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Abstract. We present a local model checking algorithm that decides for a given
context-free process whether it satisfies a property written in the alternation-free
modal mu-calculus. Heart of this algorithm is a purely syntactical sound and com-
plete formal system, which in contrast to the known tableaux techniques, uses
intermediate second-order assertions. These assertions provide a finite representa-
tion of all the infinite state sets which may arise during the proof in terms of the
finite representation of the context-free argument process. This is the key to the
effectiveness of our local model checking procedure.
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1. Introduction

Model checking provides a powerful tool for the automatic verification of
behavioral systems. The corresponding standard algorithms fall into two
classes: the iterative algorithms (cf. [14, 8, 12, 13]) and the tableaux-based
algorithms (cf., e.g. [5, 4, 9, 18, 22, 23]). Whereas the former class usually
yields higher efficiency in the worst case, the latter allows local model check-
ing (cf. [22]), which avoid the investigation of parts of a process which are
not relevant to the verification. Local model checking has been exploited
by Bradfield and Stirling [5, 4] in order to construct a sound and complete
tableau system for the full mu-calculus [17], which can deal with infinite
transition systems. However, in this tableau system, a purely syntactical
characterization of the validity of a formula cannot always be achieved. Thus
their proof method is not effective in general.

In this paper we develop a local model checking algorithm that decides
the alternation-free modal mu-calculus for context-free processes, i.e. for
processes that are given in terms of a context-free grammar, or equivalently,
as mutually recursive systems of finite state labelled transition systems.
We adopt the second viewpoint in this paper, which directly leads to our
notion of procedural transition systems. These process representations are
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standard finite-state labelled transition systems that are extended by intro-
ducing recursive procedures or, alternatively, recursive action refinements.
The resulting processes may of course be infinite state.

For this class of processes, an iterative model checking algorithm has al-
ready been developed in [6]. The central idea behind that algorithm is to
raise the standard iterative model checking techniques to second order: in
contrast to the usual approaches, in which the set of formulae that are sat-
isfied by a certain state are iteratively computed, this algorithm iteratively
computes a property transformer for each state class of the finite process
representation. These property transformers can then simply be applied to
solve the model checking problem.

Here, we also exploit the idea of second-order reasoning. The heart of our
model checking algorithm is a purely syntactic sound and complete formal
system, which in contrast to the known tableau techniques (cf. e.g. [5, 4, 9,
18, 22]), uses intermediate second-order assertions. These assertions allow to
deal compositionally with the sequential composition operator which arises
implicitly in procedural transition systems: parts of the transition system,
which belong to a particular procedure incarnation (expansion of a certain
call transition), are sequentially composed with the part of the transition
system representing the process behavior after the return from the called
procedure. This is the key to the effectiveness of our local model checking
procedure, because it allows the finite representation of all the infinite state
sets which may arise during the proof in terms of the finite representation
of the context-free argument process.

2. Processes and Formulae

In this section we introduce process graphs as the basic structure for mod-
elling behavior, and more specifically, context-free process systems as finite
representations of infinite process graphs, as well as the (alternation-free)
modal mu calculus as a logic for specification.

2.1 Context-Free Process Systems

DEFINITION 1. ([16]) A process graph is a quintuple G = (S, Act, —, so, Se)
where:

o S is a set of states;

o Act s a set of actions;

o - C S X Act X S 1is the transition relation; and

0 80,8 € S are distinguished elements, the “start state” and the “end
state”. sg must be originating and s, must be terminating. Ie. there
are no a € Act and s' € S with (s',a,s9) € = nor (s.,a,s’) €—

In the remainder of the paper we use s = s’ in lieu of (s,a,s’) € —, and we
call s’ an a-derivative of s. Finally a process graph is said to be finite-state,
when S and Act are finite.
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Intuitively, a process graph encodes the operational behavior of a process.
The set S represents the set of states the process may enter, Act the set
of actions the process may perform and — the state transitions that may
result upon execution of the actions.

Process graphs will be inserted for transitions into other process graphs
by identifying the start and end states of the inserted graph with the start
and end state of the replaced transition. The conditions on start and end
states ensure that the semantic effect of the insertion corresponds to the
intuitive meaning of the execution of the inserted process at that point.
Without these conditions, processes could be exited through the start state
or entered through the end state.

As in [6], we represent context-free processes, which may have infinitely
many states, by means of contezt-free process systems. A context-free pro-
cess system is essentially a set of named finite process graphs whose set of
actions contains the names of the system’s process graphs. Transitions la-
belled with such a name are meant to represent the denoted process graph.
Thus the possibly infinite process graph represented in this way will have
multiple copies of the states of the named finite process graphs. Note the
analogy to representations in terms of context-free grammars: the names of
the process graphs correspond to the non-terminals and the atomic actions
to the terminals of a context-free grammar.

An alternative way to interpret named transitions is to think of them
as procedure calls, where each named process graph stands for a procedure
declaration. We use the term procedural process graph for process graphs
where some of the actions are actually names.

DEFINITION 2. A procedural process graph (PPG) is a process graph where
the set of actions is divided into two disjoint classes, atomic actions Act and
(action) names N. A procedural process graph is guarded if the start state
has no P-deriwative for any action name P.

In analogy to Definition 1, a sextuple (Xp, Act, N, —p,op,ep) will de-
note a procedural process graph. We wnill use the term “state class” for the
elements of X p, and they will be denoted by lowercase greek letters.

In the following we shall only consider guarded procedural process graphs.
This guarantees that the process graph represented by a context-free pro-
cess system 1is finitely branching. The reason for indexing constituents of a
procedural process graph will become apparent in the next definition.

