) < n−ω(1)

498 MARCUS PEINADO

Furthermore, for infinitely many n there is a polynomial-time computable
distribution Dn on graphs of size n such that the statement remains true
even if the input graph G is a random variable with distribution Dn.

Thus, we show that there are graphs on which PaR-IS-exclusion does
not approximate the maximum clique better than Θ(

√
n). Furthermore, we

construct efficiently computable distributions such that almost every graph
sampled from these distributions has this property.

1.3 Roadmap

Most of this paper is dedicated to constructing hard graphs for the ran-
domized Ramsey subprocedure. The last section shows that these graphs
remain hard even if the subgraph exclusion procedure is added to the algo-
rithm. The proof for R-Ramsey is divided into a part which establishesa
graph property that guarantees graphs to be hard for the algorithm (sec-
tions 3 and 4) and a second part (section 5) which contains the construction
of a class of graphs which has this property.

Section 2 is an informal description of the main ideas of the construction.
In section 3, we define a Markov chain whose state space was chosen to model
the size of the clique found by the algorithm as it progresses. The transition
probabilities are closely related to the probability that the algorithm finds a
useful vertex in the next step. We go on to show that it is extremely unlikely
that the Markov chain will, within the given number of steps, reach a state
which would correspond to a non-negligible clique size.

In section 4, we define a graph property and show that if the input graph
possesses this property, Ramsey will, with very high probability, find only
a negligibly small clique. The central part of the corresponding proof shows
the correspondence between the behavior of the algorithm and the Markov
chain and uses the result of section 3.

What remains to be done is to construct graphs which contain large cliques
and which have the property defined in section 4. Section 5 defines a class of
graphs and shows that it has these properties. This completes the analysis
for the randomized Ramsey subprocedure. Finally, section 6 shows that
the constructed graphs continue to be hard even if the subgraph exclusion
procedure is added.

2. An Example

The purpose of this section is to give some intuition about the construction.
We describe how the algorithm is likely to behave on an input graph which
is somewhat simpler than those described in this paper; yet shares most of
the properties which are needed to make the construction work. We focus
on these properties.

The graph class considered in this section are random graphs G = (V,E)
with large embedded cliques. Generate G as follows: Given the vertex set
V of size n and the size l of the clique to be embedded, randomly select a

HARD GRAPHS 499

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � �
� � �
� � �
� � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

N(v)N(v)

a

v

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � � _

� � �
� � �
� � �
� � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � �
� � �
� � �
� � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

N(v)N(v)

b

v

_

T TL L

Fig. 2: The behavior of R-Ramsey when run on a random graph with a large embedded
clique: top: the input; bottom: the inputs to the two recursive calls made by R-Ramsey
(N (v) and N̄ (v)); a) the pivot is in T . b) the pivot is in L.

subset L of V of size l = |L| and force it to be a clique by putting all edges in
{{vi, vj} : vi, vj ∈ L, vi 6= vj} into E. Determine all other edges by random
independent coin flips. Let T = V \ L be the vertices not belonging to the
embedded clique. We note that graphs of this kind form the ‘skeleton’ of the
graphs constructed in this paper and that they share most of the relevant
properties. We fix l to be l = nα for constant α such that 0 < α < 1 and go
on to examine these properties.

Note the main difference between T and L: G restricted to T is a random
graph and, thus, does not contain any cliques larger than approximately
2 log n.1 G restricted to L on the other hand is a clique of size nα �
2 log n. Any cliques the algorithm might find in T are small and practically
irrelevant. The goal is to ensure that the algorithm does not find any large
subcliques of L. For this, it is necessary that the probability of selecting a
vertex from L is small whenever the algorithm randomly picks a vertex in
line 2 of R-Ramsey.

1 We refer to several properties which are satisfied with very high probability. In order
to simplify the exposition in this section, we will only name these properties and omit the
statement ‘with high probability’.

500 MARCUS PEINADO

Initially, L is much smaller than T . In particular, |L| < |V |/nε (ε > 0) so
that the probability that the randomly chosen vertex is in L is at most n−ε.
Much of the analysis in this paper is needed to show that this probability
is not likely to become larger than n−δ for some δ > 0 as recursive calls are
made and the input graphs to these recursive calls are considered. For now,
let us consider the behavior of R-Ramsey on an input graph as in Fig. 2.

Assume that the graph in the top half of the figure is the input to R-

Ramsey. The round, dark shaded region represents the clique L. Since the
graph is not empty, R-Ramsey randomly picks a pivot vertex v. Fig. 2a
illustrates the case v ∈ T which is far more likely since T is much larger than
L. The edges between v and any other vertex in the graph were determined
independently at random with probability 1/2. Therefore, v is adjacent to
approximately half the vertices in T and half the vertices in L. In other
words, the graphs induced by N (v) and N̄ (v) have about the same size and
ratio of vertices from L and vertices from T . These two graphs (Fig. 2a
bottom) are the inputs to the recursive calls made in lines 3 and 4. As the
recursive depth increases by one, it is important to note that (a) the input
graphs to the next recursive call have the same structure: they are random
graphs with embedded cliques; (b) the ratio between vertices from L and T
remains essentially unchanged and, most importantly, (c) the largest clique
in the input to either of the two recursive calls (lines 3 and 4) has been cut
in half. Thus, Θ(log n) steps of this kind would be sufficient to completely
destroy the large clique L.

