
Nordic Journal of Computing 1(1994), 202–213.

A TABULAR METHOD FOR VERIFICATION OF

DATA EXCHANGE ALGORITHMS ON NETWORKS

OF PARALLEL PROCESSORS

K. COOLSAET
Department of Pure Mathematics

University of Gent
Galglaan 2, B–9000 Gent

Belgium
kc@cage.rug.ac.be

V. FACK
Department of Applied Mathematics

and Computer Science
University of Gent

Krijgslaan 281–S9, B–9000 Gent
Belgium

Veerle.Fack@rug.ac.be

H. DE MEYER∗

Department of Applied Mathematics
and Computer Science

University of Gent
Krijgslaan 281–S9, B–9000 Gent

Belgium

Abstract. A tabular method for verification of data exchange algorithms on
networks which possess a certain symmetry (whose underlying graph is a Cayley
graph) is given. The algorithms use no intermediate buffering of messages.

To illustrate this method, optimal total exchange (i.e., all-to-all personalised)
algorithms are given for several much-used processor configurations, such as ring
networks, the hypercube and symmetric meshes with wrap-around (two and three-
dimensional). To the best of our knowledge the latter are new.

ACM CCS Categories and Subject Descriptors: F.2.2, G.2.2

Key words: total exchange, optimal algorithm, hypercube, symmetric meshes with
wrap-around

1. Introduction

This section introduces some terminology. Most concepts defined here have
been described in more detail in [8].

Consider a network of parallel processors. Such a network can be treated
as an abstract graph with processors as nodes (vertices) and duplex commu-
nication channels as links (edges). Each connection between two adjacent

∗Research Director at the National Fund for Scientific Research (N.F.W.O. Belgium)

Received November 1993. Accepted August 1994.

A TABULAR METHOD FOR VERIFICATION OF DATA EXCHANGE . . . 203

processors is treated as consisting of 2 different links, one link for each di-
rection. Denote the set of nodes of a given network by N and the set of
links by L.

A sequence of nodes i0, i1, . . . , ik ∈ N where ij and ij+1 are neighbours
(0 ≤ j < k) is a path of length k between nodes i0 and ik. The distance
between two nodes is the length of the shortest path that connects these
nodes.

A data exchange algorithm is a set of programs (one for each processor in
the network) which are executed in parallel and whose purpose it is to send
data (in the form of messages) between several processors. A total exchange
algorithm is a data exchange algorithm which allows every node i in the
network to send a different message mi,j to every other processor j in the
network [5, 11].

We concentrate on the order and the paths by which the messages are sent
across the network, and not on the lower level processing needed to make
these transfers. The abstract model we use, makes the following assumptions
about timing : the transfer of a message from a node to a neighbouring node
occurs only at discrete time intervals; the time taken for extra processing of
messages within each node is negligible; and one node is allowed to transfer
messages to all of its neighbouring nodes simultaneously, but at most one
message at the same time across a given link, i.e., one message for each di-
rection. (In practice this ‘simultaneous’ transmission of messages is allowed
to take a small amount of time, as long as subsequent time intervals do not
overlap. Some sort of extra synchronisation might also be necessary. Other
authors use a similar approach [3].)

By definition, an algorithm does not need intermediate buffering of mes-
sages if every message mi,j which at a given time T arrives at a node k
(6= j), leaves that node again at time T + 1.

The following definitions are borrowed from graph theory [6, 10]. A 1-
to-1 mapping σ : N → N is an automorphism of the network if two nodes
σ(i) and σ(j) are linked if and only if the nodes i and j are linked. The
set of automorphisms of a network forms a group. A subgroup G of the
automorphism group acts regularly on the graph, if for every pair i, j of
nodes there exists exactly one element σ of G such that σ(i) = j. We
call a network for which such a group G exists, a Cayley network (after
similarly named Cayley graphs [6]). It is not always easy to determine
whether a network is a Cayley network and to find an appropriate group
G. However, most networks considered in the literature (e.g., hypercubes,
meshes with wrap-around, cyclic networks, etc.) are Cayley networks with
obvious groups (cf. section 3). For that reason Cayley graphs have been used
for quite some time in the analysis of interconnection networks [1, 2, 3, 4, 7].