DEFINITION 3. A context-free process system (CFPS) is defined as a sex-

tuple P = (Act, N', A, Py, s, S.), where
o Act is a set of actions;

o N ={Py,...,P,_1} is a set of names;

o A=gqt {P,=G,;|0<¢<n} is a finite set of PPG definitions where
the G; are finite PPGs with names in N and atomic actions in Act

Py is the “main” PPG, and

o sg and s. are the start and the end state of the system.

(e]
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Fig. 1: A context-free process system for a™b™.

A CFPS P serves as a finite representation of the complete expansion of Py,
which we define below. Representable processes are exactly the BPA pro-
cesses of [2], which form a subclass of the pushdown transitions graphs of
[10]. In addition we define a faithful expansion, which is semantically equiv-
alent, but contains some additional, semantically irrelevant states. These
states are important for our proof system, as they allow us to get a handle
on the effect of the component PPGs defining the CFPS under consideration.

DEFINITION 4. Let P one of the names in a CFPS P. The complete ex-
pansion of P wrt. P results from the process graph sq Ll se by successively

replacing each tramsition s By by a copy of the corresponding PPG G;,
while identifying s with the start state of the copy and s' with its end state.
Thus, a new state for each state class except the start and end state class is
introduced. We denote the complete expansion of P by Expp(P).
FExpp(P) is the faithful complete expansion of P. Its construction ad-
ditionally introduces a copy of the start state class of the called PPG when

expanding a named transition s B This copy has all the derivatives s
has within the new copy of G;, but none outside of it, and it s itself not
reachable from any state.

Expp(P) and FExpp(P) are of course unique up to isomorphism, thus well
defined. While considering the complete expansion as the ‘real’ semantics
of a CFPS, our formal arguments will be based on the faithful expansion.

The PPG of Fig. 1 gives a CFPS which can not be replaced by an equiv-
alent finite process graph. Its language is the set {a"b" | n > 1}. Fig. 2
illustrates the system’s stepwise expansion.

Expp(Py) has a regular structure. At any point where during the expan-
sion one transition named with P was expanded, a subgraph is embedded,
which is isomorphic to Exp p(P). The next definition describes this embed-
ding operation. An even more restricted embedding is achieved in the case
of a faithful expansion.

An embedding of a PG G in a PG G’ requires that G is a subgraph of
G'. No edges between internal nodes of G must be added. But there might
be additional edges terminating at arbitrary nodes of G or originating at its
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Fig. 2: The expansion and faithful expansion of P after the third expansion step. The thin
lines on the left mark the borders of embeddings of Ezp »(P) in itself. These are achieved
by mapping each state to the first, resp. second, state diagonally above it. Similarily,
Ezpp(P) can be faithfully embedded in FEzpp(P). The mapping is done analogously,
only that the start state is mapped to the appropriate s}.

start or end state. The embedding is faithful, if only the end state and not
the start state serves as an exit.

DEFINITION 5. An embedding of a process graph G = (S, Act, —, s, S¢)
into another process graph G' = (S', Act,—', sy, sL) 1s an injection ¢ from S
to S’ satisfying

o 55t implies 1(s) o/ (1),
o «(s) o u(t) implies s 5t or s,t € {s0, 5.}, and
o for s' & u(S), (t) LA implies t € {so, Se}-

The embedding is faithful if only (s.) o o s permitted in the third condi-
tion.

As will be seen in Section 2.3, faithfulness is needed in the definition of
second-order validity for start states. All the other states are not affected.

Conventions: We assume that the PPGs of a CFPS have mutually dis-
joint sets of state classes. The union of the sets of state classes of the PPGs
of a CFPS P together with its start and end state form the set of state
classes of P. We write 0 € P if o is one of the state classes of the process
graph named by P. Each state s € FEzpp(Py) can be assigned a unique
state class of which it is a copy. Let this state class be denoted by [s]. Note
that [s] can not be an end state class of one of P’s PPGs, since no copies
of these classes are made during the expansion. In Ezpp(Fp), also start
state classes of a PPG are empty. We define [sg] =4¢ so and [s¢] =4 Se, and
we write s € o, if 0 = [s] or if 0 = ep and ep is identified with s in some
expansion step.
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end(s) will denote the return state of the expansion step which created

s, i.e. if s is one of the states of the copy of G; which expanded s’ B s,
then end(s) = s”. Note that end(s) does not belong to the same procedure
incarnation as s, but to a surrounding one. end(sg) and end(s.) are defined
to mean s..

Remember that F ExpPG(PF;) starts by adding a copy of all state classes of

G; except its end state class to sg 5 se. Let this copy of o for o € G; —{ep, }
be denoted by first_copy(c). And we choose first_copy(ep,) to stand for s..

2.2 Mu Calculus

The following negation—free syntax defines a sublanguage of the mu-calculus,
which in spite of being as expressive as the full mu-calculus allows a simpler
technical development.

¢pu=flit| X[dAN¢[odV dllal]|{a)| vX.d|pX. ¢

In the above, a € Act, and X € Var, where Var is a set of variables. The
fixpoint operators vX and pX bind the occurrences of X in the formula
behind the dot in the usual sense. Properties will be specified by closed
formulae, i.e. formulae that do not contain any free variable. A formula is
alternation free if no v-subformula has a free variable which, in the context
of the whole formula, is bound by a p, and vice versa. The set of closed
alternation-free formulae is denoted by F.

There are no atoms in this calculus other than ¢t and ff, in order to simplify
the presentation. It is, however, straightforward to add further constants,
as long as the corresponding valuations respect the partitioning into state
classes.

Formulae are interpreted with respect to a fixed (possibly infinite) process
graph G = (S, Act,—, 50, s.), and an environment e : Var — 25.