Fig. 2b illustrates the far less likely case v ∈ L. Since L is a clique, L\{v}
is in the neighborhood of L. T , on the other hand, is split about evenly
between N (v) and N̄ (v) because the edges between v and T were chosen
independently at random. Thus L has been isolated from about half of T .
This is illustrated in the bottom part of Fig. 2b. In the recursive call in
line 3 which searches N (v), the probability of selecting a vertex from L has
doubled. If this were to happen too often (Ω(log n) times), finding a large
subset of L would become easy. However, this event is extremely unlikely.

Note that independently of the choice of the pivot v, the graphs induced by
N (v) and N̄ (v) do not change in their structure: they are random graphs
with (possibly empty) embedded cliques. Therefore, the analysis can be
applied recursively. It should now be clear that at any given recursive call
with input graph (V ′, E′):

|L ∩ V ′|
|V ′| =

|L ∩ V ′|
|(L ∩ V ′) ∪ (T ∩ V ′)| ≈

|L|/2i−k

|L|/2i−k + |T |/2i
=

(

1 +
nε

2k

)−1

(1)

where i is the depth of the recursive call and k is the number of vertices from
L on the path from the root of the computation tree to the current recursive
call. We write ‘≈’ instead of ‘=’ in the second step of Eq. (1) because of small
deviations likely to occur in random graphs. The expression |L ∩ V ′|/|V ′|
represents the probability of finding a vertex from L when the algorithm
randomly chooses a vertex from V ′.

HARD GRAPHS 501

So far, we have relied on random graph properties which hold with very
high probability as long as the graphs are sufficiently large. These properties
control the split ratios when a pivot v is chosen: If v ∈ L then (with high
probability p) T is split approximately in half between N (v) and N̄ (v). If
v ∈ T then, in addition, L is also split in half (with high probability p).
The probability p depends on the size m of the input graph to the recursive
call. At the deeper recursive levels, the input graphs to the recursive calls
become small (size m ≤ logO(1) n). The probability that such a graph (of
size m) does not have the required properties increases to 1/q(n) where q
is polynomial in n. Thus the analysis cannot be applied to recursive calls
whose input graphs are too small. However, this is not a problem because
these graphs are so small that they cannot contain any significant number
of vertices from L.

3. The Markov chain

Assume R-Ramsey is run on an input graph G = (V,E) and let L and T
be two sets such that L ∪ T = V and L ∩ T = 0/. Consider any path in the
computation tree. The path is identified by a sequence of pivot vertices. In
the spirit of the previous section, we want to limit the number of vertices
from L in the path. We begin by modeling the event ‘v ∈ L’ as a random
variable.

Definition 1. Given ε > 0 and a constant f > 1, let (Xi)i∈IN be {0, 1}-
random variables whose distribution is bounded by

P(Xi = 1|
i−1
∑

j=1

Xj = k) ≤ qk =

{

(1 + nε/fk)−1 if k ≤ log1−ε/4 n
1 otherwise

(2)

Let SPf denote this class of stochastic processes.

For the rest of this paper, the constant f can be assumed to be f = 2 + ε
for some arbitrarily small constant ε. Let vi be the i-th vertex in the path.
Interpret Xi = 1 as the event ‘vi ∈ L’ and Xi = 0 as ‘vi ∈ T ’, for i
smaller than the path length. Then P(Xi = 1|∑i−1

j=1 Xj = k) represents the
probability of vi ∈ L given that there are k vertices from L before i in the
path. The qk have been chosen so as to be manageable upper bounds on this
probability. Notice that for k ≤ log1−ε/4 n, qk is essentially the expression
in Eq. (1).

Definition 2. For i, j ∈ IN let

pij =







qi if j = i + 1
1 − qi if j = i
0 otherwise

The state space IN together with the transition probabilities (pij)i,j∈IN define
a Markov chain MCf . Let the initial distribution be concentrated on state 0

502 MARCUS PEINADO

and let the random variables (Yi)i∈IN denote the state of the Markov chain
after i transitions.

We simplify the analysis by approximating the sums of Xi by the Markov
chain just defined. The intuition is the same. The state of the Markov chain
corresponds to the number of vertices from L in the path so far. It can be
shown by induction on i that for all x ∈ IR and i ∈ IN

P(

i
∑

j=1

Xj > x) ≤ P(Yi > x) (3)

The following Lemma is the key in the proof that the number of vertices
from L in any path is likely to remain small.

Lemma 1. Let f > 1 (f constant), (Xi)i∈IN ∈ SPf and ε ∈ (0, 1). For all
h ∈ IN there exists an N0 ∈ IN such that for all n ≥ N0:

P(

Z
∑

i=1

Xi > log1−ε/4 n) <
1

nh
(4)

provided Z ≤ nε/3.

Proof. Because of Eq. (3), it is sufficient to consider YZ instead of
∑Z

i=1 Xi. Define the random variables Ti (i ∈ IN) as the number of steps
the Markov chain spends in state i provided that it reaches that state. Note
that for m > 0, P(Ti < m) = 1 − pm

ii because

P(Ti < m) =
m−1
∑

j=0

P(Ti = j) =
m−1
∑

j=0

pj
ii(1 − pii) = 1 − pm

ii .

