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Abstract. Consider a tree T' with a number of extra edges (the bridges) added.
We consider the notion of diameter, that is obtained by admitting only paths p
with the property that for every bridge b in path p, no edge that is on the unique
path (in T') between the endpoints of b is also in p or on the unique path between
the two endpoints of any other bridge in p. (Such a path is called non-reversing.)
We investigate the trade-off between the number of added bridges and the resulting
diameter. Upper and lower bounds of the same order are obtained for all diameters
of constant size. For the special case where T is a chain we also obtain matching
upper and lower bounds for diameters of size a(N) + O(1) or of size f(N) where
f(N) grows faster than a(NN). Some applications are given.

CR Classification: F.2.2, G.2.2, F.2.3

1. The Problem

Let an undirected tree T = (V, E) be given. The diameter of this tree is
to be reduced by the addition of as few edges as possible, where a modified
definition of the distance is given below. Calling the set of additional edges
(the bridges) B, let E' denote EUB and T' = (V, E'). Given a tree T and a
diameter D, a set B is called optimal if T’ has diameter D and no set smaller
than B realizes diameter D. The elements of F are sometimes referred to
as basic edges, the elements of B as bridges, and all elements of E' simply
as edges.

For the modified definition of distance, a bridge (u,v) € B is said to
contain the basic edges of the unique path from u to v in T'. A non-reversing
path in T' is a path (of edges in E’) in which a basic edge is represented at
most once, either by being a basic link in the path or by being contained
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in one of the bridges of the path. The distance between u and v (denoted
d(u,v)) is the length of the shortest non-reversing path between u and v,
and the diameter of 7" is the maximum distance between any two nodes.
As an example to the definitions, consider the tree in Figure 1, with the
bridge b = (u,w). The bridge b contains the basic edges 3, 5, 6, and 7.
The path 5,9 from u to ¢ is non-reversing, but the path b,7 from u to v is

Fig. 1: Example tree.

not because the edge 7 is contained in b. In fact the shortest non-reversing
path from u to v is 3,5,6, which is of length 3. Note that d(u,w) = 1 and
d(w,v) =1, and hence the distance function as defined does not satisfy the
triangle inequality.

This paper is organized as follows. In Section 2 the case is considered where
T is a linear chain. In section 3 the results concerning constant diameter
are extended to the general case that T is an arbitrary tree. In section 4 the
results of the paper are summarized and we give some applications of the
results.

2. Results for linear chains

The linear chain (or simply chain) on N nodes is defined as the tree T =
(V,E) where V={ie N:1<i<N}and E={(j,i+1):1<i< N}
A non-reversing path in 7' in this case visits nodes in either decreasing
or increasing order, as a change in direction violates the non-reversibility
condition. As each decreasing path is the reverse of an increasing path,
we may well restrict ourselves to paths running in increasing direction and
consider all edges as directed towards the higher of the incident nodes (to
“the right”). In the rest of this section let 7" be a directed chain on N nodes.

2.1 Diameter 1

Let F1(N) be the size of the smallest set B of bridges such that the diameter
of T is 1. There is only one such set and its size is easily computed.
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THEOREM 2.1. ([5]) Fi(N) = (N —1)(N —2) = O(N?)

PROOF. The diameter of 7" is 1, hence E’ connects V' completely, i.e.,
E'={(i,j) : 1 <i < j < N} and so the size of E' is N(N —1). Subtracting
the N — 1 basic edges, find |B| = (N — 1)(N —2). O

2.2 Diameter 2

Let F5(N) be the size of the smallest set B of bridges such that the diameter
of T' is at most 2. In this subsection it is proved that F5(N) = ©(N log N).

THEOREM 2.2. ([5]) F2(N) < O(NlogN).

PROOF. A set of bridges giving D = 2 is defined recursively. If N < 3
then D < 2 already and no bridges are added. Otherwise (see Figure 2) let
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Fig. 2: Construction for diameter 2.

M be the “center” node [4], connect all nodes (except M’s neighbors) to
M and apply the construction recursively to the “lower part” (consisting of
nodes 1 through M — 1) and the “higher part” (consisting of nodes M + 1
through N) of the chain.

To show that the diameter is now at most 2, consider two nodes 7 and
J, where ¢ < j. If i = M or j = M, an edge (i,7) exists by construction
and d(i,j) = 1. If i < M < j, the path (i, M), (M, 7) is non-reversing and
d(i,j) = 2. Finally, if 7 and j are on the same side of M, a non-reversing
path exists because of the recursive application of the construction.

To analyse the number of bridges, let f(N) be the number of bridges used
when the construction is applied to a chain of N nodes, and note that

0 ifN<3
f(N) = { f([%—| — 1)+ (N —3) _}_f(L%J) otherwise.

The solution to this equation is f(N) = O(NlogN), hence F»(N) <
O(NlogN). O

To prove lower bounds it turns out to be easier to consider the size of E’
first, rather than look at the size of B directly.
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THEOREM 2.3. F5(N) > Q(NlogN).

PROOF. Let f(NN) denote the minimal size of any set E' that gives a chain
of N nodes a diameter of at most 2, this is the size of B plus N — 1. For
N <3, f(N)=N-—1. Now let N > 3 and let such an E’ be given. Partition
V in a “lower block” {i : i < N} and a “higher block” {i : i > 3N} (see
Figure 3). Call an edge (i,7) in E’ smallif i and j are in the same block and

Lower Block @ Higher Block

f— \

Large Edges

Small Edges

Fig. 3: Lower bound for diameter 2.

large otherwise. As two nodes in the lower block have distance at most 2,
and a non-reversing path between these nodes lies entirely within the lower
block, there are at least f (L%N |) small edges in the lower block. Similarly,
there are at least f([1NN]) small edges in the higher block.