[fle = 0
[tfle = S
[¢1V dae = [¢1]eU[¢s]e
[¢1 A gole = [¢1]en [oa]e
llaldle = {s|Vs.s>s =5 €[¢]e}
[a)gle = {s|3s'. s> As' €[d]e}
[vX.gle = (J{$'CS|S C[¢lelX — S}

X.gle = (1S'CS|S 2 [8lelX S}

Intuitively, the semantic function maps a formula (with free variables) to the
set of states for which the formula is “true”. Accordingly, a state s satisfies
X if s is an element of the set bound to X in e.
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Since [¢]e does not depend on e for a closed ¢, we can write s = ¢ instead
of s € [¢]e for all e. We will use indices (=g, [¢]¢) if the process graph
G is not clear from the context. G |= ¢ stands for so = ¢, P = ¢ for
80 FEapp(Py) ¢ (a process graph satisfies a formula if its start state satisfies
the formula, and a formula is valid in a context-free process system if it is
valid in its complete expansion). Finally, s = ® for a set of formulae &
abbreviates s = ¢ for all members ¢ of ®.

One way to examine the meaning of a formula is by inspecting its imme-
diate subformulae, while repeatedly unfolding fixpoints. This procedure is
formalized in the rules for the construction of a tableau. The set of formulae
generated in this way is called the closure of the formula.

DEFINITION 6. The closure CL(¢) of a (closed) formula ¢ is inductively
defined as follows.

CL(tt)y = 0
CL(f) = 0
CL(¢1V d2) = {¢1V 2} UCL(¢1)UCL(¢2)
CL(¢1 Ad2) = {¢1Ad2} UCL(¢1)UCL(¢2)
CL((a)p) = {(a)p}UCL(8)
CL([a]¢) = {lal¢}UCL(9)
CLwX.¢) = {vX.¢}UCL(¢[vX.¢/X])
CL(pX.9) {nX.¢} UCL(4[nX.0/X])

Note that, although a fixpoint may be unfolded infinitely often, the closure
of a formula (which is different from the set of subformulae, due to the
unfoldings of fixpoints) is always finite.

2.8 Second-Order Semantics

The validity of a formula is defined with respect to single states. To define
the validity of a formula for a state class does not make much sense: the
truth value might not be the same for different representatives (copies) of
the same state class. But if two states s and s’ belong to the same state class
and the corresponding end states end(s) and end(s’) satisfy the same set of
formulae, then so do s and s’. This was the key observation motivating the
second-order semantics in [6]. Here, the concept is captured by the notion
of a second-order assertion. It is an analog to a pre/post specification in the
style of Hoare’s logic: the second part of a second-order assertion are the
properties supposed to hold at the end state (the postcondition), and the
first part gives a property holding at the given state, if the postcondition is
satisfied.
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DEFINITION 7. A (closed) second-order assertion is a pair (¢, ©) where ¢ €
F and © C F.

If s is a state of a PG G, s =g (¢, ©) iff 1(s) = ¢ for all faithful embeddings
¢ of G where 1(s.) = ©.

A PG G satisfies a second-order assertion if its start state satisfies the as-
sertion.

In order to give meaning to assertions about the start state of a PPG within
the complete expansion of a CFPS via an embedding one must guarantee
that the representing node does not have additional (spoiling) transitions.
This requirement is met by faithful embeddings. They allow us to separately
deal with the behavior coming from the considered PPG and the (context-
dependent) effect of the other transitions. This separation is the key for
allowing an inductive reasoning. Except for this technical difference, the
two versions of expansion are equivalent, because they have the same set of
reachable states. In particular they satisfy the same set of formulae.

The usefulness of second-order assertions relies on the following fact.

FacT 1. If . faithfully embeds G in G’ and «(s) =g ¢ for some ¢ € F and
some state s of G, then s =g (¢, {Y € CL(¢) | «(se) € [¥]a })-

An intuitive explanation for the validity of this statement is given by the
observation that to determine the truth value of a mu-calculus formula, it
is sufficient to know the truth values of all closure formulae at future states.
Since every path exiting ¢(G) goes through i(se), it is sufficient to have
complete information about this cut point.

Since the identity faithfully embeds any PG G in itself and the end state
is a deadlocked state, we immediately obtain:

G satisfies ¢ iff it satisfies (¢, Ogeqd),

where ©4.q4 is the set of formulae true at a deadlocked state.

To reason compositionally about the validity of formulae on the level of
the syntactic representation of a PG in terms of a CFPS, we introduce
second-order sequents and define their validity.

DEFINITION 8. A second-order sequent is a pair consisting of a state class
of a CFPS and a second-order assertion, and it 1s written in the form o +
(¢, ©), where © has to be finite. The sequent o F (¢, ©) is valid, iff
first_copy(0) ErEwp »(P) (¢, ©) for 0 € P, and it is exact, iff
o 0 # ep and in FExpp(Py) there is some s € o0 N [¢] where © = {0 €
CL(¢) | end(s) = 0}, or
o 0 =¢€p and in FExpp(P,) there is some s € 0 N [¢] where © = {0 €
CL(¢) | s =06}

A consequence of this definition is that if o - (¢, ©) is valid, then all s € o
with end(s) = © satisfy ¢. Exact are those sequents where the second
component is a set of formulae which actually occurs as validity set of some
end state. Fact 1 tells us that every exact sequent is valid.
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3. The Tableau System

One way to characterize the difference between regular and context free
processes is the generalization from action prefixing to the usual sequential
composition, which is equivalent to the generalization from left recursion to
general (parameterless) recursion in this setting. In fact, the main problem
of the construction of a tableaux system for context-free processes, which di-
rectly works on a CFPS representation, is to compositionally deal with the
sequential composition, which implicitly arises when dealing with CFPS:
parts of the transition system, which belong to a particular procedure in-
carnation (expansion of a certain call transition), are sequentially composed
with the part of the transition system representing the process behaviour
after the return from the called procedure. The solution to this problem are
the modality rules, which like the composition rule of the Hoare Calculus,
require the right guess of the intermediate formula. The rest of the rules
are adaptations of the usual tableau rules (cf. eg. [18, 22, 9, 5, 4]), which
organize the verification of the intermediate formulae. Formally our tableau
proof rules are given below:

Start Rule
s0 = ¢
op, F(6,0) {s.F8[0€O}
End Rules
se E dNAY
Se b ¢ se

Se m oV Se F PV Y

Se F (}S Se F ’l;b
se F vX.¢ se b pX.¢
se b [t/ X] se F S[ff/ X]

Conjunction and Disjunction Rules
o b (pA1), ©)
ok ($,0) ok (y,0)

ok {pVv, 0) ok {¢Vi, 0)
o F (¢, ©) o+ (¥, ©)
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Modality Rules
o+ ([lal¢, ©)

o+ {p,0) ... op F {[a]g, ¥) {o" F (¢, ©) |y € U}

(all o' where 0 % o’ and all P, ¢” where o Rl a)

o {(a)¢, ©) o - {{a)¢, ©)
o' F (¢, ©) op = ((a)¢, ¥) {o" (4, ©) |4 eV}
(0 % o) (o 5 o)
Fixpoint Rules
o+ (vX.¢, ©) o+ (uX.¢, ©)
o - (¢[vX.¢/X], ©) o (¢[uX.¢/X], ©)

Weakening Rule
ok (¢, O ,
—————— 0Coe
ot (¢, ©)

The Start Rule switches from a formula ¢ to a second-order assertion (¢, ©).
The formulae in © have to be verified for the global end state s, with the
End Rules. These five rules constitute a subsystem suited for the derivation
of formulae valid at a deadlocked state. All the other rules are required for
the verification of ¢ F (¢, ©). Here, the Conjunction and Disjunction Rules
are obvious, as well as the Weakening Rule. The Fixpoint Rules do the usual
unfolding. The remaining Modality Rules are the heart of the calculus. On
their standard action transition part they are straightforward adaptations
of the rules from usual tableau systems, but for call transitions they reflect
the implicit sequential composition mentioned above: they split the proof
into two parts, the part within the called procedure and the part after the
return.

Thus the intuition behind the two kinds of Modality Rules is the same.
The Diamond Rules only appear to be simpler as the nature of ( ) only
requires the success along one branch, which leads to two relatively simple
rules, whereas the Box Rule must collect proof obligations for each branch of
the system requiring one complex rule. We will discuss the Diamond Rules
in more details and leave the ‘technical collapse’ leading to the Box Rule to
the reader. The first Diamond Rule is the straightforward adaptation for
the standard action transition part, and the second rule deals with call tran-
sitions as follows: in order to proof the sequent o  ((a)¢, ©) one may first
establish that the called PPG satisfies op F ((a)¢, ¥) for some ‘postcon-
dition’ ¥. Of course, in order to complete the proof, this ‘postcondition’ ¥
must be verified for the current proof context leading to the proof obligations
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o + (¢, ©) for ¢ € U, which are abbreviated by {o” + (¢, ©) | ¢ € U}
in our tableaux.

A tableau built according to the rules is a partial proof for the sequent at
its root. It counts as a complete proof if it is successful:

DEFINITION 9. (SUCCESSFUL TABLEAUX) A finite tableau built according
to the rules of this system s successful if every of its leaves is successful. A
leaf n 1s successful if either

on==sg, I tt
on=oct (it ©)
o n=set [a]¢

o

n=o  ([a]¢, ©), where o is no end node of a PPG and there is no
o with o % o' or o 5 o
n=¢ep t (¢, ©) and ¢ € O, or

n=o0 F (p(vX.¢), ©), where p(vX.yp) € CL(vX.¢) and there is a
node on the path from the root of the tableau to n labelled with the
same sequent.

(o]

o

A sequent is derivable if there is a successful tableau with the sequent at
its root. A formula ¢ is derivable for a CFPS P with start state sy if the
sequent so F ¢ s derivable.

Whereas the correctness of the first five conditions is rather obvious, the
last one requires some explanation. Usually, one would allow to stop the
process of expanding a tableau if a sequent o F (vX.¢, ©) recurs. This
is based on the argument that if, by unfolding the fixpoint formula once,
no state s € o with end(s) € [O] violating the fixpoint formula is found,
then also by further unfoldings no such states will be found. So all of them
satisfy the maximal fixpoint formula. Here, the situation is slightly more
complex. It is true that whenever a recurrence according to the condition
above occurs, a maximal fixpoint subformula v X.% must have been unfolded.
But no sequent of the form o F (vX.i, ©) need to recur. Our generous
v-success condition takes care of this phenomenon by allowing to stop as
soon as an element of the closure of a v-formula recurs.

An example of a successful tableau is given in Fig. 3, where M abbreviates
pY.[b]Y and N stands for vX.([a,b]X A M). It proves that N holds for the
CFPS of Fig. 1, i.e. that no infinite b-sequences are possible.

In this tableau, the simple version of v-recurrence was sufficient. But our
second example tableau, presented in Fig. 4, demonstrates the necessity of
a more generous criterion. The sequent v F (vX.[a][b]X, {[b]vX.[a][b]X})
would appear infinitely often in a tableau, but never twice on a path. The
occurences would all be in finite subtableaux on sidebranches of the infinite
derivation path. But the sequent marked with e recurs, and it contains a
formula of the closure of vX. [a][b] X.