Now, for k = 1 + log1−ε/4 n

P(YZ ≥ k) = P(
k−1
∑

i=1

Ti < Z) ≤ P(
k−1
⋂

i=1

{Ti < Z}) =
k−1
∏

i=1

P(Ti < Z)

=

k−1
∏

i=1

(1 − pZ
ii) ≤

k−1
∏

i=1

(

1 − 1

(1 + f i

nε)Z

)

≤
k−1
∏

i=1

(

1 − e−
Zfi

nε

)

≤
(

1 − e−
Zfk

nε

)k−1

≤
(

1 − e
− 1

nε/2

)log1−ε/4 n

<

(

2

nε/2

)log1−ε/4 n

≤ n−ε/4 log1−ε/4 n

As n grows, the exponent goes toward minus infinity. The last three steps

are valid for sufficiently large n. The step from 1 − e
− 1

nε/2 to 2
nε/2 follows

by considering the limit as n → ∞ of the quotient of the two functions and
applying l’Hospital’s rule. 2

HARD GRAPHS 503

4. The Graph Property

We return now to a level of detail which includes the properties of the
PaR-ramsey algorithm. Consider any graph G = (V,E) and L ⊆ V . For
C,D ⊆ V , C ∩ D = 0/, let NG

CD = N (C) ∩ N̄ (D). We call the induced
subgraph of G whose vertex set is NG

CD the (C,D)-induced subgraph of G.
Assume Ramsey is run on G. Consider any node x in the computation tree
and the vertices on the path that leads to node x. Let C be the set of those
vertices in the path at which it turns to the left (neighborhood) and let D
be those vertices at which the path turns to the right (non-neighborhood).
The input graph to the recursive call corresponding to node x consists of
the vertices which are adjacent to all vertices in C and non-adjacent to all
vertices in D. This graph is exactly the (C,D)-induced subgraph of G.

Furthermore, let

CG = {(C,D) ⊆ V 2 : C ∩ D = 0/ and |L ∩ (C ∪ D)| < log1−ε/4 n} (5)

CG identifies the class of pairs (C,D) ∈ V 2 whose (C,D)-induced subgraphs
must have the property which will be defined in this section. A pair (C,D)
corresponds to a set of potential paths. Since no vertex can appear more
than once in a path, CG can be restricted to (C,D) such that C ∩ D = 0/.

Furthermore, we will see that (C,D) which contain many (≥ log1−ε/4 n)
vertices from L do not have to be considered because any such path is
extremely unlikely. In fact, CG could be restricted even further – requiring
C to be a clique and D to be an independent set – since this has to be
the case for any path leading to NG

CD. We ignore this restriction because it
would not simplify the analysis. If G and L are clear from the context, we
write C and NCD instead of CG and NG

CD.
Now, we define hardness in terms of a set of criteria on a graph. These

hardness criteria are a more precise formulation of the intuition given in
section 2. It will be proved using Lemma 1 that these conditions are sufficient
to guarantee that PaR-ramsey is very likely to find only very small cliques.

Definition 3. Given ε > 0, f > 1 and g, a pair (G,L), where G = (V,E)
is a graph and L ⊆ V , is called hard if

(1) the size of the largest clique plus the size of the largest independent set

in G restricted to V \ L is less than nε/3 − 2 log1−ε/4 n, and

(2) for all (C,D) ∈ CG

|L ∩NCD| < g or

|L ∩NCD|nε/fk < |NCD \ L|

where k = |L ∩ (C ∪ D)|
Let Dn be a probability distribution on pairs (G,L) with |V (G)| = n. Given
an infinite index set I ⊆ IN, the (infinite) sequence of distributions DI =

504 MARCUS PEINADO

(Dn)n∈I is called hard if given some constant ε ∈ (0, 1), f > 1, g(n) < no(1),
for all n ∈ I:

P((G,L) is hard) > 1 − n−ω(1) (6)

where (G,L) is a random variable with distribution Dn.

In the pairs (G,L) we construct, L will contain the only large cliques in the
graph. The term hard refers to the difficulty for Ramsey of finding a large
subset of L. Intuitively, condition 1 in the definition implies that the graph
becomes empty after relatively few steps of the algorithm. Condition 2 states
that either there are negligibly few (less than g) vertices from L or there are
many more vertices not from L than there are from L in the (C,D)-induced
subgraph. Furthermore, k denotes the number of vertices from L in the path
and f is the constant factor by which the ratio of T -vertices to L-vertices
decreases each time an L-vertex is found.

Lemma 2. Given constant ε ∈ (0, 1), f > 1, g(n) < no(1) and infinite
I ⊆ IN, let S = {(Gn, Ln) : n ∈ I} be a sequence of hard pairs such that
|V (Gn)| = n. Then, there exists a function h(n) < no(1) such that for all
(Gn, Ln) ∈ S

P(PaR-ramsey(Gn) finds more than h(n) vertices v ∈ Ln) < n−ω(1) (7)

Proof. Consider (G,L) ∈ S (n = |V (G)|) and any path in any com-
putation tree of R-Ramsey(G). Let T0 be the first node in the path at
which |L∩VT | ≤ g(n), where (VT , ET) is the graph associated with T0. The
path can contain at most g(n) vertices v ∈ L after T0 and we will show now

that with high probability, it does not contain more than log1−ε/4 n vertices
v ∈ L before T0.

We do so by interpreting the vertices on the path as a stochastic process
and applying Lemma 1. Let Xi be the indicator random variable of the
event vi ∈ L, where vi is the i-th vertex in the path, i ∈ {1, . . . , T0}. Let
Vi be the vertex set of the graph associated with position i and let ki be
the number of v ∈ L in the path before position i. Clearly, Vi = NCD,
where C and D are the sets of neighboring and non-neighboring vertices
in the path before position i as defined at the beginning of this section. If
ki < log1−ε/4 n then (C,D) ∈ C and since T0 is the first point in the path
at which |Vi ∩ L| < g(n), the inequality |L ∩ Vi|nε/fki < |Vi \ L| has to
hold for all path positions i before T0 by point 2 of Definition 3. Hence, we
have for all induced subgraphs (Vi, Ei) at path positions i before T0 with

ki ≤ log1−ε/4 n:

P(Xi = 1|
i−1
∑

j=1

Xj = ki) = P(v ∈ L|ki vertices v ∈ L before i) =
|Li|
|Vi|

=
|Li|

|Li| + |Vi \ L| ≤
|Li|

|Li| + |Li|nε/fk
=

1

1 + nε/fki
= qki

HARD GRAPHS 505

where Li = L ∩ Vi and qki
is defined in Eq. (2). If ki > log1−ε/4 n, the

probability is trivially bounded above by qki
= 1. Thus, the Xi are as in

Definition 1 and Lemma 1 can be applied to bound the number of C-vertices
before T0.