In a Cayley network we may take the group G itself as the nodeset N . If
S = {g1, . . . , gd} is the set of neighbours of the identity 1 ∈ G = N , then
g, h ∈ G are neighbours if and only if g−1h ∈ S. Every Cayley network is
uniquely determined by its group G and the set S.

204 K. COOLSAET, V. FACK, H. DE MEYER

For each path h0, . . . , hn in a Cayley network there is a corresponding word

w = g1 · · · gn ∈ S∗ (i.e., a word with elements in S), where gi
def
= h−1

i−1hi ∈ S.
We have h0w = hn. Conversely, every word w ∈ S∗ determines a path
joining a node h0 with the node h0w.

A data exchange algorithm on a Cayley network (G,S) is locally defined iff
for every g ∈ G and for every message mh,k (h, k ∈ G) which is transferred
by the algorithm from node 1 to its neighbour gi ∈ S at a given time T ,
a message mgh,gk is transferred at the same time T from node g to its
neighbour ggi. Note that the word w that corresponds to the path taken
by mh,k is the same as that corresponding to the path taken by mgh,gk.
Hence, in order to study locally defined algorithms, it is only necessary to
investigate what happens at a single node (usually the node corresponding
to the identity 1 ∈ G).

The following lemma, which we proved in [8], provides us with an impor-
tant tool :

Lemma 1. Consider a locally defined algorithm on a Cayley network (G,S).
Let m be a message with associated word w = giw

′ ∈ S∗ sent from a node
h ∈ G at a given time. Then in the same time interval a message m′ arrives
at h from the node hg−1

i . The path which m′ still has to travel to reach
its destination corresponds to the word w′. (If w′ is empty, then h is the
destination of the message m′.)

2. Verification of data exchange algorithms

without intermediate buffering

The above lemma can be used to investigate the traffic of messages during a
data exchange algorithm. Indeed, let w1, . . . , wk be the words corresponding
to messages that are still waiting to be sent from node 1 at time T . Assume
that the messages sent at time T correspond to the words w1, . . . , wj (j ≤ k).
(Note that the first element of each of these j words must be different, for
this indicates the link across which the corresponding message needs to be
sent.) By lemma 1, at time T + 1 the messages that are waiting at node 1
to be sent now correspond to the words w′

1, . . . , w
′
j , wj+1, . . . , wk, where all

empty words have to be removed. (We use the w′-notation of the lemma.)
If the data exchange algorithm does not use intermediate buffering, then

the messages sent at time T + 1 must include those just received, i.e., the
messages that correspond to w′

1, . . . , w
′
j . This is only possible when all first

elements of these words differ. The following theorem provides us with an
easy way to verify this :

Theorem 1. Every locally defined data exchange algorithm without inter-
mediate buffering on a Cayley network (G,S) corresponds to a rectangular
table with #S rows whose entries are either blank or elements of S with the
following properties :

A TABULAR METHOD FOR VERIFICATION OF DATA EXCHANGE . . . 205

(1) Every row consists of zero or more words in S∗ separated by zero or
more blanks.

(2) Every column contains each element of S at most once.

The messages sent by this algorithm are exactly those that correspond to the
words in the table. The total time taken by the algorithm is equal to the
number of columns in the table.

Conversely, every such table corresponds to a locally defined data exchange
algorithm without intermediate buffering in the following way : Remove the
first T − 1 columns of the table. The words that begin in the first column
of the table thus obtained correspond to the messages which are transferred
from a given node at time T . Each message is sent to the neighbour that is
associated with the first element of the corresponding word.

The proof of this theorem is an immediate consequence of lemma 1. We
leave the details to the reader. This technique is an extension of a similar
technique used in [8].

3. Applications

We apply the above technique to several much-used processor configurations.
Some of the algorithms in section 3.1 and 3.2 are also given in [8] (be it in
a different format).

To our knowledge, the algorithms given in sections 3.3 and 3.4 are new
algorithms for optimal total exchange without buffering on that kind of
network. In [5] optimal total exchange algorithms for wrap-around meshes
are given, but these use buffering.