So we have to allow v-recurrence in a more general form. But in contrast
to [4, 5], our system does not require an explicit u-success, although we
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PFN

TeM TeN o+ <N’ {MiN})

o ([a,b]N A M, {M,N})

o ([a,b]N, {M,N}) ok (M, {M,N})

e AF (N, {M,N}) o (BIM, {M,N})

A F {[a,b]N A M, {M,N})

A E ([a, b]N, {M, N}) Ix

ot <[a’:b]N’ {MaN}> TPM TPN €k <N’ {M:N})

AF (N, {M,N}) >

Ter = se W M Ten = se F N

se F [b|ff Se F [a,b]tt A M

se F [a,b]tt T. mr

Tom= pt (M, {M N}) Ton = p (N, {M,N})
p <[b]M: {MaN}) pE <[aab]N/\M: {MaN}> Tpum
e - (M, {M,N}) p F {[a,b]N, {M,N})

e F (N, {M,N})

T

A F (M, {M,N})

A F ([b]M, {M,N})

e H (M, {M,N}) o+ ([o]M,0)

Fig. 3: Example tableau for the CFPS of Figure 1. M abbreviates pY.[b]Y and N stands
for vX.([a,b]X A M). Several subtableaux (named T s ...) are given separately.
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so F vX. [a][b]X

o F (vX. [a][b] X, {vX.][a][b]X}) se F vX.[a][b]X

o F ([a][b]vX. [a][b] X, {vX. [a][b] X }) se b [a][b]tt

ok (BlvX.alB1X, {vX. [@]B]X})

e b (X [a][b)X, {vX.[a][b]X}) T o u - ([pvX. [a][B)X, {vX.[a][t]X})

where T is the following (successful) tableau:

- o'+ {[blvX.[a][b] X, {[b]vX.[a][b]X})

v B (vX.[a][b] X, {[b]vX. [a][b] X })

v = ([a][b]vX. [a][b] X), {[b]vX. [a][b] X}

¢+ (BlvX. [allblX, {[ElvX. [a][]X})

Fig. 4: An example demonstrating the necessity of a more general recurrence rule for
v-formulae

deal with an infinite state space. Suppose we try to prove o + (uX. ¢, U),
and within the tableau, the same sequent appears again. This means that
validity of the sequent implies its validity, a seemingly circular argument.
The corresponding tableau in the system from [4, 5] may nevertheless be
successful, if an additional condition is met. Let T be the set of copies of
o whose corresponding end state satisfies U. For s,s’ € T, let s’ C s iff
the proof steps in the tableau show that s € [pX.¢] if s' € [uX. ¢]. Well-
foundedness of this order is (roughly) the condition for success. (Intuitively,
this is sound, because for the minimal elements w.r.t. this ordering, a suc-
cessful tableau must contain another argument why they satisfy the formula,
which gives the base case of an induction.) But in our tableaux, the order
is never well-founded: Either s and s’ are in the same copy of the named
process graph, then s = s’ (introducing a cycle), or s’ is in a later copy than
s, but then the copying can be repeated infinitely often, again destroying
well-foundedness. The order would only be well-founded, if s’ were in an
earlier copy. But in our tableaux, recurring to an earlier copy is impossible.
The proof would have to go through some node with an assertion about the
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end state class belonging to [s], and such nodes are leaves in our tableaux.
Therefore, recurrence of a sequent with a u-formula can not be successful in
our tableaux.

Indeed, the (safe) recurrence does occur indirectly in our tableaux. Look
at the subtableau

Tor = p+ (WYY, {M,N})
p b (BuY-BY, {M,N})

¢ F (LYY, {M,N})

in Fig. 3. The set of r € p with end(r) |= {M, N} consists of all copies of
p ({ro,r1,...}), and the corresponding end states (represented in the last
sequent of the tableau) additionally contains se.

The validity of s. = {M, N} is proved at a different place in the global
proof, but the small tableau above establishes

ri = pY [0]Y if riq = pY[B]Y

This is exactly what would require a recurrence of pY.[b]Y in the system of
[4, 5].

In the remainder of the paper we are going to show that the construction of
successful tableaux is an effective, sound and complete verification method
for context—free processes. Due to the presence of recurrences both in pro-
cesses and formulae, the proofs are rather complicated, and require some
preparations.

Let us start with two basic observations concerning our tableau rules. On
the one hand, each rule is sound in that the sequents below the line always
imply the one above. On the other hand, there is always a rule which can
be applied if a sequent is valid and the information about the end state is
complete, i.e. if the sequent is exact.

LEMMA 1. Each rule is sound, i.e. if the sequents below the line are valid,
then so is the one above the line.

PrRooOF.  This is rather obvious for all rules except the Modality Rules.
Here, we present the proof for the Diamond Rules.

For the proof of the first Diamond Rule let ¢/ - (¢, ©) be valid and let
0 = ¢ be a transition in a PPG named by P. Then we have to show
that o F ((a)¢, ©) is valid. Let s € FExpp(P) be the first copy of o, i.e.
s = first_copy(c), and let s’ be either the first copy, first_copy(d’), of o', or
se in case of 0/ = ep. Taking a faithful embedding ¢ of F Expp(P) into some
PG G with «(s.) F=¢ O, it remains to show i(s) =g (a)é.

The validity of o’ - (¢, ©) implies ¢(s') = ¢, and therefore, since o % o,
also 1(s) % u(s') and u(s) =g (a)¢ as desired.
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The second Diamond Rule covers the case where the a-step is executed

within a procedure. Let op F ((a)¢, ¥) and ¢” F (¢, ©) for all ¢ € ¥ be

valid, let o L 6" be a named transition in a PPG Q. Moreover let s and
n

s" (or s, if 0" = €g) be the first copies of o resp. ¢ in FExpp(Q), and

let sp be the copy of op created when faithfully expanding o L 6. This
is the situation we are in (in fact, s = s” or s” = s, may hold, not affecting
much our argumentation).