2 For all k ∈ IN and sufficiently large n ∈ IN:

P(

T0
∑

i=1

Xi > log1−ε/4 n) = P(

T0
∑

i=1

Xi > log1−ε/4 n|T0 > nε/3)P(T0 > nε/3)

+P(

T0
∑

i=1

Xi > log1−ε/4 n|T0 ≤ nε/3)P(T0 ≤ nε/3)

≤ P(

nε/3
∑

i=1

Xi > log1−ε/4 n) + P(T0 > nε/3)

≤ 2P(

nε/3
∑

i=1

Xi > log1−ε/4 n) < n−k

The third step follows because T0 > nε/3 implies
∑nε/3

i=1 Xi > log1−ε/4 n. To
see this, note that the first condition in Definition 3 implies that the graph
is exhausted after at most k = nε/3 − 2 log1−ε/4 n vertices v 6∈ L have been
selected, because all vertices in the path at which it turns left form a clique
and all those where it turns right form an independent set. If T0 > nε/3

there have to be more than nε/3 vertices in the path and, since at most
k = nε/3 − 2 log1−ε/4 n of them can be in Vi \ L, at least 2 log1−ε/4 n of the
nε/3 vertices must be in L.

The last step follows directly from Lemma 1. Therefore, with high prob-
ability, the total number of v ∈ L in the path is bounded by h(n) =

g(n) + log1−ε/4 n < no(1). Considering all O(n) paths and using polyno-
mial amplification can increase the probability only by a polynomial factor.

2

Lemma 2 decouples the construction of a hard graph from the algorithm
itself. We can now construct a hard graph for Ramsey only in terms of the
conditions stated in Definition 3.

5. A Class of Hard Graphs

We will now describe a class of graphs which contain large (nα, 0 < α < 1)
cliques which PaR-ramsey will not find with high probability. More for-
mally, we describe an infinite sequence of distributions MGα such that
if (G,L) is generated according to one of these distributions, L contains

2 Formally, there is a slight problem, because (Xi) has only been defined for i ∈ {1, . . . , T0}
while SPf is a sequence of Xi for i ∈ IN. However, this is irrelevant since Lemma 1 depends
only on Xi for i ∈ {1, . . . , T0}. To make the statement formally correct one can append
any sequence (Xj) (j > T0) which satisfies Eq. (2) to the (Xi) (i ≤ T0) defined above.

506 MARCUS PEINADO

cliques of size nα. With high probability, the largest clique PaR-ramsey

finds is smaller than nδ for all δ > 0. It can be shown that the distribu-
tion G(n, p, nα) of random graphs with an embedded clique of size nα (as
described in Jerrum [1992] and in section 2 has this property. Here, we
describe a somewhat more complicated distribution which in addition can
be shown to preserve these properties even if a limited number of indepen-
dent sets is excluded from the graph (as is done by PaR-IS-exclusion).
Still, random graphs with large embedded cliques are the ‘skeleton’ of these
graphs.

Definition 4. Given an even m, generate (Gs, Ls) as follows, where Gs =
(Vs, Es) is a graph. Let Vs = {1, . . . ,m} and let Ls ⊆ Vs be a randomly
chosen subset of Vs of size |Ls| = m/2. Furthermore, let {u,w} ∈ Es if
u,w ∈ Ls and u 6= w. Determine all other edges of Gs by independent
random coin flips with probability 0.5.

Gs is essentially a random graph of size m with a built-in clique of size m/2.
We will expand each vertex of Gs into a subgraph by means of a generalized
version of the graph product (or graph composition [Garey and Johnson
1979]). Our definition of the graph product ⊗ is similar to the one used in
Chang et al. [1994]. However, we replace vertices from Ls and vertices from
Vs \ Ls by different graphs.

Definition 5. Given a graph G1 = (V1, E1), L1 ⊆ V1 and two graphs G2,
G3, define (H,L) = (G1, L1) ⊗ (G2, G3) as follows: The graph H is con-
structed by replacing each vertex v ∈ L1 of G1 with a copy of G2 and by
replacing each vertex v 6∈ L1 of G1 with a copy of G3. Furthermore, for
each edge {u, v} in G1, each vertex in the copy of G2 or G3 replacing u is
connected to every vertex in the copy of G2 or G3 replacing v. The vertices
in L are the vertices of H which are generated by replacing L1 by copies of
G2.

Definition 6. Given an even m ∈ IN and α ∈ (0, 1), generate (Gs, Ls)
of size m according to Definition 4. Let G2 be an independent set of size
b51−α

α log2 mc and let G3 be a random graph of size d(m/2)(1−α)/αe with edge
probability 1/2. Let H = (Gs, Ls) ⊗ (G2, G3). The probability distributions
of the components of H determine the distribution MGn,α of the graphs H,
where n, the size of H, is uniquely determined by m. For fixed α let MGα

denote the sequence (MGn,α)n of distributions.