3.1 Ring networks

A network of 6 processors connected in a ring can be considered as a Cayley
network with the cyclic group C6 :

G ∼ C6 = 〈a | a6 = 1〉

and with link set S = {a, ā
def
= a−1}. In figure 1 a representation of this

network is given.
Consider a data exchange algorithm in which every node must send a

message to each node at odd distance. The messages sent from a given node
correspond to the words a, ā and aaa (or āāā). The following is a table that
corresponds to such an algorithm :

a a a a
ā

This algorithm takes time 4. The blank spaces indicate that during the last
3 time intervals only one link per processor is used, instead of the available
two.

206 K. COOLSAET, V. FACK, H. DE MEYER

�
��

�
��

�
��

�
��

�
��
�
��

Z
Z

�
�

Z
Z

,
,

1

a

aa

aaa

ā

āā

a

ā

a

ā a

ā

a

ā

a

āa

ā

�
��

�
��

�
��

�
��

�
��
�
��

Z
Z

�
�

Z
Z

,
,

1

b

bB

bBb

B

Bb

b

b

B

B b

b

B

B

b

bB

B

Fig. 1: Representations of a hexagonal network using groups C6 (left) and D6 (right)

On the same network, a total exchange algorithm (i.e., with messages
a, aa, aaa, ā, āā) might be represented as follows :

a a a a a a
ā ā ā

This algorithm takes time 6. Again, during the last 3 time intervals only
one link per processor is used instead of the available two.

The hexagonal network can also be represented using a different group,
the diheder group D6 :

G ∼ D6 = 〈b,B | b2 = B2 = (bB)3 = 1〉

and link set S = {b,B}. In figure 1 also this representation of the network
is given.

Note that the group D6 is not commutative. Hence, the words bB and Bb
apply to different nodes. However bBb and BbB designate the same node,
although they determine a different path to that node.

Using this representation a faster ‘odd distance’ data exchange algorithm
can be found, needing only 3 units of time :

b B b
B b

Similarly, a faster total exchange algorithm, needing only 5 units of time, is
provided by the following table :

b B b b B
B b B b

In general, given a ring network of n processors, an optimal total exchange
algorithm without buffering can always be found.

A TABULAR METHOD FOR VERIFICATION OF DATA EXCHANGE . . . 207

If n is odd, we use the cyclic group Cn = 〈x | xn = 1〉 and link set

S = {x, x̄
def
= x−1}. The corresponding algorithm table is the following :

x x x . . . x x · · · x
x̄ x̄ x̄ . . . x̄ x̄ · · · x̄

The total time taken by the algorithm is 1
8(n − 1)(n + 1).

If n is even, we use the diheder group Dn = 〈y, Y | y2 = Y 2 = (yY)n/2 = 1〉
with link set S = {y, Y }. We must distinguish further between n/2 even or
odd. Below we give the table for n = 12 :

y Y y Y y Y y Y Y y Y y Y y Y y Y y
Y y Y y Y y Y y y Y y Y y Y y Y y Y

The table for n = 10 can be obtained from this table by deleting the right-
most two words :

y Y y Y y Y y Y Y y Y y
Y y Y y Y y Y y y Y y Y y

The general case can easily be derived from these examples. The total time
taken is 1

8n2 when n/2 is even, and 1
8(n2 + 4) otherwise.

3.2 The hypercube

We proved in [8] that an optimal total exchange algorithm without buffering
always exists for the hypercube of any dimension. Below we give the example
for dimension 4, i.e., a hypercubic network of 16 processors. This is a Cayley
network with group

G ∼ C4
2 = 〈a, b, c, d | a2 = b2 = c2 = d2 = 1,

ab = ba, ac = ca, ad = da, bc = cb, bd = db, cd = dc〉

and link set S = {a, b, c, d}. In the usual binary notation used for hyper-
cubes, the elements of S correspond to 1000, 0100, 0010 and 0001. Group
multiplication then corresponds to bitwise exclusive or.

We give two examples of total exchange algorithms for this network :

a d a c a b c d
b a b d b c d a
c b c a c d a b
d c d b d a b c

a b c d b c b d
b c d a c d c a
c d a b d a d b
d a b c a b a c

The tables contain no blanks and use the shortest possible message paths,
which proves that the algorithms are optimal. In general, for an n-dimen-
sional hypercube, the total time taken is 2n−1.

