
Nordic Journal of Computing 1(1994), 38–49.

GENERALIZED TOPOLOGICAL SORTING IN
LINEAR TIME∗

TORBEN HAGERUP
Max-Planck-Institut für Informatik

Im Stadtwald
D–66123 Saarbrücken, Germany

torben@mpi-sb.mpg.de

MARTIN MAAS
CAP debis, Division Industrie

Erich-Herion-Straße 13
D–70736 Fellbach, Germany

Abstract. The generalized topological sorting problem takes as input a positive

integer k and a directed, acyclic graph with some vertices labeled by positive in-

tegers, and the goal is to label the remaining vertices by positive integers in such

a way that each edge leads from a lower-labeled vertex to a higher-labeled vertex,

and such that the set of labels used is exactly {1, . . . , k}. Given a generalized topo-

logical sorting problem, we want to compute a solution, if one exists, and also to

test the uniqueness of a given solution. The best previous algorithm for the gen-

eralized topological sorting problem computes a solution, if one exists, and tests

its uniqueness in O(n log log n + m) time on input graphs with n vertices and m

edges. We describe improved algorithms that solve both problems in linear time

O(n + m).

CR Classification: F.2.2, G.2.2

1. Introduction

Motivated by an application in the VLSI layout system HILL (Lengauer
and Mehlhorn, 1984), Hagerup and Rülling (1986) introduced the general-
ized topological sorting (GTS) problem and considered two variants of the
problem. We focus here on the so-called constrained GTS problem, defer-
ring a discussion of the unconstrained GTS problem to the final section of

the paper. Given a partial function f̂ , Dom(f̂) denotes the domain of f̂ ,

i.e., Dom(f̂) = {v | f̂(v) is defined}. The definition below is illustrated in
Fig. 1.

Definition. An instance of the constrained GTS problem is a tuple P =

(V,E, f̂ , k), where (V,E) is a directed, acyclic graph, f̂ is a partial function
from V to IN = {1, 2, . . .}, and k ∈ IN . A solution to P is a total function
f : V → IN with the following properties:

∗ Supported by the ESPRIT Basic Research Actions Program of the EU under contract
No. 7141 (project ALCOM II). Part of the research was carried out while both authors were
with the Universität des Saarlandes. A preliminary version of this paper was presented
at the 9th International Conference on Fundamentals of Computation Theory (FCT) in
Szeged, Hungary in August 1993.

Received January 1994. Accepted May 1994.

GENERALIZED TOPOLOGICAL SORTING IN LINEAR TIME 39

Fig. 1: An instance of the constrained GTS problem and two of its solutions.

(1) f is monotonic, i.e., for all (u, v) ∈ E, f(u) < f(v).

(2) f is an extension of f̂ , i.e., for all v ∈ Dom(f̂), f(v) = f̂(v).

(3) f(V) = {1, . . . , k}.

In the application in the HILL system, an instance of the GTS problem
is formulated by a user of the system, whose intent is to describe a certain
desired vertex labeling to the system in a convenient manner. If the instance
has no solution, the user has made a mistake. If it has more than one
solution, on the other hand, the labeling is underdetermined, and the user
should be prompted for more information. We are therefore interested not
only in deciding solvability and computing solutions to GTS problems, but
also in testing the uniqueness of a given solution.

In a more general perspective, the same question can be asked for other
computational problems: If a given instance has a solution, is that solution
unique? Related questions play a certain role in complexity-theoretic inves-
tigations of more difficult problems, cf. the demonstration by Valiant and
Vazirani (1986) that the problem Unique SAT of deciding whether a given
Boolean formula has exactly one satisfying assignment is complete under
randomized polynomial-time reductions in the class DP of set differences

40 HAGERUP, MAAS

between two languages in NP. However, little work seems to have been done
along these lines for problems that can be solved in polynomial time.

This paper describes linear-time algorithms for the following tasks: Given
an instance P of the constrained GTS problem, (A) decide whether P has
a solution and, if so, compute one; (B) decide whether a given solution to
P is unique. It turns out that (A), the existence problem, is essentially
solved by a known algorithm for convex bipartite matching, whereas our
handle on (B), the uniqueness problem, is a careful analysis of the special
solution produced by our algorithm for (A). The best previous algorithms
for problems (A) and (B), due to Hagerup and Rülling (1986), have running
times of O(n log log n + m) for input graphs with n vertices and m edges.