Fig. 3 illustrates the construction of H. We call the copies of G2 and G3

which make up H, the segments of H. Given any enumeration of segments
which are copies of G2, let Li denote the i-th segment. Similarly, let Ti be
the i-th segment corresponding to a copy of G3. L is the union of the Li.
Denote the union of all Ti by T . If each segment were collapsed into one
vertex, the result would be the skeletal graph Gs. Let n be the number of
vertices in H. It is easy to see that n = n(m) = (m/2)1/α(1+o(1)) and thus

HARD GRAPHS 507

� � �

� �
� �
� �

� � �
� � �

� �
� �

� � �
� � �
� � �complete

n−partiteα

1

2

3

5

4

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

random

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

random

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

random

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

random

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

random

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

random

L

L

L

L
L

T

T

T

T

1

2

3

4

T5

all edges

all edges

all edges

all edges

all edges

all edges

all
edges

all
edges

t

t

t

t

t5
1

2

3

4 � � � �
� � � �
� � � �
� � � �

l

l

ll

1

2

34

l5

Fig. 3: The construction of H. Left: the skeletal graph Gs; Right: the graph H

m/2 ≤ nα ≤ m. For each α < 1 there is an ε > 0 such that |L|/|V | < n−ε.
Let I = {n(k) : 2k ∈ IN}; i.e. I is the set of graph sizes n for which MGn,α

is defined.

Consider a pair (G,L) ∈ MGn,α. Each segment Li consists of at most
51−α

α log2(4nα) ≤ 2 log2 n vertices from L and each segment Ti consists
of significantly more (Θ(nε)) vertices from T . L forms a complete ≥ nα-
partite graph. Hence, every v ∈ L is a member of several cliques of size
apprxomately nα. All vertices of the same segment are connected to the
same Tj ’s and Lj’s. Thus, whenever a vertex is selected, the graph is split
along segment lines. If the pivot is in Li then the set of T -segments is split
between the neighborhood and non-neighborhood whereas all L-segments
will be in the neighborhood. It is crucial to ensure that there are enough
T -segments in the neighborhood. This is achieved by the random skeletal
graph.

The proof that MGα is hard for all α < 1 is contained in the next three
subsections. In section 5.1 we bound the sizes of neighborhoods of vertex
sets in the skeletal graph Gs. In section 5.2, we extend this to a bound on
the number of segments in the neighborhood of a vertex set in the graphs
in MGn,α. Finally, in section 5.3 we use this bound to prove that MGα is
hard.

508 MARCUS PEINADO

5.1 Neighborhood Sizes in the Skeletal Graph

For the rest of this section, let β, γ be constants such that 0 < β < 1 < γ.
Let r = r(n) = (1 − 3 log log n/ log n) log n. Given Gs = (Vs, Es) with n
vertices and Ls as in Definition 4, let

Cr(n) = {(C,D) ⊆ V 2
s : C ∩ D = 0/ and |C ∪ D| < r(n)} (8)

and, for C,D ⊆ Vs let

Y s
CD = |NGs

CD ∩ Ts| and Zs
CD = |NGs

CD ∩ Ls| (9)

where Ts = Vs \ Ls, Y s
CD is the number of v ∈ Ts in the (C,D)-induced

subgraph of Gs and Zs
CD is the number of v ∈ Ls in NCD. The result of this

subsection is a bound on Y s
CD and Zs

CD for all (C,D) ∈ Cr(n). We have to
limit the size of C ∪D by r(n) because Lemma 3 is not true for larger sets.

Lemma 3. Let (Vs, Es), |Vs| = n, be a graph generated as in Definition 4.
Then, as n → ∞,

P
(

∀(C,D) ∈ Cr(n) : Y s
CD > β

n

2
2−|C∪D|

)

> 1 − 2−Θ(log3 n) and (10)

P
(

∀(C,D) ∈ Cr(n) : Zs
CD < γ

n

2
2−|(C∪D)\Ls|

)

> 1 − 2−Θ(log3 n) (11)

Proof. Consider the first statement. Let A
(G)
CD be the event {G : Y s

CD ≤
β(n/2)2−|C∪D|}. Then

P(∃(C,D) ∈ Cr(n) : Y s
CD ≤ β

n

2
2−|C∪D|) = P(

⋃

(C,D)∈Cr(n)

A
(G)
CD)

≤
∑

(C,D)∈Cr(n)

P(A
(G)
CD) ≤ |Cr(n)| · max

(C,D)∈Cr(n)

P(A
(G)
CD)

It is easy to see that |Cr(n)| < 2O(log2 n) since |C ∪D| < r(n) for all (C,D) ∈
Cr(n).

For the bound on the probability of A
(G)
CD, consider any (C,D) ∈ Cr(n). For

v ∈ Ts, let Xv be the indicator random variable of the event v ∈ NCD. Note
that P(Xv = 1) = 2−(|C∪D|) because all edges between v and C ∪ D exist
independently with probability 0.5. Furthermore, Y s

CD =
∑

v∈Ts\(C∪D) Xv,

i.e. Y s
CD is the number of ones in a Bernoulli trial of length |Ts \ (C ∪D)| =

n/2 − x with p = 2−|C∪D|, where x = |Ts ∩ (C ∪ D)|. Note that x < r(n).
We can use Chernoff bounds [Hagerup and Rüb 1989] to estimate Y s

CD.

max
(C,D)∈Cr(n)

P
(

Y s
CD ≤ β

n

2
2−|C∪D|

)

≤ max
(C,D)∈Cr(n)

(

(n/2 − x)p

β n
2 p

)β(n/2)p

eβ(n/2)p−(n/2−x)p

HARD GRAPHS 509

≤ max
(C,D)∈Cr(n)