208 K. COOLSAET, V. FACK, H. DE MEYER

3.3 Two-dimensional symmetric meshes with wrap-around

A network of n2 processors connected in a symmetric mesh with wrap-
around can be considered as a Cayley network with commutative group

G ∼ C2
n = 〈a, b | an = bn = 1, ab = ba〉

and link set S = {a, b, ā
def
= a−1, b̄

def
= b−1}. When n is odd, this group can

be used to obtain an optimal total exchange algorithm.
In a total exchange algorithm every node needs to send n2 − 1 messages.

Because of the rotational symmetry of the network, these messages can be
partitioned into 4 equivalent sets, where each set is transformed into another
set by the substitution

σ : a → b → ā → b̄ → a

This rotational symmetry provides us with an easy way to setup an algo-
rithm table. Indeed, the topmost line of the table consists of all messages
of the first set, while the other lines are obtained by applying σ to the
line above. This yields a total exchange algorithm taking minimal time
1
8n(n − 1)(n + 1).

As an example we consider the network for n = 5, of which a representation
is given in figure 2. The first set (framed in the figure) contains the messages

a, aa, ab, aab, abb, aabb.

(Because of commutativity, we might as well have chosen other message
paths, e.g., a, aa, ba, aba, bab, abab. This is correct, as long as the other
three sets are renamed accordingly.)

The corresponding algorithm table is the following :

a a a a b a a b a b b a a b b

b b b b ā b b ā b ā ā b b ā ā

ā ā ā ā b̄ ā ā b̄ ā b̄ b̄ ā ā b̄ b̄

b̄ b̄ b̄ b̄ a b̄ b̄ a b̄ a a b̄ b̄ a a

In case n is even, the group C2
n cannot provide us with an optimal to-

tal exchange algorithm, for similar reasons as with the hexagonal network.
However, the network can also be represented using a different group. For
example :

G ∼ D2
n = 〈a, b, A,B | a2 = b2 = A2 = B2 = (aA)n/2 = (bB)n/2 = 1,

ab = ba, aB = Ba,Ab = bA,AB = BA〉

with link set S = {a, b, A,B}. (Note that for n > 4 this group is not
commutative, hence aAbB is not the same as AaBb. However aAbB =
bBaA !) A representation of the case n = 6 is shown in figure 3.

A TABULAR METHOD FOR VERIFICATION OF DATA EXCHANGE . . . 209

āāb̄b̄

āāb̄

āā

bāā

bbāā

āb̄b̄

āb̄

ā

bā

bbā

b̄b̄

b̄

1

b

bb

b̄b̄a

b̄a

a

ab

abb

b̄b̄aa

b̄aa

aa

aab

aabb

- -

- -

- -

- -

- -

6

6

6

6

6

6

6

6

6

6

a

b

ā

b̄

Fig. 2: Representation of a symmetric mesh with wrap-around of odd order (n = 5)

AaBb

BAa

Aa

bAa

bBAa

bBbAa

ABb

AB

A

bA

AbB

bBbA

Bb

B

1

b

bB

bBb

aBb

Ba

a

ab

abB

BbBa

BbaA

BaA

aA

baA

aAbB

BbBaA

AaABb

AaAB

aAa

aAab

aAabB

BbBAaA

- -

- -

- -

- -

- -

- -

6

6

6

6

6

6

6

6

6

6

6

6

a A a A a AA a A a A a

b

B

b

B

b

B

B

b

B

b

B

b

Fig. 3: Representation of a symmetric mesh with wrap-around of even order (n = 6)

210 K. COOLSAET, V. FACK, H. DE MEYER

Because n2 − 1 is not divisible by 4, it is not possible to use σ as in
the odd case. The rotational symmetry breaks down because of the 3 spe-
cial messages aAaA · · ·, bBbB · · · (both of length n/2) and their product
aAaA · · · bBbB · · · (of length n). Indeed, we have

σ(σ(aAaA · · ·)) = AaAa · · · = aAaA · · ·
σ(σ(bBbB · · ·)) = BbBb · · · = bBbB · · ·

σ(aAaA · · · bBbB · · ·) = bBbB · · ·AaAa · · · = aAaA · · · bBbB · · ·

Therefore, if we leave out these 3 messages, the corresponding data exchange
algorithm could be built using σ. In figure 3 the messages of the first set
are framed.

To construct a total exchange algorithm we set apart these 3 special mes-
sages together with 8 more. These 8 messages are those messages of length
n/2 which contain exactly one of {a,A} or exactly one of {b,B}. In figure 3
the relevant words are underlined.