2. Preliminaries

Consider from now on a fixed instance P = (V,E, f̂ , k) of the constrained
GTS problem and let n = |V |, m = |E| and K = {1, . . . , k}. The functions
Low and High, defined below and illustrated in Fig. 2, are fundamental to
our discussion.

Definition. Let Low and High be the functions defined on V by

Low (v) = max{fL(u) + length(p) | u ∈ V and p is a path in G

from u to v}

High(v) = min{fH(w) − length(p) | w ∈ V and p is a path in G

from v to w},

for all v ∈ V , where length(p) denotes the number of edges on the path p,

and fL and fH are the trivial extensions of f̂ with

fL(v) =

{
f̂(v), if v ∈ Dom(f̂)

1, if v ∈ V \Dom(f̂)

fH(v) =

{
f̂(v), if v ∈ Dom(f̂)

k, if v ∈ V \Dom(f̂).

Low (v) and High(v) can be computed for all v ∈ V in O(n + m) time by
a procedure, similar to usual topological sorting, that processes the vertices
once in topological order and once in inverse topological order. If f is a
solution to P , clearly Low (v) ≤ f(v) ≤ High(v) for all v ∈ V . In particular,
we will assume throughout that 1 ≤ Low (v) ≤ High(v) ≤ k ≤ n for all
v ∈ V , since otherwise P fails in a trivial way to be solvable. It is then easy

to see that Low and High are monotonic extensions of f̂ , i.e., the functions
Low and High are solutions to P , except that their ranges may not include
all of K.

GENERALIZED TOPOLOGICAL SORTING IN LINEAR TIME 41

Fig. 2: Low and High for an example problem instance.

3. The Existence Problem

Consider the bipartite graph H on the vertex sets V and K that contains
an edge (v, i), for v ∈ V and i ∈ K, exactly if Low (v) ≤ i ≤ High(v). H is
convex, i.e., the vertices connected to each v ∈ V form a set of consecutive
integers. We make use of maximum matchings in H, but for reasons of
convenience phrase the discussion in terms of what we call pairings.

Definition. A pairing is an injective partial function g : V ↪→ IN with
Low (v) ≤ g(v) ≤ High(v) for all v ∈ Dom(g). The size of a pairing g is
|Dom(g)|, and g is maximum if |Dom(g)| ≥ |Dom(g ′)| for all pairings g′.

Lipski and Preparata (1981) gave an algorithm for computing maximum
matchings in convex bipartite graphs, which is trivially converted into an
algorithm for computing maximum pairings. As demonstrated by Gabow
and Tarjan (1985), the algorithm can be implemented to run in linear time
O(n). The algorithm below, whose implementation details have been ig-
nored, computes the same maximum pairing as the linear-time algorithm.
Identify the partial function g with the set {(v, g(v)) | v ∈ Dom(g)}.

42 HAGERUP, MAAS

Sort the elements of V by their High values, i.e., compute a bijection
σ : {1, . . . , n} → V such that for all i, j ∈ IN with 1 ≤ i < j ≤ n,
High(σ(i)) ≤ High(σ(j));

g := ∅;
for i := 1 to n do

begin (∗ assign a value to σ(i), if possible ∗)
J := {Low (σ(i)), . . . ,High(σ(i))}\g(Dom (g));

(∗ possible candidates for g(σ(i)) ∗)
if J 6= ∅
then g := g ∪ {(σ(i),min J)};

end;

The vertices are hence processed in the order of increasing High values, and
each vertex is mapped to the smallest allowed value still available, if any. In
addition to being maximum, the pairing computed by the algorithm is also
regular, in the sense of the following definition.

Definition. A pairing g is called regular if for all u, v ∈ V with v ∈ Dom(g)
and Low (u) ≤ g(v) ≤ High(u) < High(v), we have u ∈ Dom(g) and g(u) <
g(v).

Lemma 1. Any pairing computed by the above algorithm is regular.

Proof. Let g be a pairing computed by the algorithm and let u, v ∈ V
be as in the definition of a regular pairing, i.e., v ∈ Dom(g) and Low (u) ≤
g(v) ≤ High(u) < High(v). Then σ−1(u) < σ−1(v), i.e., u is processed
before v. Since g(v) is included in g(Dom(g)) during the processing of v,
it belongs to J during the processing of u. In particular, J 6= ∅ during the
processing of u, so u ∈ Dom(g). The claim now follows, since g(u) is chosen
as min J , yet is different from g(v). 2

Definition. For any partial function g from V to IN , the total function
f : V → IN given by

f(v) =

{
g(v), if v ∈ Dom(g)
High(v), if v ∈ V \Dom(g)

is called the High extension of g.