As for the large edges, suppose there is an 7y in the lower block such that
there is no large edge (ig,7), i-e., all edges incident to iy are small edges and
lead to a node k < %N. Now for every j > %N there is a path of length < 2
from i to j, hence there exists an edge (k,j) for some k < %N. It follows
that all nodes in the lower block are incident to a large edge or all nodes
in the higher block are incident to a large edge. So there are at least L%NJ
large edges and thus

N -1 ifN<3
f(N) = { FUN]) + fF([EN]) + [3N]| otherwise

and this equation solves to f(N) > Q(N log N). Subtracting the NV —1 basic
edges we find Fo(N) > Q(Nlog N). O

The two theorems show that F, = ©(Nlog N) as claimed and in the proof
of Theorem 2.2 a construction is given that uses this number of bridges. The
constants hidden in the order-notation are 1 and % for the upper and lower
bound, respectively.

2.8 Diameter 3

Let F5(IN) be the size of the smallest set B of bridges such that the di-
ameter of 7" is at most 3. In this subsection it is proved that F3(N) =
O(N loglog N).
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THEOREM 2.4. F3(N) < O(Nloglog N).

PROOF. A set of bridges giving D < 3 is defined recursively. If N <
4 then D < 3 already and no bridges are added. Otherwise, apply the
following construction in four steps (see Figure 4). (0) Let W = [v/N]
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Fig. 4: Construction for diameter 3.

and designate the nodes W,2W, ... to be backbones of the construction. (1)
Connect every node in V' (including the backbones) to the nearest backbone
in each direction (if it exists). (2) Add a bridge between every pair of
backbones. (3) Apply the construction recursively on each of the subchains
in which the backbones cut the chain.

To show that the diameter is indeed at most 3, consider two nodes, 7 and
J, © < 7, and both not a backbone. If ¢ and j are in different subchains,
let M7 be the backbone right of 7 and Ms the backbone left of j. The path
(i, M1),(My, Ms),(M>,j) shows that d(,j) < 3. If My = M, the middle
edge is omitted. If ¢ is a backbone, set M; = ¢ and omit the first edge. If
7 is a backbone, set My = j and omit the third edge. If 7 and j belong to
the same subchain, a non-reversing path of length at most 3 exists because
of the recursive application of the construction on each of the subchains.

To compute the number of bridges used in the construction, note that (1) it
takes less than 2NV bridges to connect each node to the nearest backbones, (2)
the number of backbones is Lﬁj < VN so it takes less than %N bridges

to connect them completely, and (3) recursion is applied to [%1 < [VN]

subchains of length at most [v/N| — 1. Hence, with f(IN) the number of
bridges used by this construction on a chain of N nodes, it follows that

0 ifN <4
FIN) < { 21N + [VN]f([VN] —1) otherwise.

The solution to this equation is f(IN) < O(N loglog N), and hence it follows
that F5(N) < O(Nloglog N). O

THEOREM 2.5. F5(N) > Q(N loglog N).

PrROOF. Let f(IN) denote the minimal size of E’ that gives diameter at
most 3, again this is the size of B plus N — 1. For N <4, f(N) =N —1,
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now let N > 4 and let such an E' be given. Partition V in | blocks

N
AT
of size at least [v/N| and call an edge (i,7) smallif i and j are in the same
block, and large otherwise (see Figure 5).
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Block E Block E Block E Block

Large Edges

T i NV, i Small Bdges

No large edge A large edge

is incident is incident
to this node to each node

Fig. 5: Lower bound for diameter 3.

As two nodes within the same block have distance at most 3, and a non-
reversing path of this length lies entirely within the block, a block of size s
contains at least f(s) small edges. Hence the total number of small edges is
at least Lﬁjf( [VN)).

As for the large edges, call a block red if it contains a node that is not
incident to a large edge, and blue if each of its nodes is incident to at least one
large edge. (Note that these two cases are complementary, i.e., each block is
either red or blue.) Let R be the number of red blocks and B the number of
blue blocks. As the blue blocks contain at least B[v/N] nodes, there are at
least %B [vV/N1 large edges incident to a node in a blue block. Now let S; and
Sy be two red blocks and let 2; and 79 be nodes in S; and S5, respectively,
that are not incident to a large edge. There exists a non-reversing path
(41,7), (4, k), (k,i2) from i1 to iy and from the choice of i; and is it follows
that j lies in Sy and &k in Sy. So (j, k) is a large edge between S; and S,.
Such an edge exists for every two red blocks S7 and S5, hence the number of
large edges incident to two nodes in red blocks is at least %R(R —1). Thus

the large edges sum up to at least s B[v/N| + 1R(R — 1), and under the
restriction that B+ R = Lﬁj, this is Q(N) (viz., 3N + o(N)). Counting
small and large edges together, it follows that
N-1 it N <4
F(N) 2 Lﬁjf([\/ﬁ}) + Q(N) otherwise
and this implies f(N) > Q(N loglog N). Subtracting the N — 1 basic edges,
we find F3(N) > Q(Nloglog N). O

The two theorems show that F3(N) = ©(N loglog N) as claimed and in
the proof of Theorem 2.4 a construction is given that uses this number of
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bridges. The constants hidden in the order-notation are 2% and % for the
upper and lower bound, respectively.

2.4 Diameter 4 and higher constants

Let Fi.(N) be the size of the smallest set B of bridges such that the diameter
of T' is at most k. In this subsection matching upper and lower bounds on
Fi(N) are proved (up to a constant factor). These bounds are superlin-
ear, but so only by an extremely slowly growing function. For all practical
purposes the results may be considered linear.

THEOREM 2.6. Fy(N) < O(Nlog* N).

PROOF. A set of bridges giving D < 4 is defined recursively in a way similar
to the constructions in Theorems 2.2 and 2.4. If N < 5 then D < 4 already
and no bridges are added. Otherwise, apply the following construction in
four steps. (0) Let W = [log N| and designate the nodes W,2W,... to be
backbones of the construction. (1) Connect every node in V' (including the
backbones) to the nearest backbone in each direction (if it exists). (2) Add
a minimal number of bridges between the backbones in such a way that
between any pair of backbones there exists a non-reversing path of length
at most 2. (3) Apply the construction recursively on each of the subchains
in which the backbones cut the chain.

