
www.cs.helsinki.fi

Spark Streaming

2015

Professor Sasu Tarkoma

Spark extension of accepting and processing of streaming
high-throughput live data streams

Data is accepted from various sources
 Kafka, Flume, TCP sockets, Twitter, …

Machine learning algorithms and graph processing algorithms
can be applied for the streams

Similar systems
 Twitter (Storm), Google (MillWheel), Yahoo! (S4)

Discretized Streams: A Fault-Tolerant Model for Scalable

Stream Processing. Matei Zaharia,Tathagata Das, Haoyuan
Li, Timothy Hunter, Scott Shenker, Ion Stoica. Berkeley
EECS (2012-12-14)

Spark Streaming

Traditional streaming systems are based on event-driven
event-at-a-time processing model

Each node has state and the state is updated for each event
If the node fails, the state is lost thus creating challenges for

fault-tolerance
Well-known systems

 Storm
 Each record is processed at least once
 State can be lost due to failure
 Trident
 Each record is processed exactly once (replay tuples

 for fault tolerance, stores additional state information)
 Transactions are slow

Streaming Systems

Streaming computation is run as a series of very small
deterministic batch jobs

Live stream is divided into batches of x seconds

Each batch of data is an RDD and RDD operations can be

used

Results are also returned in batches

Batch size as low as 0.5 seconds, results in approx. one

second latency

Can combine streaming and batch processing

Stream Processing: Discretized

RDDs store the sequence of operations that were used to create it

Batches of input are replicated in memory of multiple workers

Worker failure can be mitigated by recomputing the lost data

Achieving Fault-Tolerance

DStream
 Sequence of RDDs
 Stream data can be based on various sources

Transformations
 Modifies DStream data and creates a new DStream
 Basic RDD operations: map, countByValue, …
 Stateful operations: window, countbyValueAndWindow, …

Output
 Save to HDFS
 foeachRDD: store each RDD of the stream batch to an
external system

Concepts

DStream (batches of RDDs)

https://spark.apache.org/docs/latest/streaming-programming-guide.html

A StreamingContext object can be created from a SparkConf
object.

	

import	
 org.apache.spark._	

import	
 org.apache.spark.streaming._	

	

val	
 conf	
 =	
 new	

SparkConf().setAppName(appName).setMaster(master)	

val	
 ssc	
 =	
 new	
 StreamingContext(conf,	
 Seconds(1))	

	

//	
 or	
 from	
 existing	
 SparkContext	
 sc	

val	
 ssc	
 =	
 new	
 StreamingContext(sc,	
 Seconds(1))	

	

Creating Streams

1.  Define the input sources by creating input DStreams.
2.  Define the streaming computations by applying

transformation and output operations to DStreams.
3.  Start receiving data and processing it using

streamingContext.start().
4.  Wait for the processing to be stopped (manually or due to

any error) using streamingContext.awaitTermination().
5.  The processing can be manually stopped using

streamingContext.stop().

Using Streams

Once a context has been started, no new streaming
computations can be set up or added to it.

Once a context has been stopped, it cannot be

restarted.

Only one StreamingContext can be active in a JVM at

the same time.

Points to Remember

A Receiver receives data from a source, may
acknowledge the data, and stores it in Spark
memory

Reliable Receiver - A reliable receiver correctly
acknowledges a reliable source that the data has
been received and stored in Spark with replication.

Unreliable Receiver - These are receivers for sources
that do not support acknowledging. Even for reliable
sources, one may implement an unreliable receiver
that do not go into the complexity of acknowledging
correctly.

Receivers

Many Spark transformations are supported: map,
flatmap, filter, union, reduce, reduceByKey, join,
count, …

UpdateStateByKey updates arbitrary state on the fly
 Define the state
 Define the state update function

Transform
 val cleanedDStream = wordCounts.transform(rdd
=> { rdd.join(spamInfoRDD).filter(...) // join data
stream with spam information to do data cleaning

 …})

Transformations

Window operations

Window length = 3
Sliding interval = 2

Source RDDs within the window are combined and
processed for the RDDs of the windowed DStream

Spark Streaming uses checkpoints for fault tolerance

Metadata checkpointing: stream information is saved to

HDFS or other storage. Can recover from driver
failure. Metadata includes: configuration, DStream
operations, incomplete batches.

Data checkpointing: Generated RDDs are saved to

reliable storage. Needed for some stateful
transformations that combine data from multiple
batches.

Checkpointing

Incoming data needs to be deserialized and stored in
Spark

Receive can be parallelized (each receiving DStream

running on a single worker machine)

Multiple data streams (multiple DStreams) can be

combined
 Kafka DStream with two topics à two input streams
on two worker nodes

Receiving data

Create	
 a	
 DStream	
 (batches	
 of	
 RDDs)	

val	
 tweets	
 =	
 scc.twitterStream(username,	
 password)	

Create	
 a	
 new	
 DStream	
 and	
 modify	
 data	
 (new	
 RDDs)	

val	
 hashtags	
 =	

tweets.flatMap(status=>getTags(status))	

Save	
 to	
 HDFS	

hashTags.saveAsHadoopFiles(“hdfs://..”)	
 	

Count	
 how	
 many	
 tags	
 of	
 each	
 type	

Val	
 tagC	
 =	
 hashTags.countByValue()	

Count	
 hashtags	
 over	
 last	
 5	
 minutes	

val	
 tagC2	
 =	
 hashTags.window(Minutes(5),	

Seconds(1)).countByValue()	

	

Twitter Example

import	
 org.apache.spark.streaming._	

Import	
 org.apache.spark.streaming.StreamingContext._	

val	
 ssc	
 =	
 new	
 StreamingContext(sparkConf,	
 Seconds(10))	
 	

val	
 lines	
 =	
 ssc.socketTextStream(serverIP,	
 serverPort)	

val	
 words	
 =	
 lines.flatMap(_.split("	
 "))	

//	
 Count	
 each	
 word	
 in	
 each	
 batch!	

val	
 pairs	
 =	
 words.map(word	
 =>	
 (word,	
 1))	

val	
 wordCounts	
 =	
 pairs.reduceByKey(_	
 +	
 _)	

wordCounts.print()	

//	
 The	
 logic	
 has	
 now	
 been	
 defined,	
 we	
 need	
 to	
 start	

ssc.start()	
 //	
 Start	
 the	
 computation	

ssc.awaitTermination()	
 	

//	
 Wait	
 for	
 the	
 computation	
 to	
 terminate	
 	

Text Streaming Example

MLLib can be used with streaming
 Streaming machine learning algorithms
 Linear regression, kmeans, …

Two approaches:

 Simultaneously learn from data and apply model
 First learning a model offline and then using it on the
stream

Machine Learning

Better throughput than Storm reported
 Spark streaming 670k records / second / node
 Storm 115k records / second / node
 Apache S4: 7.5k records / second / node

Reported to recover from faults within 1 sec

Conviva case: 1-2 second latency for real-time monitoring of

video metadata, linear scalability observed

Performance