Lemma 2. Let f be the High extension of a regular pairing g. Then for all
u, v ∈ V ,

Low (u) ≤ f(v) ≤ f(u) ⇒ High(v) ≤ High(u).

Proof. If v /∈ Dom(g), then High(v) = f(v) ≤ f(u) ≤ High(u). Suppose
therefore that v ∈ Dom(g) and that High(v) > High(u). Then

Low (u) ≤ f(v) = g(v) ≤ f(u) ≤ High(u) < High(v),

GENERALIZED TOPOLOGICAL SORTING IN LINEAR TIME 43

and the regularity of g implies that f(u) = g(u) < g(v) = f(v), a contradic-
tion. 2

Lemma 3. Any High extension f of a regular pairing of size k is a solution
to P .

Proof. We need only verify that f is monotonic. Let (u, v) ∈ E. Since
Low (u) < Low (v) ≤ f(v) and High(v) > High(u), Lemma 2 implies that
f(v) > f(u). 2

Theorem 1. Given an instance P = (V,E, f̂ , k) of the constrained GTS
problem with |V | = n and |E| = m, the solvability of P can be tested in
O(n + m) time, and if P is solvable, a solution to P can be computed in
O(n + m) time.

Proof. First compute the functions Low and High corresponding to P in
O(n + m) time. Then find a regular maximum pairing g. As stated above,
this can be done in O(n) time. If g is not of size k, clearly P is not solvable.
Otherwise, by Lemma 3, P is solvable, and a solution to P can be obtained
in O(n) time as the High extension of g. 2

4. The Uniqueness Problem

This section develops an algorithm to test whether a given constrained GTS
problem has more than one solution. Define a standard solution to be the
High extension of a regular pairing of size k (by Lemma 3, each such function
is indeed a solution to P). We begin by investigating the properties of stan-
dard solutions, one major goal being to show that such solutions maximize
the sum of all vertex labels.

Definition. For any solution f to P , let S(f) =
∑

v∈V f(v). f is called
maximal if S(f) ≥ S(f ′) for all solutions f ′ to P , and minimal if S(f) ≤
S(f ′) for all solutions f ′ to P .

Definition. For any two solutions f and f ′ to P , let D(f, f ′) denote the di-
rected multigraph (K,A), where A = {(f(v), f ′(v)) ∈ K ×K | v ∈ V } should
be taken as a multiset, i.e., it is formed without elimination of duplicates,
and its cardinality is exactly n.

Given two solutions f and f ′ to P , D(f, f ′), informally, expresses the
changes necessary to turn f into f ′. We now decompose D(f, f ′) into simpler
parts.

Definition. Let D = (U,A) be a directed multigraph. A vertex in D is
called outdominant in D if its outdegree in D (strictly) exceeds its indegree
in D. A path p in D is called complete in D if p is simple and the first
vertex on p is outdominant in D. A path decomposition of D is a set Π of
paths in D such that each edge in A lies on exactly one path in Π, and such
that each path in Π is either cyclic or complete in D.

44 HAGERUP, MAAS

Lemma 4. Every directed multigraph D = (U,A) has a path decomposition.

Proof. By induction on |A|. If |A| = 0, there is nothing to show.
Otherwise choose p1 as a cycle in D or, if D is acyclic, as a maximal path in
D, which is necessarily complete in D, and apply the induction hypothesis
to D1 = (U,A\A1), where A1 is the set of edges on p1. The lemma follows,
since every complete path in D1 is a complete path in D. 2

Definition. For every directed multigraph D = (K,A) on the vertex set
K, let ∆(D) =

∑
(i,j)∈A(j − i). D is called incrementing if ∆(D) > 0.

If D is a cycle, clearly ∆(D) = 0, and if D is a complete path from i
to j, then ∆(D) = j − i. Furthermore, for any two solutions f and f ′

to P , it is easy to see that ∆(D(f, f ′)) = S(f ′) − S(f). Using the latter
characterization of S(f ′)−S(f) as well as the following lemma, we are able
to demonstrate the maximality of standard solutions.

Lemma 5. For all standard solutions f and for all v ∈ V with |f−1(f(v))| ≥
2, we have f(v) = High(v).