@ = end(sp) = end(s'), 1(s") T
= end(s), t(se) =©

Now taking a faithful embedding ¢ of FEzpp(Q) into some PG G with
u(se) g ©, we have to show u(s) =g (a)¢. ¢ also induces a faithful em-
bedding of FEzpp(P) into G with start state «(sp) and end state ¢(s”).
t(s") satisfies ¥, because all ¢’ F (1, ©) are valid, and the assumption
op F ({a)¢, ¥) guarantees that ¢(sp) satisfies (a)¢, i.e. t(sp) has an a-
derivative s’ satisfying ¢. Since any derivative of 1(sp) is also a derivative
of «(s) (by the definition of the faithful expansion), we obtain ¢(s) ¢ (a)¢,
which completes the proof of the second Diamond Rule.
Proving the soundness of the Box Rules is quite similar. O

The existence of exact sequents is the key to the completeness of our
method. The following lemma states that it is possible to expand the proof
tree while preserving exactness.

LEMMA 2. For every ezxact sequent there is a tableau with the sequent at its
root which s either

o successful, or

o contains at least one nontrivial rule application and its unsuccessful
leaves are exact sequents.

PrROOF.  Let the sequent be o F (¢, ©) and let s € o with s = ¢ and

© = {6 € CL(Y) | end(s) = 6 }. The result follows from a straightforward

case analysis.

¥ = 11 Viby: Then s |= 1; for some i € {1,2}. Let © =4 © N CL(¢).
Then o + (1;, ©) is exact, and an application of the Disjunction Rule
and maybe the Weakening Rule provide the required tableau.

¥ = (a)y': . Then s |= 1 implies that either o % o’ or o £ 5" for a PPG
P with op 5 ¢’ In the first case, also o’ F (', © NCL(¢')) is exact,
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and we can apply the first Diamond Rule (and maybe Weakening).
In the second case, let s’ be the relevant copy of op, and let ©' =
{6 € CL(¢) | end(s') = 0}. Then op F (1, ©') is exact, and we can
similarly construct exact sequents for the relevant copy of ¢” and all
elements of ©’. Finally, o F (1, ©) can be reduced to these sequents
by applying the second Diamond Rule.

The case of a box formula is similar, and all others are obvious. O

The general structure of the proof of soundness and completeness of the
tableau system is an induction on the size of the formula. More precisely, it
proceeds by induction on the size of the closure of the formula and establishes
soundness and completeness in parallel.

One of the problems we face in formulating the proof is that of relating
the derivability of intermediate assertions, which are second-order, to the
semantics of mu-calculus formulae, which gives a set of (first-order) states.
In the tableaux, we compute second-order fixpoints, but the semantics of
formulae is given by first-order fixpoints. To be able to formulate properties
suitable for inductive proofs, we introduce the notion of first-order derivabil-
sty. This notion allows to speak of the set of formulae which are derivable
for some state of the expansion of a CFPS. Note that from Definition 9 we
only get derivability either of formulae for the start state or of second-order
assertions for state classes.

DEFINITION 10. Let s be a state different from the global end state. A closed
formula ¢ is first-order derivable for s if there is a derivable sequent [s]
(¢, ©) where © C CL($) and all 0 € © are first-order derivable for end(s).
¢ 1s first-order derivable for the global end state se, if se & ¢ is derivable
(via the End Rules). The set of states for which ¢ is first-order derivable is
denoted by [4].

This recursive definition is well-founded: end(s) does not belong to the
same copy as s, it is created at least one expansion step earlier.

Another difficulty in the proof arises because the inductive definition of
the semantics of formulae involves formulae with free variables and an envi-
ronment. In the tableaux, no free variables do occur. Variables are always
replaced by the closed p- or v-formula to which they are bound. Thus we
have to relate the subformulae and the environment in the semantic defini-
tion to the substitution instances in the tableaux. Note that the substitu-
tions to be done for any subformula of a given closed formula are determined
by its context.

DEFINITION 11. Let ¢ € F and let ¢ be a subformula occurrence in ¢. Then

1; denotes the closed formula resulting from ¢ by iteratively substituting the
appropriate fixpoint formula for every free variable occurrence.

As an example, consider the formula v X.(a)(vY.X V [0]Y). Then

LY = oY (XV[Y) = [b]rY.(vX.(a)(vY.X V[0]Y)) vV [B]Y) .
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Up to renaming of bound variables, 1; is unique. In the following, we will as-
sume a distinguished variable naming, i.e. that different fixpoint definitions
use different variable names. This leads to a globally well-defined function ™.
In particular, X does not depend on the position of the occurrence of X in

é.

The following two lemmata give a handle to proving the completeness for
minimal fixpoint formulae and the soundness for maximal fixpoint formulae.

LEMMA 3. Let ¢ be a subformula of ¢ € F where all free variables are

bound to minimal fizpoints in ¢. Then we have |[¢]] C |][¢]]] , whenever
[vX.Q] C [[vX.Q] for any closed subformula vX.Q of 9.

ProoF. Let X,...,X, contain all (free and bound) variables in ¢ which
are not in the scope of a maximal fixpoint operator, and e denote {X; —

ﬂ[)z]]], e, X e HI)?;]]]} Then it suffices to prove

W1 = [X]L -, Xo = [XaD} S IO

by induction on the structure of ).

The central argument is presented in the case where ¥ = pX.%’ below.
The rest is a straightforward, but, in particular in the case of modalities,
tedious case distinction.

¥ = X;: Then [y]e = [X;] = [v]

1 = 11 V 1P9: In this case []e = [¥1]eU[es]e C ﬂ[;b:]]] U ﬂ[;ﬂ;]]] by induction.
Thus, for s € [¢]¢ there is a © C CL(41) or © C CL(¢b3) with
e@\(/i(s) € [©] and a successful tableau for [s] + <1f/1\;, ©) resp. [s]
(12, ©).

