Computational modelling sheds new light on core cell functions

An advanced computational model developed by computer scientists has revealed long delays in gene regulation.

 

The fields of genetics and genomics have developed rapidly during the past years, partly due to better computational methods. Now an international research group led by Finnish researchers has developed a new computational model, which has revealed unexpectedly long processing delays in gene expression following a regulatory signal.

With the help of the new method, measurements of human gene activity made at consecutive time points were analysed. The results revealed that more than 10% of human genes can have delays of more than 20 minutes in their regulation. This is significantly longer than previously thought. The delays were particularly evident in short genes, the activity of which was believed to be fast.

The result will help us to understand life's basic processes in animals and plants and will form a foundation for developing more accurate algorithms to make better sense of gene regulation.

Method inside a method

The researchers studied the response of breast cancer cells to a hormonal regulatory signal that triggers changes in the expression of numerous genes. Some of the genes participate in the response through regulating other genes but these mechanisms are so far poorly understood. More accurate knowledge of gene regulation could enable for example the development of better cancer treatments.

– All gene regulation models are based on assumed effects of regulation, and, if the delay in gene regulation is not taken into account, these can lead to wrong conclusions. The importance of the delays may be compared to a situation where we want to investigate the cause for an allergy when some of the symptoms appear quickly, some only after a long delay. If attention is not paid to this, the investigation will be considerably more difficult and can produce wrong conclusions, Antti Honkela from the University of Helsinki points out.

– We built a physically inspired mathematical model within an advanced statistical model. This made it possible to observe, among other things, the delays of even over 20 minutes that we discovered in gene regulation, tells Jaakko Peltonen from Aalto University and University of Tampere.

New measurement technologies have enabled the investigation of biological phenomena on a vastly greater scale than before. Due to the growth in the scale of data, computational methods are central for all work in the fields of genetics and genomics.

Academy Research Fellows Antti Honkela from the University of Helsinki and Jaakko Peltonen from Aalto University and the University of Tampere were the main authors of the article. They work at the Helsinki Institute for Information Technology HIIT, which is the joint information research unit of Aalto University and the University of Helsinki. They are members of the Finnish Centre of Excellence in Computational Inference COIN appointed by the Academy of Finland. The research was also funded by the European ERASysBio+ ERA-NET programme which is a collaboration of the Academy of Finland and other European science funders as well as the EU.

The article Genome-wide modelling of transcription kinetics reveals patterns of RNA production delays was recently published in the Proceedings of the National Academy of Sciences of the United States of America.

Figure caption: Examples of the observation data and fitted models for different genes. For each gene the upper red curve depicts its transcriptional activity and the lower green curve the expression of mature messenger RNA. The distribution of the delays estimated between these is shown on the right.

 

Created date

12.10.2015 - 14:16

Inter-university research and training centre on information security

The University of Helsinki and Aalto University have set up a joint research centre focusing on information security. The new centre, HAIC (Helsinki-Aalto Centre for Information Security), will coordinate the Master’s-level security education between the university and Aalto, with links to research and doctoral education.

The idea is to build bridges to the industries and gain their support for the education, and e.g. grants for MSc students coming from outside the EU, the head of the Department of Computer Science, Sasu Tarkoma, says.

Computer science undergraduate Petteri Timonen awarded in US science competition

Petteri Timonen, 19, came second in his category of the Intel International Science and Engineering Fair (ISEF) in Phoenix, Arizona.

 

On Friday, 15 May, Timonen, who is studying computer science at the University of Helsinki, was awarded a grant worth 1500 USD, some 1330 euros, in the Systems Software category of the Intel ISEF science competition.
 
As his entry, Timonen submitted a software tool he developed for Finland’s Red Cross to make mobile blood runs around the country as cost-effective as possible. Timonen implemented his tool in cooperation with the Blood Service.

The tool has gained international attention, as no tool like it seems to have been developed anywhere else. Timonen has also negotiated with the American Red Cross by email.

Renewed Carat App Gives a Smart Boost to Battery

 
The Carat Project Team at the University of Helsinki, Department of Computer Science, has published a new version of the popular mobile energy-awareness application.

After launch in June 2012, Carat has helped over 850,000 users, of which 41 per cent have been Android and 59 per cent iOS users, respectively. The new user interface follows modern application design guidelines and presents battery information in a more intuitive and easy to use manner.

- In addition to the new user interface, we have increased the accuracy of the energy saving recommendations of Carat, says Professor Sasu Tarkoma, the leader of this research done at the university.

The user interface features the number of energy intensive applications (Hogs), energy anomalies (Bugs) and user recommendations (Actions) at a glance on the main screen as well as global energy statistics for the device community.

Cover Song Identification Using Compression-based Distance Measures

M.Sc. Teppo E. Ahonen will defend his doctoral thesis Cover Song Identification Using Compression-based Distance Measures on Friday the 1st of April 2016 at 12 o'clock in the University of Helsinki Exactum Building, Auditorium CK112 (Gustaf Hällströminkatu 2b) His opponent is Academy Professor Petri Toiviainen (University of Jyväskylä) and custos Professor Esko Ukkonen (University of Helsinki). The defence will be held in Finnish.

Measuring similarity in music data is a problem with various potential applications. In recent years, the task known as cover song identification has gained widespread attention. In cover song identification, the purpose is to determine whether a piece of music is a different rendition of a previous version of the composition. The task is quite trivial for a human listener, but highly challenging for a computer.