Proof. Let f be the High extension of a regular pairing g, and suppose
that v ∈ V has |f−1(f(v))| ≥ 2, but f(v) < High(v). Then v ∈ Dom(g),
and for some u ∈ V with u /∈ Dom(g), f(u) = High(u) = f(v). But then

Low (u) ≤ f(u) = f(v) = g(v) = High(u) < High(v),

contradicting the regularity of g. 2

Lemma 6. Let f ′ be a solution to P and let f be a standard solution. Then
no path decomposition of D(f, f ′) contains an incrementing path.

Proof. Let p be a complete path in some path decomposition of D(f, f ′)
consisting of the edges

(i0, i1), (i1, i2), . . . , (it−1, it)

and choose w1, . . . , wt ∈ V such that for j = 1, . . . , t,

f(wj) = ij−1 and f ′(wj) = ij .

For s = 1, . . . , t, consider now the assertion

Q(s) : High(ws) ≤ i0.

We will prove Q(s) for s = 1, . . . , t by complete induction on s. Q(t) implies
it = f ′(wt) ≤ High(wt) ≤ i0, showing that p cannot be incrementing.

Since i0 is outdominant in D(f, f ′) and f ′(V) = K, |f−1(i0)| > |(f ′)−1(i0)|
≥ 1. Hence by Lemma 5, High(w1) = f(w1) = i0, providing the basis Q(1)
for the induction.

GENERALIZED TOPOLOGICAL SORTING IN LINEAR TIME 45

For the inductive step, fix s with 2 ≤ s ≤ t and assume that Q(j) is true
for j = 1, . . . , s− 1. Choose r with 1 ≤ r ≤ s− 1 such that ir−1 > is−1 ≥ ir.
This is possible since ij > is−1 holds for j = 0, by the induction hypothesis
Q(s − 1) and the fact that i0 6= is−1, but not for j = s − 1. Now

Low (wr) ≤ f ′(wr) = ir ≤ is−1 = f(ws) < ir−1 = f(wr),

and Lemma 2 implies that High(ws) ≤ High(wr) and hence, by the induction
hypothesis Q(r), that High(ws) ≤ i0, i.e., Q(s). 2

Lemma 7. Every standard solution f is a maximal solution to P .

Proof. Let f ′ be an arbitrary solution to P and let {p1, . . . , pr} be a
path decomposition of D(f, f ′). S(f ′) − S(f) = ∆(D(f, f ′)) =

∑r
i=1 ∆(pi),

and by Lemma 6, ∆(pi) ≤ 0 for i = 1, . . . , r. Hence S(f ′) ≤ S(f). 2

Assume in the remainder of this section that P is solvable. Having shown
that a maximal solution to P can be computed in O(n + m) time, we next
argue that a minimal solution to P can be found within the same time
bound. Whereas this fact can be demonstrated by simple modifications
to the algorithms described in Section 3, a cleaner argument proceeds as

follows: Consider the constrained GTS problem Prev = (V,Erev, k+1− f̂ , k),

where Erev = {(v, u) ∈ V ×V | (u, v) ∈ E} and k+1−f̂ is the partial function

from V to IN with the same domain as f̂ and given by (k + 1 − f̂)(v) =

k + 1 − f̂(v), for all v ∈ Dom(f̂). It is easy to see that for any given
function f : V → IN , f is a minimal solution to P if and only if k + 1 − f
is a maximal solution to Prev. O(n + m) time hence suffices to compute
a standard (maximal) solution fmax and a minimal solution fmin to P . If
fmin 6= fmax, then obviously f has more than one solution. On the other
hand, if fmin = fmax, then all solutions to P are maximal. We will show
that in this case, if f is a standard solution to P , then P has a solution
different from f if and only if such a solution can be obtained from f simply
by interchanging the labels of two vertices. Subsequently we show how to
identify two such vertices in linear time.

For all v ∈ V , call u ∈ V a predecessor of v if (u, v) ∈ E, and call w ∈ V
a successor of v if (v, w) ∈ E.

Definition. Let f be a solution to P . An interchangeable pair in f is a

pair (v1, v2) ∈ (V \Dom(f̂))2 such that

(1) f(v1) < f(v2).

(2) f(u) < f(v1) for all predecessors u of v2.

(3) f(w) > f(v2) for all successors w of v1.

46 HAGERUP, MAAS

Fig. 3: The identification of an interchangeable pair (v1, v2).

Lemma 8. Let f be a standard solution. Then P has a maximal solution
different from f if and only if there is an interchangeable pair in f .