To show that the diameter is indeed at most 4, consider two nodes, 7 and
7,1t < 7, and both not a backbone. If ¢ and j are in different subchains, let
M; be the backbone right of 7 and M5 the backbone left of j. By step (2)
of the construction a non-reversing path of length at most 2 between M;
and M exists, and together with the edges (i, M;) and (Ms,j) this gives
a non-reversing path of length at most 4 from 7 to j. The case that 7 or
J is a backbone (or both) is left to the reader. If 7 and j are in the same
subchain, a non-reversing path of length at most 4 exists because of the
recursive application of the construction on each of the subchains.

To compute the number of bridges used in the construction, let f(N) be
the number of bridges used and note that (0) there are b = Lﬁj < lo]gVN
backbones, (1) it takes less than 2NV bridges to connect each node to the near-
est backbones, (2) it takes F5(b) = O(blogb) < O(%log %) < O(N)
bridges to connect the backbones as described in step 2 by Theorem 2.2, and

(3) recursion is applied to ([loév Nﬂ < (lojgv + | subchains of length at most

log N so this takes at most logLN x f(log N) bridges. Hence it follows that

N < 0 if N <5
FN) < 2N +O(N) + logLNf(log N) otherwise.

The solution to this equation is f(N) < O(Nlog* N), so Fy(N) <
O(Nlog*N). O
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THEOREM 2.7. Fy(N) > Q(Nlog* N).

PrROOF. Let f(N) denote the minimal size of E' that gives diameter at
most 4, again this is the size of B plus N — 1. For N <5, f(N) =N —1,
now let N > 5 and let such an E’ be given. Partition V in Lﬁj blocks

of size at least [log V| and call an edge (7, ) smallif i and j are in the same
block, and large otherwise.

As two nodes within the same block have distance at most 4, and a non-
reversing path of this length lies entirely within the block, a block of size s
contains at least f(s) small edges. Hence the total number of small edges is
at least Lﬁj f([log N).

As for the large edges, call a block red if it contains a node that is not
incident to a large edge, and blue if each of its nodes is incident to at least
one large edge. Let R be the number of red blocks and B the number of
blue blocks. Next a lower bound on the number of large edges is shown both
in R and in B. As the blue blocks contain at least B[log N| nodes, there
are at least %B[log N1 large edges incident to a node in a blue block. For
the bound in R, form R “purple” blocks by extending each red block over
the blue blocks to the right of it. Consider the graph H = (Vg, Ep), where
Vi is the set of purple blocks and an edge between two block exists iff E’
contains an edge between nodes in these two blocks. It can now be shown
that H has a diameter of at most 2: for purple blocks S7 and S, take iy
and 79 in those blocks that are not incident to large edges. The existence
of a non-reversing path in T’ of length at most 4 implies the existence of
a non-reversing path of length at most 2 in H between S; and S;. From
Theorem 2.3 it follows that Epy contains at least Q(Rlog R) edges, and as
each edge in E)y corresponds to at least one large edge in E’, there are at

least Q(Rlog R) large edges. Using that B+ R = Lﬁj, it follows that
the number of large edges is at least Q(NV).

Counting small and large edges together, it follows that

N -1 fN<5
f(N) > { Lﬁjﬂ[bg N1) 4+ Q(N) otherwise

and this implies f(IN) > Q(N log* N). Subtracting the N — 1 basic edges,
we find Fy(N) > Q(Nlog* N). O

The two theorems show that Fy(N) = ©(Nlog* N) as claimed and in
the proof of Theorem 2.6 a construction is given that uses this number of
bridges. The constants hidden in the order-notation are 3 and % for the
upper and lower bound, respectively.

The techniques applied up till now suffice for the analysis of higher con-
stant diameters also. Observe that in Theorems 2.2, 2.4, and 2.6 the con-
structions have in common that a linear number of bridges is used in each
level of the recursion. In Theorem 2.2 the recursion is on subchains of
length %N , hence the recursion depth is log N and the number of bridges
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O(Nlog N). In Theorem 2.4 the recursion is on subchains of length v/N,
hence the recursion depth is loglog/ N and the number of bridges
O(Nloglog N). In Theorem 2.6 the recursion is on subchains of length
log N, hence the recursion depth is log* N and the number of bridges
O(N log* N).

The constructions that are to follow in this subsection share this property,
too. Clearly, the recursion depth depends on the size of the subchains,
which depends in turn on the number of backbones. In the construction for
diameter k the number of backbones is chosen in such a way that they can
be connected to have diameter k£ —2 using O(V) bridges, and thus a relation
is established between F} and Fj_,. The construction used so far is optimal
as shown by the following two theorems.

THEOREM 2.8. Fi(N) < O(N[F_lL(N)]*)’ where [g(N)]* denotes the num-
k—2
ber of times g s iterated on N before the result is at most k + 1.

PROOF. The following construction realizes the bound. If N < k41 then
D < k already and no edges are added. Otherwise, use the following 4 steps.
(0) Choose a number b of backbones such that Fj_5(b) = N and place the
backbones at regular distance in the chain. (1) Connect every node to the
nearest backbones in both directions (if they exist). (2) Add Fj_o(b) bridges
between the backbones so as to connect them with a diameter of k£ — 2. (3)
Apply the construction recursively to the subchains.

The proof that the diameter of the resulting graph is indeed k£ and the
computation of the number of bridges is as in the previous constructions.
Note that the recursion is on subchains of length at most % and stops
as soon as this length is at most k£ + 1. Hence the theorem fozllows. O

THEOREM 2.9. Fj(N) > Q(N[ﬁ]*).

PROOF. Let f(IN) denote the minimal size of E’ that gives diameter at most
k, again this is the size of B plus N —1. For N < k+1, f(N) =N —1, now

let N > k+1 and let such an E’ be given. Partition V in b = Lmj
k—2

blocks of size at least s = and call an edge (i,7) smallif i and j are

_N
Fi,(N)
in the same block, and large otherwise.

As two nodes within the same block have distance at most k, and a non-
reversing path of this length lies entirely within the block, a block of size s
contains at least f(s) small edges. Hence the total number of small edges is
at least bf(s).