An application of the Disjunction Rule gives a tableau for [s] F ({b/, 0),
and of course © C CL(1)).

Y = 11 A ¥g: By induction, we get two tableaux with ‘independent’ sets of
formulae ©1 and ©5. Applying the Weakening Rule with © =4 ©;U0O
followed by the Conjunction Rule yields the desired result.

P = (a)y': Let s € |[1/)]]e and s’ € [¢']¢ with s = . Then we know
by induction that s’ € ﬂ[l/]’]]] Thus there exists a © C CL(1/J’) with
end(s') € [[0] for 6 € © and a derivation of [s'] F (¢/, ©).

In the CFPS, three cases need to be distinguished:

a 0Qo = €Qo 0Qo 5 [31]
[s] = Jeq Qo Qo
1 [s] - €Q1 [s] - €Q1
P2 - €Q2 Q1 Q1
P2 - €Q, P2 - €Q,
Pn Ql;l [sl] Qn—l Qn—‘l“
pn | [$] prn_ | [end(s')]
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These cases are now treated successively. Each of them splits into two
subcases, requiring different argumentations: Either n = 1 and the
part within the frame is missing, or n > 1, and the frame is nontrivial.
For the simple subcase of the first, where [s] = [s'], we have end(s) =
end(s'), and we can extend the derivation of [s'] F <J’, ©) to a deriva-

tion of [s] F ((a)y’, ©) by one application of the first Diamond Rule.
Thus let n > 1. Then s’ = end(s), and with the first Diamond

Rule we can derive [s] - ((a)4/, {¢'}) from the successful leaf €,
(', {4'}) , which completes the proof of the first case.

In the second case, we can derive og, F ((a)y’, {¢/'}). The rest is
analogous to the first case, with the only difference that the second
Diamond Rule is applied instead of the first one, which requires the
additional sequent established above.

In the third case, we can derive og, F ({(a)¥’, ©).

In the subcase for n = 1 we have end(s) = end(end(s’)), and since
end(s") € [[0] for 6 € ©, there is (by the definition of [-]) a derivation
of [end(s")] F (6, ©) for some ©' C CL(<;5:/J’) with end(end(s")) €
[©T (= end(s) € [O©']). This and the assertion about o, allow us
to derive [s] ((m’, ©') as desired.

Thus let n > 1 and therefore end(s) = end(s’). The sequents g, +
(0, ©) for § € © are successful leaves, and combining them with og,

((a)y, ©) gives a derivation of [s] F ((a)y, ©) by means of the second
Diamond Rule. Since end(s) = end(s’), also end(s) € [[©] by our
assumptions, completing the argument.

1 = [a]y’: All derivatives of [s] with s € [¢’]€ have to be considered, leading
to similar subcases as above, plus cases where there is no a-derivative
at all.

1 = vX.1': By assumption, only variables bound to minimal fixpoints are
free in . Thus ¥ must be closed, because ¢ is alternation-free. Thus
we are done simply by means of the assumption [vX.v'] C [vX.¢'].

v = pX.v': The induction hypothesis gives us
[¥'] 2 WHX: = [X1], -, Xo = [Xa], X — [XT}

and since ﬂ[)}]]] = ﬂ[iZ’]]], we also have HIJI]]] 2 [¥']e[X — HITZI]]]] Thus,
[4'] is decreased by AS". [¢/[e[X ~ S']. Now considering the defini-
tion of [uX. '] yields the required inclusion [[¢/'] 2 [pX.¢/]e. O

LEMMA 4. Let ¢ be a subformula of ¢ € F where all free variables are
bound to mazimal fizpoints in ¢. Then we have [¢] D [[¢] , whenever
[0X.Q] D [uX.Q] for any closed subformula pX.Q of 1.
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ProoF. Let X,...,X, contain all (free and bound) variables in 1) which
are not in the scope of a minimal fixpoint operator, and e denote {X; —

ﬂ[)z]]], e, Xy e HI)?;]]]} Then, as in Lemma 3, we prove

WX = [X] -, Xo = XD 2 190

by induction on the structure of ). In this case the central argument is

needed for ¢ = vX. 9.

¥ = Xi: Then [¢]e = [X] = [V]

¥ = by V4by: In this case [ih]& = [¢1]6U[w2]e 2 [1] U 2] by induction.
Let s € ﬂ[qfﬂv%]]] . Then there is a derivation of [s] F <;ﬁ:v;ﬁ;, ©) for
some end(s) € [O] . The Or Rule must be applied in this derivation

to decompose 91 V 19, possibly after doing weakening. So there is a
subtableau for [s] F (1;, ©) for either i = 1 or ¢ = 2 with ® C ©.
If there is no leaf recurring to [s] F (E \% @;, ©), the subtableau
is already a complete derivation. Otherwise, we get a derivation by
extending the subtableau at the recurring leaves. This proves s € HI?E]]]
From |][1Zl]]] C [¢]e above we conclude s € [¢]e, as required.

1 = 11 A)y: similar.
¥ = (a)y': Let s € [{(a)y']] . Then [s] F ((a)y’, ©) , where end(s) € [O] ,

is derived by an application of one of the diamond rules. By reasoning
similar to that in the proof of Lemma 1 (compare also the cases in
Lemma 3), we get some s’ with s — s’ for an s’ with the following
possibilities:

end(s) = end(s') and [s'] F (¢, ©) is derivable.

end(s) = s’ and ¢’ € © . Again, s’ € HITZ’]]] )

end(s) = end(end(s')) , and [s'] F (1;’, ©') and [end(s")] F
(0, ©) are derivable for some ©’ .

end(s) = end(s") , and [s'] I (¢, ©') is derivable for some @' C
O .

o

(e]

o

o

The first two cases may arise if the first or second rule is applied, the
last two can only occur from the second. In all cases, s’ € HI@Z’]]] can be
deduced. From the induction hypothesis and the semantics definition
s € [¢]e follows as required.