(

1

β

)β(n/2)p

eβ(n/2)p−(n/2)pn

< n

(

1

ββe1−β

)(n/2)2−r

≤ 2−Θ(log3 n)

This statement, when combined with the bound on |Cr(n)| proves that

P(∃(C,D) ∈ Cr(n) : Y s
CD ≤ β

n

2
2−|C∪D|) < 2−Θ(log3 n)

We can show in a similar way that P(∃C,D : (C,D) ∈ Cr(n) : Zs
CD ≥

γ n
2 2−|(C∪D)\L|) < 2−Θ(log3 n). This proves the lemma. 2

In the graphs in MGα, the connections between different segments are
determined by the edges of the skeletal graph Gs. Thus, |NGs(v)| corre-
sponds to the number of segments which are adjacent to segment v. The
next lemma maps the random graph property just proved to the graphs in
MGα (our target graphs).

5.2 Mapping the Target Graph to Gs

Given (G = (V,E), L) generated according to MGn,α and G’s skeletal graph
Gs = (Vs, Es), define the function f : P(V) → P(Vs) as follows:

f(S) = {ti ∈ Vs : S ∩ Ti 6= 0/} ∪ {li ∈ Vs : S ∩ Li 6= 0/} (12)

where ti (li) is the vertex replaced by the segment Ti (Li respectively). The
function f maps a set S of vertices of G to the segments intersected by S.
Note the following facts about f :

f(A ∪ B) = f(A) ∪ f(B) (13)

f(A \ L) = f(A) \ f(L) (14)

|f(A)| ≤ |A| (15)

|f(A ∩ L)| + |f(A \ L)| ≥ |f(A)| (16)

where A and B are arbitrary subsets of Vs. We need the following notation
for the rest of this section: For C,D ⊆ V let

YCD = |{i : Ti ⊆ NCD}| and ZCD = |{i : Li ⊆ NCD}|

be the number of segments Ti (Li respectively) contained in NCD. Let

Cf = {(C,D) ⊆ V 2 : f(C) ∩ f(D) = 0/ and |f(C ∪ D)| < r(nα)} (17)

Cf is the class of pairs (C,D) which intersect less than r(nα) segments.
Furthermore, the set of segments intersected by C is disjoint from the one
intersected by D. The following fact is an immediate consequence of the
construction of MGα.

510 MARCUS PEINADO

Fact 1. Let (G = (V,E), L) ∈ MGα and let Y s
CD and Zs

CD be the neigh-
borhood sizes of the skeletal graph Gs of G as defined above. Then:

∀(C,D) ∈ Cf : YCD = Y s
f(C)f(D)

∀(C,D) ∈ Cf : ZCD = Zs
f(C)f(D)

Proof. Ti ⊆ NG(C) ∩ N̄G(D) ⇐⇒ ti ∈ NGs(f(C)) ∩ N̄Gs(f(D))
Therefore

YCD = |{i : Ti ⊆ NG(C) ∩ N̄G(D)}|
= |Ts ∩NGs(f(C)) ∩ N̄Gs(f(D))| = |Ts ∩NGs

f(C)f(D)|

The proof for the second statement proceeds as before. 2

It is easy to see that

{(f(C), f(D)) : (C,D) ∈ Cf} = Cr(nα) (18)

Lemma 4. For (G,L) ∈ MGα:

P

(

∀(C,D) ∈ Cf : YCD > β
nα

2
2−|f(C∪D)|

)

< 2−Θ(log3 n) and (19)

P

(

∀(C,D) ∈ Cf : ZCD < γ
nα

2
2−|f((C∪D)\L)|

)

< 2−Θ(log3 n) (20)

Proof. Consider the first event. By fact 1 and Eq. (18), it is equivalent
to

∀(C,D) ∈ Cr(nα) : Y s
CD > β

nα

2
2−|C∪D|

Lemma 3 shows that the probability of this event is at least 1 − 2−Θ(log3 n).
The proof for the second statement proceeds as before, noting that

f((C ∪ D) \ L) = (f(C) ∪ f(D)) \ f(L) = (f(C) ∪ f(D)) \ Ls.2

5.3 The Target Graphs are Hard

Lemma 5. For all 0 < α < 1, the sequence of distributions MGα is hard
and the L of each pair contains a clique of size nα.

Proof. Consider (G,L) generated according to MGn,α for n ∈ I. It is
easy to see that L contains a clique of size nα. Pick one vertex from each
Li. There are m/2 ≥ nα segments Li. Thus, one obtains at least nα vertices
and they form a clique.

Now, we show that with high probability except for L the graph has only
small cliques and independent sets (first condition in Definition 3). It is
elementary to see that in a random graph G ∈ G(n, 0.5) for fixed ε > 0, the

HARD GRAPHS 511

size of the largest clique/independent set is less than (2+ ε) log n with prob-

ability > 1 − 2−Θ(log2 n). Hence, the size of the largest clique/independent
set in each Ti is at most (2 + o(1))(1 − α)/α log m. Furthermore, with

probability > 1 − 2−Θ(log2 n), at most (2 + o(1)) log m segments Ti are to-
tally connected or totally disconnected. Hence, ignoring L, the size of
the largest clique plus the size of the largest independent set is at most

8(1 − α)/α log2 m + o(log2 m) < no(1) with probability > 1 − 2−Θ(log2 n).
It remains to show that (G,L) also satisfies the second condition of Def-

inition 3 with high probability. Lemma 4 guarantees that (G,L) has the

following properties with probability > 1 − 2−Θ(log3 n):