As for the large edges, call a block red if it contains a node that is not
incident to a large edge, and blue if each of its nodes is incident to at least
one large edge. Let R be the number of red blocks and B the number of blue
blocks. Next a lower bound on the number of large edges is shown both in
R and in B. As the blue blocks contain at least Bs nodes, there are at least
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%Bs large edges incident to a node in a blue block. For the bound in R, form
R “purple” blocks by extending each red block over the blue blocks to the
right of it. Consider the graph H = (V, Ef), where V is the set of purple
blocks and an edge between two block exists iff E' contains an edge between
nodes in these two blocks. It can now be shown that H has a diameter of at
most k — 2: for purple blocks S7 and Ss, take 71 and 29 in those blocks that
are not incident to large edges. The existence of a non-reversing path in 7"
of length at most k implies the existence of a path of length at most &k — 2
in H between S; and Sy. Ey contains at least Fj_o(R) edges, and as each
edge in Ey corresponds to at least one large edge in E’, there are at least
Fy_2(R) large edges. Using that B+ R = b, it follows that the number of
large edges is at least (V).
Counting small and large edges together, it follows that

N -1 IN<Ek+1
F(N) > { bf(s)+Q(N) otherwise.

L N =_N
Using b = LWJ and s = ZRAT))

this implies the result stated in the theorem. O

and solving the recurrence for f,

The derived formula looks awkward but it turns out that Fj is essentially
found by adding a star to the superlinear part of Fj_s.

THEOREM 2.10. Let Fy_o(N) = Nf(N) where f is nondecreasing. Then
F(N) = O(N[f(N)])-
Proor. From Fk_z(fg\,)) = f(]yV)f(f(ZyV)) < N follows F;',(N) > %

Hence ﬁ < f(N), so [ﬁ]* < [f(N)]*. The result now follows

from Theorem 2.8. O

Thus Fp(N) = ©O(NlogN), F3(N) = ©(NloglogN), Fy(N) =
O(Nlog' N), F5(N) = O(Nlog" N), Fs(N) = O(Nlog™ N), Fy(N) =
O(N log™ N), F3(N) = O(N log*™* N), and so forth.

2.5 Diameter O(log N)

Let Fiog(IV) be the size of the smallest set B of bridges such that the diameter
of T'" is at most O(log N). In this subsection matching upper and lower

bounds on Fiog(N) are proved. First a linear and subsequently an O(%)
upperbound are proved, and then an Q(%) lower bound.

THEOREM 2.11. A diameter of at most 2log N 1s realized with less than N
bridges.

PROOF. A set of bridges satisfying these bounds contains all bridges whose
length is a power of 2 (but > 1), and whose incident nodes are multiples of its
length. Formally, let B = {(s2!,(s +1)2!): 1 > 1,5 > 1,(s + 1)2! < N}; see
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Fig. 6: Construction for diameter 2log N.

Figure 6. There are less than % bridges of length 2! and hence the number
of bridges is less than N indeed. (An even lower bound of N —log N — 1
can be proved and this is sharp for N a power of 2.)

To prove that the diameter of the resulting graph is indeed logarithmic,
consider a shortest non-reversing path between two nodes. First, this path
does not contain an edge that is immediately preceded and followed by a
longer edge. This is because one of its endpoints is not a multiple of a larger
power of 2 than its own length. Second, this path does not contain two
edges of equal length, immediately followed or preceded by an edge of larger
length. This is because in such a configuration the first edge starts in a
higher power of 2 than its own length and one bridge exists that spans the
two edges (violating the assumption that the path is a shortest path). Third
and finally, this path does not contain three consecutive edges of the same
length. This is because either the first two or the last two can be replaced by
a single bridge (again violating the assumption that the path is a shortest
path). It follows that in a shortest path the edge lengths strictly increase
to a maximum, which is assumed at most twice, and then strictly decrease.
Hence the length of a shortest path is at most twice the number of different
edge lengths, which is 2log IV indeed. O

THEOREM 2.12. A diameter of at most 4log N 1is realized with less than

2N :
Tog N bridges.

PROOF. The construction of Theorem 2.11 is now applied to nodes (back-
bones) that are interspaced log N apart. Let W = [log N| 4+ 1 and let
B = {(s2'W, (s +1)2'W) : 1 > 0, (s + 1)2!W < N} (see Figure 7). There are

i

rl HooliootooUootiooliootooloooolionl oo

ool inoliool ool igoloolioolooliooloolioo HHCH IEH HHCH HHEH O IO i

Fig. 7: Construction for diameter 4log N.

N
2lw
than 2 < 2N

w log N *

less than bridges of length 2!W so the total number of bridges is less
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As in Theorem 2.11 it is shown that between any two backbones there is
a non-reversing path of length at most 210g(%) < 2log N. For arbitrary
nodes ¢ and j (i < j), if ¢ and j lie between the same two backbones then
there is a path of length j — ¢ < W between them, consisting of basic edges
only. Otherwise, it takes at most W — 1 steps to reach the nearest backbone
to the right of 2, at most 2log N steps to reach the one to the left of j, and
at most W — 1 to reach j from there. Hence d(i,j) < 4log N. O

This result is optimal as shown by the following theorem.
THEOREM 2.13. It takes at least | Y52 | bridges to have diameter D.

PROOF. As there is a non-reversing path from node D + 1 to N of

length at most D, there is a bridge with its left endpoint in the interval
[iD+1...(i4+1)D] for all 7 such that 0 <4, (: +1)D+1 < N. O

COROLLARY 2.1. Fiog(N) = O(525)-

2.6 A Linear Bridge-Diameter Product

For any diameter the product of the number of bridges and the diameter
is at least linear in NV as is shown by Theorem 2.13. This bound is sharp
for a logarithmic diameter as shown in Theorem 2.12. In Subsections 2.1
through 2.4 however it was shown that a linear product is not realized for
any constant diameter (that is, a constant diameter cannot be realized with
a linear number of bridges). The following results state that if a linear
product is realizable for the diameter being some function f(N), then it
is also realizable for a function g(N) if g(N) = Q(f(N)). (f and g are

nondecreasing functions.)

THEOREM 2.14. If Ff(N) bridges suffice to realize a diameter of f(N), then
% + Ff(%) bridges suffice to realize a diameter of 2g(N) + f(ggv)).