¢ = [a]Y': similar.
1 = uX.9)': by the assumptions.
¢ =vX;4': Let s € [¢] = [X;]. Then the maximal fixpoint rule must

have been applied and there is a derivation for [s] + (1:[;’, ©) where
end(s) € [[©] . By induction, we get s € [¢']e . Thus,
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which implies
[¥] = [X:] € [vX:9']e
by the definition of the semantics of maximal fixpoints.O

Now we are in a position to prove the main result of this paper, the
soundness and completeness of the tableau system.

THEOREM 1. (SOUNDNESS AND COMPLETENESS) A formula is derivable
for a CFPS uff it is valid.

PROOF. Soundness and completeness of the end rules are easy to show.
So we concentrate on second-order sequents. We prove that every derivable
sequent o F (12, ©) is valid (soundness) and that every ezact sequent o +
(TZ, ©) is derivable (completeness). The proof proceeds by induction on

[CL(Y)| - N N

1 may contain fixpoint formulae # with ¢» € CL(#) . Since we are dealing
with the alternation-free mu-calculus, these are either all maximal or all
minimal fixpoint formulae. Accordingly, we call ¢ a minimal or a maximal
formula. These are treated separately in the proof. Both cases subsume
formulae which are not in the closure of any subformula, i.e. which can be
viewed as being both a minimal and a maximal formula.

1 is maximal: Let o F <{Z;, ©) be an exact sequent. By Lemma 2, there is
a nontrivial tableau reducing this sequent to other exact sequents. For those
sequents concerning formulae with a smaller closure, there is by induction a
successful tableau which we can add. Otherwise, the formula at the leaf has
the same closure as 1/, and we keep on extending the leaves. Since the closure
is not increased, only finitely many sequents can occur. So on every path a
sequent must eventually recur. The recurring leaf is successful, since only
the unfolding of a maximal fixpoint can be responsible for its recurrence.

Thus, o F (¢, ©) is derivable.
Let o F (3, ©) be derivable, and let s € o with end(s) € [©] . Using

the induction hypothesis for formulae § € F with CL(6) C CL(¢) and
the already established completeness for formulae § € F with CL(0) =

CL(J) (which cannot be ‘minimal’) yields [#] C [[0] for such @ . Therefore,
end(s) € [©] and s € [¢] - Lemma 4 allows us to conclude s € [¢¢] . Thus,

the sequent o F (1, ©) is valid.

1) is minimal: The validity of every derivable sequent follows from the in-
duction hypothesis and Lemma 1, because every successful tableau must
reduce a minimal formula to formulae with smaller closure.

Let o b (1, ©) be exact. Let s € [i] with © = {8 € CL(¥) | end(s) €
[0] } be given. Lemma 3 yields s € |]I’LZ]]] , 1.e. there is a derivation of o I
(1, ©') where end(s) € [©'] . Using the soundness established so far, an
induction on the expansion depth shows [[f] C [6] for any 6 € F with
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CL(#) C CL(%). Thus, end(s) € [©'] , which implies ©' C © . So we can
apply the Weakening Rule to derive o + (1;, O).

This establishes soundness and completeness for second-order sequents.
Since the end rules share these properties, the theorem follows. O

A CFPS has only finitely many state classes and the closure of a formula
¢ is a finite set. Thus only a finite number of sequents and a finite number
of intermediate formulae need to be considered during the construction of a
tableau. This yields:

COROLLARY 1. (EFFECTIVENESS) The tableau system provides an effective
sound and complete model checking procedure for context—free processes and
alternation—free formulae.

4. Conclusions and Future Work

We have presented a local model checking algorithm that decides the al-
ternation-free modal mu-calculus for contezt-free processes. Heart of this
algorithm is a purely syntactic sound and complete formal system, which in
contrast to the known tableau techniques, uses intermediate second-order
assertions. These assertions provide a finite representation of all the infinite
state sets which may arise during the proof in terms of the finite representa-
tion of the context-free argument process. This finiteness is the key to the
effectiveness of our local model checking procedure.

Yet more can be done than deciding alternation-free formulae for context-
free processes. Muller and Schupp [20] proved that Monadic Second Order
Logic (MSOL) is decidable for pushdown transition graphs. Pushdown tran-
sition graphs are a strict generalization of context-free processes with respect
to bisimulation semantics, and even the full mu-calculus can be embedded
into MSOL. Also, Burkart and Steffen [7] considered pushdown transition
graphs, and Purushothaman [21] and Hungar [15] further generalized the
process language by allowing processes to be called with process parame-
ters.

The most challenging question we are currently considering is the exten-
sion of our techniques covering the full modal mu-calculus. The decision
procedure of Muller and Schupp for MSOL is non-elementary and thus not
applicable to practical problems. Bradfield, Esparza and Stirling are work-
ing on an adaptation of the tableaux method of [4, 5] based on success
conditions requiring a global investigation of the proof tree. This method is
extremely complex, and it is not yet clear how much this approach improves
on the complexity of Muller and Schupp’s algorithm [3]. We conjecture
that other techniques would lead to an elementary algorithm via a locally
decidable condition for success.

Finally, we are looking at a modification of our method to improve the
worst-case time complexity along the lines of [1, 19]: by keeping track of
intermediate results it should be straightforward to almost arrive at the
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worst case time complexity of the iterative algorithm of [6] instead of the
double exponential complexity of a straightforward algorithm for tableaux
construction.
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