Clearly this set of 8 words is rotationally symmetric. Hence, if we leave
out all 11 messages, the remainder can still be put into a valid algorithm
table which will constitute the first part of the table for the total exchange
algorithm. The second part of the algorithm table contains the 11 messages
(after some renaming), in the following way :

a A a A · · · b B b B · · · B a A a · · ·
b a A a · · · a b B b · · · b A a A · · ·
A B b B · · · B A a A · · · A b B b · · ·
B b B b · · · A a A a · · · a B b B · · ·

For n ≥ 6 this approach yields a total exchange algorithm with minimal
time 1

8n3. For n = 4 we cannot use the same method. However, this case
corresponds to the hypercube of dimension 4 (indeed, D4 ∼ C2

2) which has
been treated in section 3.2.

A total exchange algorithm for the case n = 6 is given by the following
table :

a a b a A a A a b a A b B a A a b B a A a b B b B a A
b b A b B b B b A b B A a b B b B a b a A a b B b A a
A A B A a A a A B A a B b A a A a b A B b B A a A b B
B B a B b B b B a B b B A B b B b A B b B A a A a b B

3.4 Three-dimensional symmetric meshes with wrap-around

As in the previous section we distinguish between n odd and n even. For n
odd, the network may be represented by the commutative group

G ∼ C3
n = 〈a, b, c | an = bn = cn = 1; a, b, c commute〉

and link set S = {a, b, c, ā
def
= a−1, b̄

def
= b−1, c̄

def
= c−1}. The messages sent by

a total exchange algorithm are of the form aibjck, with −n/2 < i, j, k < n/2,

A TABULAR METHOD FOR VERIFICATION OF DATA EXCHANGE . . . 211

where we have used the shorthand notation ai (i > 0) for the word a · · · a of
length i and the notation x−i for x̄i.

We now use the substitution

σ : a → b → c → ā → b̄ → c̄ → a

This partitions the messages in classes most of which have size six. The
exceptions are the messages of the form aib−ici with −n/2 < i < n/2, which
come in classes of size two. Now consider the following table, containing the
messages of one class of size 2 and three classes of size 6, with i > 0 :

ai ci b̄i bi āi c̄i

āi b̄i ai ci ai bi

b̄i c̄i āi c̄i bi ci

bi āi ci āi b̄i ai

c̄i bi c̄i ai ci b̄i

ci ai bi b̄i c̄i āi

If we join all these tables for 0 < i < n/2 and extend the result with
the remaining classes of size 6, using σ in the manner of section 3.3, then
this provides us with a total exchange algorithm with minimal time
1
8n2(n − 1)(n + 1).

For n > 4 even, we use the group

G ∼ D3
n = 〈a, b, c, A,B,C | a2 = b2 = c2 = A2 = B2 = C2 = 1,

(aA)n/2 = (bB)n/2 = (cC)n/2 = 1,

all generators commute, except aA 6= Aa, bB 6= Bb, cC 6= Cc〉

with link set S = {a, b, c, A,B,C}.
For ease of notation, denote by αi the message aAa · · · of length i and by

α−i the message AaAa · · · of length i, and define β±i and γ±i in a similar
way. The messages to be sent are now of the form αiβjγk with −n/2 ≤
i, j, k ≤ n/2. Note however that αn/2 and α−n/2 represent the same group
element, and therefore when |i| = n/2, |j| = n/2 or |k| = n/2, we have to
choose one of several shortest paths for the corresponding message.

Using the same σ as in the odd case, we may partition the messages into
different classes. Most classes have size 6 with the following exceptions :

◦ The message αn/2βn/2γn/2 forms a class of size 1.

◦ There are two classes of size 3 :

{αn/2, βn/2, γn/2} and {αn/2βn/2, βn/2γn/2, γn/2αn/2}

◦ The n − 2 messages of the form αiβ−iγi (−n/2 < i < n/2, i 6= 0)
determine n/2 − 1 classes of size 2.