PROOF. The construction to show this bound is a generalization of the
construction in the proof of Theorem 2.12. Designate each g(N)™ node
to be a backbone. Connect each backbone with a bridge to the next one
(using ﬁ bridges) and build bridges between the backbones so that a non-

reversing path of length at most f (%) exists between any two backbones
(using Ff(%) bridges). The number.of bridges is now % + Ff(%N).)
and the length of a shortest non-reversing path between any two nodes is

at most g(N) (to get to the nearest backbone) plus f(%) (to get to the
other backbone) plus g(IN) (to get to the destination node), and that is as

indicated. O

THEOREM 2.15. If Fy(N) = 0(%) then Fo(g)(N) = 0(%) for g(N) =
Q(f(N))-
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PROOF. Use the previous result, remarking that 2g(N) + f((L) =
O(g(N)) and (N) + Fy( (N)) O( (]X,)) O

The natural question arises what is the smallest function for which a linear
product is possible. It turns out that a linear product is possible when the
diameter is log V, log* N, log™ N, or, in general, a log with any number of
stars. Call these functions Milky Way functions (because of all the stars) and
write My, for the Milky Way function with k£ stars. The following theorem
establishes that there is a linear product for Milky Way functions.
THEOREM 2.16. Fo(p) = @(%).

PROOF. The lower bound follows from Theorem 2.13. To show the upper
bound, recall that Fog o(N) = O(N x My(N)). Apply Theorem 2.14, with
f(N)=2k+2 and G(N) = My(N), to show that

Fon (vyrae2(N) = Mk]\([N) + O(leN) X Mk(MgN)))'

As Mi(N/Mp(N)) < Mg(N), this is bounded by O(N). Apply Theo-
rem 2.14 again, this time with f(N) = 2My(N)+2k+2 and G(N) = My(N),
to show that
N N N
F N)y=———+0 -
4Mk(N)—|—2k—|—2( ) Mk(N) (Mk(N)

O

As a result (use Theorem 2.15) a linear bridge—diameter product is realizable
for any function f that dominates any Milky Way function.

2.7 A linear number of bridges

There is a (very small) gap between the constants (considered in Subsec-
tions 2.1 through 2.4) and the Milky Way functions (considered in Subsec-
tion 2.6). The former need a superlinear number of bridges, while the latter
need only a sublinear number of bridges. The natural question arises what
diameter can be realized with a linear number of bridges. This subsection
addresses this question briefly.

It turns out that the M) differ only by a constant factor from the row
inverses of the Ackermann function as defined by La Poutré [3]. It is shown
in [3] that these functions satisfy Myny1o(1)(IV) = O(1), where a is the
function commonly known as the inverse Ackermann function. Using these
results it follows that a diameter of a(NN) + O(1) is realizable with a linear
number of bridges.

The lower bound proofs in Subsection 2.4 can be modified such that the
constant hidden in the big-2 notation is really a constant, that is, does not
shrink when D grows. Using these results it follows that a linear number of
bridges is necessary to obtain a diameter of a(N) + O(1).
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THEOREM 2.17. Fy(nyro)(IV) = O(N).

Thus it follows also that a diameter of a(NN) + O(1) is the best one can do
with a linear number of edges. Interestingly, by applying Theorem 2.14 in
a way similar to the proof of Theorem 2.16 it follows that a diameter of a
maultiple of this function can be realized using a sublinear number of bridges

(namely, O( %))

THEOREM 2.18. For all € > 0, F(1 1 e)o(n)(N) = @(EQJ(VN)).

3. Results for the general case

In the sequel let T be a general tree (rather than a linear chain). As the
chain (considered in Section 2) is a special case of the tree, the lower bounds
proved in Section 2 are valid for the general case, too. The emphasis in this
section will therefore be on proving upper bounds. More specifically, it is
shown that the bounds obtained for constant diameters are valid also for
the tree case.

The constructions by which the results are obtained are similar to those
used for the chain case. For clarity the general skeleton is repeated here.

0. Choose an integer b and a subset of size b of the nodes to be backbones.

1. Connect every node to the nearest backbones. (This is done only for
non-backbone nodes in the constructions in this section.)

2. Connect the backbones with bridges such that the diameter of the
“backbone subnetwork” is 2 less than the required diameter.

3. Apply the construction recursively on the subtrees in which the back-
bones cut the tree.

This approach, so successfull in the chain case, faces problems in the general
case. Some of the problems are highlighted here to serve as an overview of
the material presented in this section.

a. Is it possible to choose b backbones in a tree in such a way that they
cut the tree in pieces of size O(%)? An affirmative answer to this
question is necessary in order to bound the recursion depth in the
same fashion as in Subsection 2.4.

b. A (non-backbone) node may (in step 1) be connected to more than 2
(or another constant number of) backbones. Is the number of bridges
used in step 1 still linear? It turns out that it is, provided that the
answer to the previous question is affirmative.

c. In step 2 an “implicit recursion” is applied because the problem is
solved for a smaller diameter. However it is not clear how the back-
bones form themselves a tree. (Recall that the backbones in a chain
form a chain themselves.) This problem is solved by allowing some
network nodes that are not backbones themselves, to serve as “super

backbones”.
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As in Section 2, let Fj(N) denote the minimal number of bridges that is
necessary to give a tree on N nodes a diameter of at most k. The structure
of this section resembles the structure of Section 2. The depth of the graph-
theoretical results needed in the constructions increases as one goes from
diameter 1 to 2, 3, and 4. This is why we chose to devote a separate
subsection to each of these diameters.

3.1 Diameter 1

The results are here completely the same as for chains, as only the complete
graph has diameter 1 and a path of length 1 is always non-reversing.
THEOREM 3.1. Fy(N) = (N — 1)(N —2) = O(N?)

PROOF. The diameter of 7' is 1, hence E’ connects V completely, i.e.,
E' = {{i,j} :4,j € V} and so the size of E' is £N(N — 1). Subtracting the
N — 1 basic edges, find |B| = £(N —1)(N - 2). O

3.2 Diameter 2

This subsection employs the first of a series of non-trivial “cut-lemmas”
on trees, stating that backbones can be found as required for a recursive
division of the problem. For a node v € V, the subtrees of v are the trees
that remain when v and its incident edges are removed from T'. T, denotes
the subtree of v that contains v’s neighbor u and ¢,, denotes its size.