∀(C,D) ∈ Cf : YCD > β
nα

2
2−|f(C∪D)| (21)

∀(C,D) ∈ Cf : ZCD < γ
nα

2
2−|f((C∪D)\L)| (22)

Consider any (C,D) ∈ C (cf. Definition 3).
Case 1: (C,D) ∈ Cf . In this case, we can refer directly to Eq. (21) and
Eq. (22). The total number |L ∩ NCD| of vertices v ∈ L in NCD is less
than γ(nα/2)2−|f((C∪D)\L)|2 log2 n. The total number |NCD \ L| of vertices
outside L is more than β(nα/2)2−|f(C∪D)|nε. Therefore,

|NCD \ L|
|NCD ∩ L| ≥

β

γ

nε

2 log2 n
2−|(C∪D)∩L|

This means that the (C,D)-induced subgraph of (G,L) satisfies the hardness
requirement |L∩NCD|nε′/2|(C∪D)∩L| < |NCD \L| where the constant ε′ < ε
can be chosen arbitrarily close to ε.
Case 2: (C,D) 6∈ Cf and f(C) ∩ f(D) = 0/. Therefore, |f(C ∪ D)| ≥
r(nα). Remember that (C,D) ∈ C implies that |(C ∪ D) ∩ L| < log1−ε/4 n,
i.e. Definition 3 requires us only to consider pairs (C,D) with less than

log1−ε/4 n vertices from L. There exist subsets C ′ ⊆ C and D′ ⊆ D such
that |f(C ′ ∪ D′)| = r(nα) − 1. Clearly, ZCD ≤ ZC′D′ and |(C ′ ∪ D′) ∩ L| <

log1−ε/4 n. By Eq. (22), we have

ZCD ≤ ZC′D′ < γ
nα

2
2−|f((C′∪D′)\L)|

≤ γ
nα

2
2−(r(nα)−log1−ε/4 n) =

γα3

2
n1/ logε/4 n log3 n

Therefore, the (C,D)-induced subgraph of (G,L) satisfies the requirement
|L ∩NCD| < g(n) for some g(n) < nδ (for all δ > 0).
Case 3: (C,D) 6∈ Cf and f(C) ∩ f(D) 6= 0/. There exists a vertex v ∈ Vs

such that v ∈ f(C) and v ∈ f(D).
If v ∈ Ts, then

NGs

f(C)f(D) ⊆ NGs(v) ∩ N̄Gs(v) = 0/

512 MARCUS PEINADO

Therefore, NG
CD ⊆ Ti and, hence |L ∩NG

CD| = 0 < no(1).
If, on the other hand, v ∈ Ls, then

NGs

f(C)f(D) ∩ Ls ⊆ N̄Gs(v) ∩ Ls = 0/

Therefore, L ∩NG
CD ⊆ Li and, hence |L ∩NG

CD| ≤ 3 log2 n < no(1).
In each case, one of the two conditions of Definition 3 (part 2) is satisfied.

Thus, (G,L) ∈ MGn,α satisfies hardness condition 1 with probability >

1− 2−Θ(log2 n) and condition 2 with probability > 1− 2−Θ(log3 n), i.e. (G,L)
is hard with probability > 1 − n−ω(1). 2

This concludes the proof that MGα is hard for PaR-ramsey. It remains
to show that MGα is hard even for PaR-IS-exclusion.

6. The Subgraph Exclusion Algorithm

Let Gi be what remains of G in the i-th iteration of the while-loop of PaR-

IS-exclusion(G), i.e. Gi is the input to PaR-ramsey after the first i − 1
independent sets found by PaR-ramsey have been removed from G. Let
Li = L ∩ V (Gi).

Lemma 6. Given α < 1/2 and n ∈ I, let (G,L) ∈ MGn,α, i.e. let (G,L) be
generated according to Definition 6. If (G,L) is hard then (Gi, Li) is hard
for all i ≤ nα. Furthermore, L ∩ V (Gnα

) = 0/.

Proof. For the first part, we note that the only properties of the Ti

used in the proof of Lemma 5 are |Ti| > nε for some constant ε > 0 and
the fact that the Ti have only small independent sets. Certainly, the size of
independent sets in Ti will not increase if vertices are removed. Furthermore,
since α < 1/2, there exists a constant ε > 0 such that initially, |Ti| =
d(m/2)(1−α)/αe = Θ(n1−α) > Θ(n1/2+ε). The largest independent set in
each Ti has less than 3 log n vertices (for almost every G). Therefore, even
after nα exclusions there will be more than Θ(n1/2+ε)−3nα log n = Θ(n1/2+ε)
vertices left in each Ti. This means that as long as not more than nα

exclusions have occurred, we can prove hardness like we did in Lemma 5.
The proof of the second part of the lemma is based on the following fact:

In each of the first nα exclusions, exactly one entire Li (and no vertex of
any other Lj) will be removed from the graph. Therefore, after the first nα

independent sets have been excluded, L will have disappeared completely
from the graph.

To see this, note first that each Li is an independent set which is larger
than any independent set in Lc. In almost every G the largest independent
set in the subgraph induced by T will be at most (4(1−α)/α + o(1)) log2 m
(cf. proof of Lemma 5). Since each Li is an independent set larger than
5(1 − α)/α log2 m, any independent set containing an Li is larger than any
independent set not containing an Li.