Proof. If (v1, v2) is an interchangeable pair in f , then the function
f ′ : V → K given by

f ′(v) =

f(v2), if v = v1

f(v1), if v = v2

f(v), if v ∈ V \{v1, v2}

obviously is a solution to P different from f .
Assume now that P has a maximal solution f ′ different from f and let

D = D(f, f ′). By Lemma 6, no path decomposition of D contains a complete
path, since at least one such path would be incrementing; the indegree of
each vertex in D therefore equals its outdegree.

Choose v2 ∈ V with f ′(v2) 6= f(v2) such that f ′(v2) is minimal, subject
to the condition f ′(v2) 6= f(v2). By formulating the corresponding property
in terms of D, it is easy to see that f ′(v2) < f(v2) (f ′(v2) is the smallest
nonisolated vertex in D). Then choose v1 ∈ V with f(v1) < f(v2) ≤ f ′(v1)
such that f(v1) is maximal, subject to the condition f(v1) < f(v2) ≤ f ′(v1).
The existence of v1 follows from the properties of D: Since at least one
edge in D (namely, (f(v2), f

′(v2))) leads from KH = {f(v2), . . . , k} to KL =
{1, . . . , f(v2)−1}, at least one edge must lead from KL to KH. Furthermore,
f(v1) ≥ f ′(v2). The situation is depicted in Fig. 3; note that f ′(v2) = f(v1)
and/or f(v2) = f ′(v1) is possible. We next verify that (v1, v2) satisfies the
conditions stated in the definition of an interchangeable pair. First of all,

it is clear that v1, v2 /∈ Dom(f̂) and that f(v1) < f(v2). In order to verify
condition (2), let u be a predecessor of v2. Since f ′(u) < f ′(v2), it follows
from the choice of v2 that f(u) = f ′(u) < f ′(v2) ≤ f(v1), as required.

Finally consider condition (3) and let w be a successor of v1. Since f and
f ′ are solutions to P , f(w) > f(v1) and f ′(w) > f ′(v1). If f(w) < f(v2), we
have a contradiction to the choice of v1. On the other hand, it follows from
condition (2) that w 6= v2. Hence if f(w) = f(v2), Lemma 5 implies that
f(w) = High(w), which leads to the contradiction f ′(w) > f ′(v1) ≥ f(v2) =
High(w). We may therefore conclude that f(w) > f(v2). 2

GENERALIZED TOPOLOGICAL SORTING IN LINEAR TIME 47

Lemma 9. Given a solution f to P containing an interchangeable pair, an
interchangeable pair in f can be identified in O(n + m) time.

Remark. We cannot compute all interchangeable pairs, since their number
may be Ω(n2).

Proof. Consider the following algorithm:

U1 := ∅;
for j := 2 to k do

begin

Uj := (Uj−1 ∪ {v ∈ V \Dom(f̂) | f(v) = j − 1})
\{v ∈ V | f(w) = j for some successor w of v};

if Uj 6= ∅
then

begin

Choose z1 ∈ Uj with f(z1) maximal;

for all z2 ∈ f−1(j)\Dom(f̂)
do if f(u) < f(z1) for all predecessors u of z2

then output(‘An interchangeable pair: ’, z1, z2);
end;

end;

It is easy to see by induction that for j = 1, . . . , k,

Uj = {v ∈ V \Dom(f̂) | f(v) ≤ j − 1 and f(w) > j

for all successors w of v}.

Hence every pair (z1, z2) reported by the algorithm indeed is an interchange-
able pair. On the other hand, suppose that (v1, v2) is an interchangeable
pair in f . By the characterization of Uj given above, it is easy to see that
v1 ∈ Uf(v2). Hence in that execution of the loop in which j has the value
f(v2), z1 will be chosen as some vertex with f(z1) ≥ f(v1), and the algo-
rithm will report the interchangeable pair (z1, v2) (and possibly other pairs).
The algorithm hence correctly computes an interchangeable pair, if there is
one.

We now consider the complexity of the algorithm. First of all, the elements
of V can initially be (bucket-)sorted in O(n) time by their images under
f (i.e., labels). If U1, . . . , Uk are the successive values assumed by a single
variable U implemented as a doubly-linked linear list with its elements sorted
by their images under f , it is then possible to carry out the insertions into U
in O(n) overall time, the deletions from U in O(n+m) overall time, and the
selection of z1 in O(1) time per execution of the loop. Since the remaining
parts of the algorithm can also be executed in O(n + m) time, the lemma
follows. 2

48 HAGERUP, MAAS

Theorem 2. Given an instance P = (V,E, f̂ , k) of a constrained GTS prob-
lem with |V | = n and |E| = m, it is possible to test in O(n+m) time whether
P has more than one solution. If so, two distinct solutions to P can be com-
puted in O(n + m) time.