LEMMA 3.1. There is a node c € V' such that every subtree of ¢ has size at
most %N.

PROOF. Let m, be the largest size of a subtree of v and choose ¢ to be a
node that minimizes m,.. It will be shown that m. < %N.

Let u be a neighbor of ¢ such that t., = m.. By the choice of ¢, m, > m,.
so u has a neighbor v such that ¢,, > t.,. Let in the following x range over
the neighbors of u other than ¢. Astey = 1+)  tuz, tue < tey and it follows
that v = ¢. Thus t,. > tey and, as tye + tey = N, tey < %N follows. O

THEOREM 3.2. ([5]) F2(N) < O(NlogN).

PROOF. The claimed number is realized with the following construction.
If the diameter of T" is at most 2 already, no bridges are added. Otherwise,
choose M to be a node such that all subtrees of M have size at most %N
(This choice is possible by Lemma 3.1.) Connect all nodes to M. Apply the
construction recursively to every subtree of M.

To show that the diameter of the resulting graph is at most 2, let ¢ and j
be nodes in V. If i = M or j = M, an edge (i, ) exists by construction. If
i and j are in different subtrees of M, edges (i, M) and (M, j) exist and the
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path (2, M), (M, j) is non-reversing. If i and j are in the same subtree a non-
reversing path of length at most 2 exists because of the recursive application
of the construction.

To analyse the number of bridges used in the construction, note that a
linear number of bridges is used in each level of recursion (because there is
at most one bridge from each node to M) and the recursion has depth less
than log N. Hence less than N log N bridges are used. O

The constant hidden in the order-notation is 1. The result is asymptotically
optimal by Theorem 2.3.

3.8 Diameter 3

This section requires some more complex graph theoretic results. The idea
of the construction to follow is to use vV N backbones and apply the con-

struction recursively to subtrees of size lN Hence a result is necessary

that an appropriate choice of the backbones is possible. Also it is necessary
to establish that all nodes may be connected to the surrounding backbones
using a linear number of bridges.

Some notations are introduced first. Given a selected set of backbones
(sometimes called cutpoints), the subtrees are defined to be the trees that
remain after removal of the backbones and their adjacent edges. The borders
of a subtree are the backbones that were connected to this subtree prior to
the removal.

LEMMA 3.2. For a tree T and an integer K < N, there is a node ¢ such
that

1. at most one subtree of ¢ has size > K, and

2. the subtrees of ¢ whose size is < K contain at least K — 1 nodes
together.

Proor. Call a subtree heavy if its size is > K and light if its size is < K.
Counsider the following two cases:

1. There are nodes that have two (or more) heavy subtrees. The
set D of such nodes is connected: let di and dy be in D and e on the
path between d; and ds. The two subtrees of e, containing d; and ds,
respectively, are heavy and hence e is in D. Hence D is connected. As
D is a connected subgraph of a tree, D is a tree itself, let d be a leaf
of D. Node d has two or more heavy subtrees, but has at most one
neighbor that has two or more heavy subtrees. It follows that d has a
neighbor ¢ such that T}, is heavy and c has at most one heavy subtree.
As T4 contains another heavy subtree of d it is heavy, hence all the
other subtrees of ¢ are light (by the choice of ¢). As Ty, is heavy, these
subtrees of ¢ have a total weight of at least K — 1, hence ¢ has the
required properties.
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2. All nodes have at most one heavy subtree. Let ¢ be the node for
which the sum of the sizes of the light subtrees is maximal. It remains
to show that this sum is at least K — 1. If all subtrees of ¢ are light the
sum is N — 1. Otherwise, let d be the (only) neighbor of ¢ for which
T.q is heavy. The sum of the sizes of light subtrees of ¢ is now 4. — 1.
By the choice of ¢, the sum of the sizes of the light subtrees of d is at
most tg. — 1 also, hence Ty is not light. It follows that t;.—1 > K — 1.

As these two cases are complementary, the proof is complete. O

LEMMA 3.3. It is possible to choose b cutpoints in such a way that all the
subtrees have size at most “H—ll}

PRoOOF. Use induction on b. If b = 0 there are no cutpoints and the result
is true. If b > 0, let K = [b%} and choose a node c as in Lemma 3.2. Node
¢ has at most one heavy subtree of size < N —1— (K —1) =N — K. Use
the induction hypothesis to show that in this subtree b — 1 cutpoints can be
chosen so as to cut it in subtrees of size at most [%1 <K.O

For the following result, assume a tree is given with b cutpoints in such a
way that all subtrees have size at most (b_'_lﬂ

LEMMA 3.4. All nodes other than the cutpoints can be connected with all
borders of their subtree using at most 2N bridges.

PROOF. To count the bridges, choose one arbitrary cutpoint 7 as the
root of the tree. Note that every bridge is incident to exactly one cutpoint.
Call a bridge upstream if the cutpoint of that bridge is closer to r, and
downstreamn if the cutpoint is further away from r than the non-cutpoint
endpoint of the bridge (see Figure 8). Each non-cutpoint node is incident to

® Cut point -+ + Upstream bridge (Not all bridges

are drawn.)

— Tree edge --- Downstream bridge

Fig. 8: Upstream and downstream bridges.

at most one upstream bridge so there are at most N — b upstream bridges.
The downstream bridges are counted per cutpoint. Each cutpoint (other
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than r) is incident only to one downstream bridge from each node in the
subtree in the direction of the root (see Figure 8). Hence there are at most
(b—1) “%1 < N + b downstream bridges, and the total number of bridges
is less than 2N. O

THEOREM 3.3. F5(N) < O(N loglog N).

PROOF. A recursive construction is given that uses the claimed number
of bridges. If the diameter is at most 3 already, no bridges are added.
Otherwise, set b = VN, (0) select b backbones in such a way that the
subtrees have size at most N (such a choice is possible by Lemma 3.3),
and (1) connect every non-backbone with all borders of its subtree. (2)
Connect the backbones completely (i.e., add a bridge between every pair
of backbones) and (3) apply the construction recursively to each of the
subtrees.