HARD GRAPHS 513

Second, note that if there is an Li in the graph, Ramsey will find all v ∈ Li

as an independent set. This is the case simply because all the vertices of each
Li are in the neighborhood of exactly the same set of vertices. Therefore,
in the computation tree of Ramsey(G), there will be one path for each Li

which contains all v ∈ Li as parents of right (non-neighbor) edges.
Third, each independent set contains vertices from at most one Li because

all vertices from different Li are connected by an edge. This completes the
proof of the fact.

Points two and three show that the independent set returned by Ramsey

contains either all vertices of an Li or none of its vertices. Point one shows
that as long as there are Li’s in the graph, one of them will be in the
independent set returned by Ramsey. Thus, after nα exclusions, L has
been removed completely and the graph does not contain any clique larger
than O(log2 n). 2

Proof. of Theorem 1: Consider MGα = (MGn,α)n∈I for α < 1/2. Let
((Gn, Ln))n∈I be a sequence of random variables such that (Gn, Ln) has
distribution MGn,α. Note that |V (Gn)| = n. Let Cex(Gn) be the size of the
clique returned by PaR-IS-exclusion(Gn). It has to be shown that there
is a function h(n) < no(1) such that as n grows

P(Cex(Gn) ≥ h(n)) < n−ω(1)

Let H(Gn) be the event that (Gn, Ln) is hard (for some ε > 0 and g(n) <
no(1)). Then

P(Cex(Gn) ≥ h(n))

≤ P(Cex(Gn) ≥ h(n) ∩ H(Gn)) + P(Cex(Gn) ≥ h(n) ∩ Hc(Gn))

≤ P(Cex(Gn) ≥ h(n)|H(Gn)) + P(Hc(Gn)) < n−ω(1)

It remains to explain the last step. By Lemma 5, MGα is hard and therefore,
by Definition 3, P(Hc(Gn)) < n−ω(1). As for the other term, observe that
Cex(Gn) = maxi<nα Ci

r(G
i
n) where C i

r is the clique size returned by the i-th
call to PaR-ramsey in the while-loop of the subgraph exclusion procedure.
By Lemma 6, H(Gn) implies H(Gi

n) for all i < nα. Therefore

P(Cex(Gn) ≥ h(n)|H(G)) = P





⋃

i≤nα

Ci
r(G

i
n) ≥ h(n)|H(Gn)





≤
∑

i≤nα

P(C i
r(G

i
n) ≥ h(n)|H(Gi

n)) < n−ω(1)

where the last step follows from Lemma 2. 2

This implies that the performance ratio of PaR-IS-exclusion is not bet-
ter than Θ(

√
n). The class of graphs which was described in Definition 6 is

a particular example of graphs on which the algorithm shows this behavior.

514 MARCUS PEINADO

7. Conclusions

We have constructed a class of graphs on which the Boppana-Halldórsson
algorithm for Maxclique has a performance ratio of Ω(

√
n). We have

shown that not even randomizing the algorithm and allowing polynomial
amplification can improve the performance ratio on this class of graphs.

Several open problems remain: What is the true performance guarantee
of the randomized and polynomially amplified version of the algorithm?
Is it better than the performance guarantee of O(n/ log2 n) of the original
algorithm? The main obstacle to improving the lower bound of this paper
seems to be the effect of the subgraph exclusions on the graph distribution.
It appears to be quite difficult to analyze properties of a random graph after
a number of independent sets found by PaR-ramsey have been excluded.
These independent sets are only partially random and their exact nature
is hard to predict. As they are excluded, dependencies arise in the graph
and the standard analytical tools can no longer be applied. Ignoring the
subgraph exclusion part, several partial results could easily be strengthened
by changing parameters such as the size of the embedded clique or the
probability of random edges.

Can the graphs be constructed deterministically, i.e. without having to
rely on random graph properties? One of the two random graphs used in
the construction (Ti) can easily be replaced by a deterministic graph due to
Frankl and Wilson [1981] which contains only small cliques and independent

sets (≤ 2O(
√

log n log log n)). However, finding a deterministic version of the
skeletal graph Gs would imply deterministically constructing a graph with no
clique and no independent set larger than O(log n). Finding a polynomial
time procedure for this problem has been a long standing open problem
[Alon et al. 1992]. It appears that while this problem is not solved, major
changes to our construction would be needed to make it fully deterministic
(and polynomial time).

Acknowledgements

I would like to thank my advisor Steven Homer for his guidance and support.

References

Alon, N., Spencer, J., and Erdös, P. 1992. The Probabilistic Method. Wiley.
Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. 1992. Proof verifica-

tion and hardness of approximation problems. In Proceedings 33rd IEEE Symposium

on the Foundations of Computer Science, 14–23.
Bellare, M. and Sudan, M. 1994. Improved Non-Approximability Results. In Pro-

ceedings of the 26th ACM Symposium on the Theory of Computing, 184–193.
Boppana, R. and Halldórsson, M. 1992. Approximating Maximum Independent Sets

by excluding Subgraphs. BIT 32, 180–196.
Chang, R., Gasarch, W. I., and Lund, C. 1994. On bounded Queries and Approxi-

mation. Tech. Report TR CS-94-05, University of Maryland.

HARD GRAPHS 515

Frankl, P. and Wilson, R. M. 1981. Intersection Theorems with Geometric Conse-
quences. Combinatorica 1, 4, 357–368.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability. Freeman.
Hagerup, T. and Rüb, C. 1989. A Guided Tour of Chernoff Bounds. Information

Processing Letters 33, 305 – 308.
Jerrum, M. 1992. Large Cliques Elude the Metropolis Process. Random Structures and

Algorithms 3, 4, 347–360.
Kučera, L. 1991. The greedy coloring is a bad probabilistic algorithm. Journal of

Algorithms 12, 674–684.