Proof. If P is solvable, compute a standard solution fmax and a minimal
solution fmin to P . As previously described, this can be done in O(n + m)
time. If fmin 6= fmax, the two desired solutions to P have been produced.
If fmin = fmax, compute an interchangeable pair in fmax, if one exists. By
Lemma 9, this can be done in O(n + m) time. If an interchangeable pair
exists, it directly implies a second (maximal) solution to P . If not, it follows
from Lemma 8 that fmax is the only solution to P . 2

5. Unconstrained GTS Problems

In this section we review the connection between the constrained GTS prob-
lem studied in this paper and the original unconstrained GTS problem of
(Hagerup and Rülling, 1986).

An instance of the unconstrained GTS problem is a tuple (V,E, f̂), where

V is a directed, acyclic graph and f̂ is a partial function from V to IN . A
solution to P is a total function f : V → IN such that for some k ∈ IN ,

f is a solution to the constrained GTS problem (V,E, f̂ , k) (informally, the
choice of a suitable value for k is left to the algorithm).

Given an unconstrained GTS problem P = (V,E, f̂), denote by Pk the

corresponding constrained GTS problem (V,E, f̂ , k), for all k ∈ IN . Further
let M = maxv∈V Low (v) (computed with respect to an arbitrary Pk). It
is implied in (Hagerup and Rülling, 1986) that the set {k ∈ IN | Pk is
solvable} is either empty or of the form {M,M + 1, . . . , kmax}, for some
integer kmax ≥ M . A proof of this fact needs only show that if Pk+1 is
solvable, for some k ≥ M , then so is Pk. To see the truth of the latter claim,
suppose that f is a solution to Pk+1, let

U = {v ∈ V | there is a path in (V,E) of length k + 1 − f(v)

from v to a vertex w with f(w) = k + 1}

and note that since k ≥ M , U contains neither vertices in Dom(f̂) nor
vertices v with f(v) = 1. Now consider the function f ′ : V → IN with

f ′(v) =

{
f(v) − 1, if v ∈ U
f(v), if v ∈ V \U .

We will show that f ′ is a solution to Pk. The fact noted above shows that

f ′ is an extension of f̂ . If some vertex v ∈ V belongs to U , then so does any
predecessor u of v with f(u) = f(v) − 1; hence f ′ is monotonic. Finally, if
some vertex v ∈ V with f(v) ≤ k belongs to U , then so does at least one

GENERALIZED TOPOLOGICAL SORTING IN LINEAR TIME 49

successor w of v with f(w) = f(v) + 1, i.e., f ′(V) = {1, . . . , k}. Hence f ′ is
indeed a solution to Pk.

As argued in (Hagerup and Rülling, 1986), it is now easy to compute
solutions to unconstrained GTS problems and to test their uniqueness by
answering the same questions for constrained GTS problems. Specifically,
with the notation from above, P is solvable if and only if PM is, and a
solution to P is unique if and only if PM has a unique solution, while PM+1

is not solvable.

Acknowledgements

We are grateful to Günter Rote, who pointed out the possible relevance of
convex bipartite matching.

References

Gabow, H. N., and Tarjan, R. E., A Linear-Time Algorithm for a Special Case of
Disjoint Set Union, J. Comput. System Sci. 30, pp. 209–221, 1985.

Hagerup, T., and Rülling, W., A Generalized Topological Sorting Problem, in Proc.
2nd Aegean Workshop on Computing, Springer Lecture Notes in Computer Science,
Vol. 227, pp. 261–270, 1986.

Lengauer, T., and Mehlhorn, K., The HILL System: A Design Environment for the
Hierarchical Specification, Compaction, and Simulation of Integrated Circuit Lay-
outs, in Proc. Conference on Advanced Research in VLSI, MIT, pp. 139–149, 1984.

Lipski, W., Jr., and Preparata, F. P., Efficient Algorithms for Finding Maximum
Matchings in Convex Bipartite Graphs and Related Problems, Acta Inform. 15, pp.
329–346, 1981.

Valiant, L. G., and Vazirani, V. V., NP is as Easy as Detecting Unique Solutions,
Theoret. Comput. Sci. 47, pp. 85–93, 1986.