To prove that the diameter of the resulting graph is at most 3, let ¢ and
J be two nodes from V. If 4 and j are in the same subtree, i.e., there is no
backbone on the path from ¢ to 5 in T, a non-reversing path of length at
most 3 between them exists because of the recursive application of the con-
struction to each of the subtrees. Otherwise, let M; be the first backbone on
the path in T from i to j and Mj the last backbone on this path. (If 7 or j is
a backbone, choose M7 =i or My = j.) The path (i, My), (M, My), (Ms,5)
exists and is non-reversing.

To analyse the number of bridges used in the construction, use Lemma 3.4
to show that a linear number of bridges is used in step (1) of the construction.
$b(b—1) < LN bridges are used in step (2), and the recursion depth is less

than loglog N because recursion is on subtrees of size v/ N. Hence less than

O(N loglog N) bridges are used. O

The constant hidden in the order-notation is 2% as in the case of linear
chains. The result is asymptotically optimal by Theorem 2.5.

3.4 Diameter 4 and higher constants

This subsection gives a solution for trees for any constant non-reversing
diameter. The number of bridges used is the same as in the constructions
for linear chains and hence (see Subsection 2.4) they are asymptotically
optimal. In the introduction of this section it was noted that the backbones
of a tree do not form a tree themselves. To illustrate this, consider a subtree
with borders a, b, c,..., see Figure 9. A non-reversing path from a to b does
not run through ¢ (because the edge (c,c’) would be represented twice). So
node ¢ cannot be used as a “super backbone” to divide the set of borders.
However, connecting each pair of borders directly by a bridge results in a
graph that is not a tree, so that the result for smaller diameters cannot be
applied. Moreover, the number of bridges would be too high. The solution
to connect the backbones is to choose a “higher level” backbone from the
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b c . ............ .
. Complete
connection
c . G . not using
: internal
L nodes.
a d . ............ .

Fig. 9: The backbones do not form a tree.

nodes in the subtree (where necessary). There a cutpoint can be found to
divide the set of backbones appropriately.

It is thus necessary to express the different status of backbones and subtree
nodes in the construction of the “interbackbone” subnetwork. The latter
may be used in the construction but only the former need be connected
through non-reversing paths. This leads to the formulation of the Restricted
Bridge Problem.

For this problem let T = (V, E) be a tree whose nodes are colored either
black or white. It is required to add bridges in such a way that in B’ a non-
reversing path exists between any pair of black nodes. Bridges may however
be incident to white nodes also. The restricted diameter of T is the largest
distance between any two black nodes. Recall that Fj (V) is the number of
bridges that is necessary to give a tree on /N nodes a diameter of at most k.
Define G(N) to be the number of bridges necessary to give a colored tree
with N black nodes a restricted diameter of at most k.

LEMMA 3.5. Fi(N) < Gi(N).

PROOF. Assume all the nodes of T are black. O

To prove bounds on G(N) it is necessary to have “colored” versions of
Lemmas 3.3 and 3.4. In the sequel let T be a colored tree with IN black
nodes.

LEMMA 3.6. For K < N there 1s a node c such that

1. at most one subtree of ¢ contains more than K black nodes, and

2. the subtrees of c that contain at most K black nodes, together with c
itself, contain at least K black nodes.

Proor. Call a subtree heavy if it contains more than K black nodes and
light otherwise. The proof is now as for Lemma 3.2. O

LEMMA 3.7. It 1s possible to choose b cutpoints in a colored tree in such a

way that every subtree contains at most [b%] black nodes.
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PRoOOF. As for Lemma 3.3. O

LEMMA 3.8. Assume cutpoints as in Lemma 3.7 are given. All black nodes
that are not a cutpoint can be connected with all borders of their subtrees
using at most 2N + b bridges.

PROOF. As for Lemma 3.4. Now there are at most N upstream bridges
and at most NV + b downstream bridges. O

In the constructions to follow b < N always and so the number of bridges is
at most 3N. It is now easily established that the G are the same functions
as those found in subsection 2.4.

THEOREM 3.4. The following bounds hold for Gr. Gi(N) < O(N?),

G2(N) < O(NlogN), and Gp(N) < O(N[G n (N)] ) for k > 3. (Here

N)|* denotes the number of times g is ztemted on N before the result is
g g
at most 1.)

PROOF. For the claim about G1(IV), recall that only a complete connection
of the black nodes realizes a restricted diameter of 1.

For the claim about G3(IN) use the following construction. If N < 1
then the restricted diameter is at most 2 already and no bridges are added.
Otherwise, (0) let M be a node such that every subtree of M contains at
most 3N black nodes. (1) Connect all the black nodes to M. (2) Apply the
construction recursively to the subtrees of M. The proof of correctness of
this construction as well as the analysis of the number of bridges is as in the
proof of Theorem 3.2.

For £ > 3 use the following construction. If N < 1 then the restricted
diameter is at most k already and no bridges are added. Otherwise, (0) take
b such that Gx_2(b) = N and choose b cutpoints in such a way that every
subtree contains at most [ ] black nodes. (This is possible according
to Lemma 3.7). (1) Connect every black node with all the borders of its
subtree. (2) Add bridges between the cutpoints so that a non-reversing
path of length at most k — 2 exists between any two of them. (3) Apply the
construction recursively to each of the subtrees.

To show that the restricted diameter of the resulting graph is at most k
indeed, let ¢ and 7 be black nodes in V. If 2 and j are in the same subtree,
a non-reversing path of length at most k exists because of the recursive
application of the construction. Otherwise, let M7 be the first cutpoint on
the (unique) path from i to j in T and Mj the last cutpoint on this path.
By construction bridges (z, M7) and (Ms, j) exist, as well as a non-reversing
path of length at most & — 2 between M; and M;. The concatenation of the
two bridges and the non-reversing path is a non-reversing path of length at
most k£ between ¢ and j.