212 K. COOLSAET, V. FACK, H. DE MEYER

The classes of size 1 and size 3 can be placed into an algorithm table
using two extra classes of size 6, i.e., the classes generated by cαn/2−1 and
Bαn/2−1, in the following way :

a α− B β+ c γ− b α−

A α+ b β− C γ+ a β−

B β+ c γ− a α− C β+

C γ+ A α+ b β− B γ+

c β− a γ+ B α+ A γ−
b γ− C α− A β+ c α+

(We have used the shorter notation α± for α±(n/2−1). Note that aα− = αn/2,
Aα+ = α−n/2, etc.)

Now consider the classes of size 2. We first treat the cases i = 1 and i = 2.
As n > 4, these cases always occur. We use two extra classes of size 6 to
obtain the following table :

a A B b c C a B c
A a b B C c A b C
b B c C a A B A a
B b C c A a b a A
c C A a b B C c B
C c a A B b c C b

The extra classes are generated by the elements CaA and baA. Note that
these extra classes are different from the ones used above, even for n = 6.

For i ≥ 3 we need 2 extra classes of size 6 to obtain the following table
(now using the notation α± to denote α±(i−1)) :

a α− B β+ c γ−
A α+ b β− C γ+

C β+ A γ− b α−

B γ+ c α+ a β−

c β− a γ+ B α+

b γ− C α− A β+

In this case, the two extra classes are generated by cαi−1 and Bαi−1. Because
3 ≤ i < n/2 there is no conflict with the classes used for the previous tables.

The complete total exchange algorithm is constructed by concatenating
all tables displayed above, and adding the other classes of size 6 using σ as
in the odd case. This results in an optimal algorithm taking time 1

8n4.

It easily seen that the case n = 4, which is not covered by the above,
corresponds to the 6-dimensional hypercube, discussed in section 3.2.

A TABULAR METHOD FOR VERIFICATION OF DATA EXCHANGE . . . 213

4. Conclusion

The tabular method provides a useful tool for verifying given data exchange
algorithms, but does however not provide a systematic method for construct-
ing such algorithms, and the algorithms given above may therefore seem a
little ad hoc.

Still, it provides an important simplification of the construction process.
When searching for a data exchange algorithm on a given graph, one first has
to choose a Cayley group (of which there might be several), next select a set
of message words and, last but not least, fit these words into an algorithm
table. The latter might be done by means of a computer program, but
we have experienced that, to avoid combinatorial explosion, supplementary
properties of the problem need to be taken into account, such as additional
symmetry of the group.

We have used a similar method for the construction of data exchange
algorithms for star graphs [9].

References

[1] S.B. Akers, D. Harel and B. Krishnamurthy, “The star graph : an attractive alter-
native to the n-cube”, Proc. International Conference on Parallel Processing, 1987,
393–400.

[2] S.B. Akers and B. Krishnamurthy, “A group-theoretic model for symmetric inter-
connection networks”, IEEE Trans. Comput. 38(4) (1989), 555-566.

[3] F. Annexstein and M. Baumslag, “A unified approach to off-line permutation routing
on parallel networks”, Proc. 2nd Annual ACM Symposium on Parallel Algorithms
and Architectures, 1990, 398–406.

[4] M. Baumslag, “Fault-tolerance properties of deBruijn and shuffle-exchange net-
works”, Proc. of the fifth IEEE Symposium on Parallel and Distributed Processing,
1993, 556–563.

[5] D. Bertsekas and J. Tsitsiklis, Parallel and distributed computation, Numerical meth-
ods, Prentice Hall International Editions, 1989.

[6] N. Biggs, Algebraic graph theory, Cambridge Tracts in Mathematics 67, Cambridge
University Press, 1974.

[7] G.E. Carlsson, J.E. Cruthirds, H.B. Sexton and C.G. Wright, “Interconnection net-
works based on a generalization of the cube-connected cycles”, IEEE Trans. Com-
put., C-34(8) (1985), 769–772.

[8] K. Coolsaet, H. De Meyer and V. Fack, “Optimal algorithms for total exchange
without buffering on the hypercube”, BIT 32 (1992), 559–569.

[9] K. Coolsaet and V. Fack, “Optimal data exchange algorithms on star graphs”,
Computers Math. Applic. 27(3) (1994), 21–25.

[10] F. Harary, Graph Theory, Addison-Wesley, 1969.
[11] Y. Saad and M. Schultz, “Data Communication in Parallel Architectures”, Parallel

Computing 11 (1989), 131–150.