To analyse the number of bridges used, note that at most 3N bridges are
used in step (1) (Lemma 3.8), and at most G_2(b) = N bridges are used
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Diameter for the chain remarks
1 O(N?) for trees also
2 O(Nlog N) for trees also
3 O(N loglog N) for trees also
4 O(Nlog* N) for trees also
5 O(Nlog* N) for trees also
6 O(Nlog™ N) for trees also
7 O(Nlog™ N) for trees also
8 O(Nlog*™™* N) for trees also
etc. etc.
a(N) +0(1) O(N)
(+aaN) | O(=2)
o) | e | F(V) = 9(a(n))
N -1 0

TABLE I: Optimal number of bridges for various diameters.

in step (2). Hence a linear number of bridges is used in every level of the

recursion. Recursion is on subtrees of size bounded by [bi\_’—l] =S G—IL(N)’
k—2

hence the recursion depth is at most [G*L(N)]* The result claimed in the
k=2

theorem follows. O

For a convenient representation of the functions Gj, see Theorem 2.10
and the remarks following it. It has now been shown that the complexity of
the problem for trees is asymptotically the same as for linear chains. The
actual values may be a little bit higher, as some more bridges may be used
in step (1) of the recursion, and recursion stops when the sizes of subtrees
is reduced to 1 rather than & + 1.

4. Summary and Applications

The results obtained in the previous two sections are summarized in Table I.
The order-optimal numbers of needed bridges are given for the linear chain
for diameters of constant size, of size a(IN) + O(1), and of size O(f(N))
where f(N) grows faster than «(N). The bounds shown for all constant
diameters are extended to arbitrary trees, as shown in the table.

This leaves only few questions open. Most interesting is probably the
question to determine the exact constant factors involved. Less interest-
ing perhaps is what happens if we require a diameter of size f(IV), where

limpy oo f(N) = 00, but f(N) grows slower than a(N).
4.1 Applications of the Non-Reversing Diameter

Subsequence composition Let sets S; through Sy and functions g¢q
through gny_1 be given, where g; is a function from S; to S;y;. Let G
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(¢ < j) denote the function from S; to S; defined by the composition of g;
through g;_;. Compositions of functions can be computed at unit cost and
functions as well as compositions can be stored at unit cost. It is required
that the g; are stored in such a way that the G;; can be retrieved efficiently.

The results for the linear chain (Section 2) are helpful here to decide what
information to store. Let a bridge (7, ) in a solution correspond to function
G;; that is precomputed and stored. The number of bridges corresponds to
the space complexity of the resulting data structure. The diameter of the
resulting graph corresponds to the time complexity of a query.

A special case of this problem is matrix subsequence product, where S; is
Z% and gi is a d; X d;11 matrix.

Database queries, generalisation to graphs Let a set V' of domains
be given and a set E of binary relations between these domains. A relation
defines a function in each direction, but these two functions are not each
others inverse. (In general the functions have no inverse.) Given two do-
mains z,y € V and a path p of relations in E between z and y, a unique
relation G), from x to y is defined (wiz., by the composition of the relations
on the path). It is required to store relations and their compositions in such
a way that the GG, can be retrieved efficiently. As in the Subsequence Com-
position problem, solutions to the problem are helpful to organize the data
structure. In the case that F is a tree, there is exactly one path between any
two nodes, hence p is uniquely determined by = and y. The non-reversibility
condition is necessary because the result of a relation composed with its re-
versed relation is in general not the identity relation. The problem for trees
was addressed in this paper. The problem was suggested in [4] and some
results (Theorems 2.1 and 3.2) are found in [5].

The general graph problem leads to the following generalisation of the
problem. Given is a graph G = (V, E). It is required to find a set B of
(simple) paths in G (the bridges) in such a way that any arbitrary (simple)
path in G is the concatenation of as few paths as possible from B. We did
not study the general problem.

Sparse matrices Graphs can be represented by a boolean adjacency ma-
trix M with M[i,j] = 1 if (i,j) € E and 0 otherwise. Directed chains
correspond with upper triangular matrices with 1’s just above the main di-
agonal. The results in Section 2 can be reformulated to say that if the kP
power of an N X N upper triangular matrix M has all 1’s above the diag-
onal, then M has at least Fi(IN) 1’s above the first super diagonal. (The
first super diagonal is the diagonal above the main diagonal. All its entries
are 1 for a chain because it represents edges from i to 7 + 1.)

A matrix is called sparse if many of its entries are zero’s and often these
matrices are stored using schemes that suppress the zero’s and only store
non-zero’s. When such a scheme is used it is interesting to know how sparse
the result of a matrix operation, like a multiplication, is. The statement for
boolean matrices implies that the k" power of an upper triangular matrix
can be completely filled (have no zero’s above the diagonal) only if it has at
least Fi(IN) non-zero entries above the first super diagonal.
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4.2 Related Literature

The non-reversing diameter and related problems have been the subject of
earlier studies; the relation with the inverse Ackermann function o was found
in several cases.

Tarjan [6] generalized the standard techniques for the Union-Find problem
to an algorithm maintaining a forest, and queries give information about the
path from a node to its root. In case the (dynamic) forest remains balanced
(which can be guaranteed in some applications discussed by Tarjan) the «
function occurs in the complexity. In Tarjan’s work, the trees are directed
and dynamic.

Yao [8] considered a problem similar to ours, but only for the case of
chains. Chazelle [2] considered abstract generalizations of techniques for
lists and intervals to trees and paths. The queries considered for a path are
cumulative sums over edge weights, where the weight of an edge is taken
from a semiring. Chazelle showed that the upper bounds shown by Yao for
the chain can be achieved also in trees. Our paper is easier to read than
those by Yao and Chazelle, and treats the case of constant diameter in more
detail.

Bonet and Buss [1] consider a related problem for a directed tree, namely,
to efficiently generate a given set of edges in the transitive closure of the tree
by combining tree edges. They show, using the same constructions as we
do, that n edges can be constructed in an m-node tree in O((n + m)a(m))
steps. Observe that in all our constructions, each bridge can be obtained by
combining two smaller bridges or tree edges.

Thorup [7] considers the problem of reducing the diameter of directed
graphs by adding edges of the transitive closure (bridges), in such a way
that the number of edges is at most doubled. It is conjectured that a poly-
logarithmic diameter can be achieved for all digraphs; [7] supports the con-
jecture by showing an O(a(N, N)log® N) upper bound for the case of planar
digraphs.
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