
582631 Introduction to Machine Learning (Fall 2016)
Grading criteria for the course examination on December 20th 2016
Teemu Roos

NB: Since Problem 3, which was worth 20 points (out of maximum 60), turned out to be
harder than expected, the grading was adjusted by rescaling all problems to be worth 15
points.

1. [10 points] Explain briefly the following terms and concepts. Your explanation should
include, when appropriate, both a precise definition and a brief description of how the
concept is useful in machine learning. Your answer to each subproblem should fit to
roughly one third of a page of normal handwriting or less.

(a) Gini index and entropy
The Gini index and entropy can be used as impurity measures. The formulas are
Gini =

∑K
c=1 p̂mc(1− p̂mc) and entropy = −

∑K
c=1 p̂mc log p̂mc. They measure how

“pure” (or rather, how “impure”, i.e., mixed) a segment of the data is with respect
to the class variable. One point was awarded for the definitions (including expla-
nations of the symbols), another point for the explanation of their interpretation.

(b) squared error and logarithmic loss (log-loss)
The formulas are squared = (y − ŷ)2 and log-loss = − log p̂(y|x), where y is
the actual label, ŷ is the output of a classifier (a single label), and p̂(y|x) is the
probability of the actual label given the test instance x according to a probabilistic
classifier. One point for the formulas (incl. explanations of the symbols), another
point for the interpretation. Getting one of the two terms correct (both formula
and interpretation) was also counted as one point if the other term was incorrect
in some ways.

(c) dimension reduction
Mapping high-dimensional data (large number of features) to a lower-dimensional
representation in a way that retains as much of the “important” (defined in some
way) properties or structure of the data. One point for the above definition, another
for explaining that this is importance in order to facilitate various machine learning
tasks such as classification.

(d) linear regression
Predicting a continuous outcome y from a set of features x = x1, . . . , xp by a linear
model ŷ = Ax. One point for giving the above or equivalent formula, another for
explaining the setup (input features, continuous outcome).

(e) kernel trick
For algorithms that depend on the data only through dot products, 〈xi,xj〉, the dot
product can be replaced by a kernel function K(xi,xj) which is mathematically
equivalent to mapping the feature vectors xi and xj into a (potentially infinite
dimensional) feature space and taking dot products in the feature space. One point
for explaining this, and another for explaining that the point is to enable more
flexible classification and other methods (for example, support vector machines
with a non-linear kernel function allow non-linear decision boundaries).



2. [15 points] Consider a data set with n = 100 observations. Imagine you learn a classifi-
cation model and find that it classifies all the training examples correctly.

(a) What can you say about the performance of your classifier on new test data?
Explain what makes generalization hard. What properties of the classification
method are most relevant?
It is hard to say much about the performance on test data since the model was
fitted to the training data and evaluated on the same data. The main problem is
overfitting: the classifier may a) actually be good (also on the test data) or b) be
selected from a large set of poor classifiers, some of which just happen to fit the
training data well. The most relevant proporties of the classification method are
i) complexity (the size of the space of possible classification rules) and ii) how well
the possible classification rules fit the underlying data source. These are closely
related to variance (complexity) and bias (fitting the source). 1–5 points depending
on how many point from the ones made above were mentioned and how clearly they
were expressed.

(b) Explain cross-validation.
Split the data into k subsets of as equal size as possible, evaluate performance of
supervised classification methods on each subset while using the other k−1 subsets
as training data, average results. 1–5 point determined case-by-case.

(c) Now suppose that instead of classification, the task would have been to estimate,
for example, the median of an unknown distribution from which we have n = 100
data points. How would you apply resampling to measure the accuracy of an
estimate computed from the given n points?
Bootstrap. Resample a number of bootstrap samples by drawing n points with
replacement from the original sample, estimate median in each bootstrap sample,
consider the variability of the median estimates (e.g., variance or histogram). 1
point for saying “bootstrap”, 1 point for explaining the process of creating bootstrap
samples by drawing n points with replacement, 1 point for estimating the median
in each bootstrap sample, 1 point for summarizing the variability of the estimates,
plus 1 point for overall correctness. 2–3 points were also awarded for reasonable
altenative solutions instead of bootstrap.

3. [20 points] Consider a classification task with one real-valued feature (e.g., some medical
test result). Below are two histograms of the feature, X, showing n = 200 data point
from two classes Y = 0 (yellow) and Y = 1 (blue).

(a) Just by looking at the data distributions, how would you classify three test data
points with X = 250, X = 500, and X = 1000? What additional information
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about the two classes, not contained in the above histograms, would be useful?
X = 250, 500, 1000 would be classified as blue, yellow, tt blue respectively because
yellow points are concentrated around X = 450−−950, and blue points are spread
further in the tails. Additional information which is not directly available in the
class-specific histograms would be the relative frequencies (or probabilities) of the
classes themselves: how likely is blue/yellow a prior.

(b) Explain how you would apply Quadratic Discriminant Analysis (QDA) to this task.
Draw a diagram to explain the learned model. How would the resulting classifier
classify the three test data points in item (a)?
Fitting a QDA classifier would amount to i) estimating the class probabilities
p(Y = c) for c ∈ {blue, yellow}, and ii) estimating the one-dimensional feature
distributions p(x|Y = c) for each class by fitting a Gaussian distribution to the
training data (the histograms in the diagram). The classification decisions would be
obtained by comparing the probabilities p(Y = c)P (x|Y = c) for each class, where
x is the observed feature value, and picking the maximizing class c. The diagram
should show two Gaussian (normal) distributions that match the general shape of
the histogram. The classifications for the points X = 250, 500, 1000 are probably
the same as in the previous item but if the drawing looks otherwise sensible, other
classifications were also accepted. A few (but not many) points were awarded to
those who persistently presented bivariate Gaussians instead of realizing that the
distribution should be one-dimensional since there is only one feature variable.

(c) Compare the QDA classifier in this task (one-dimensional feature X) to the naive
Bayes classifier. Also, compare QDA and naive Bayes in the multidimensional case
where there are multiple features X1, . . . , Xp.
Naive Bayes assumes that the feature variables are conditionally independent of
each other given the class variable. In this case, as there is only one feature variable,
this assumption amounts to nothing at all, and NB = QDA. (Saying that they are
“similar” was not accepted as a correct answer.) In the multidimensional case, the
NB classifier is easier to train since it has fewer parameters, whereas QDA tends
to be better whenever there is plenty of data and/or the feature variables exhibit
strong (partial) correlations. Points were awarded on a case-by-case basis: roughly
3 points for stating that NB = QDA in 1D, 1–2 point for mentioning that NB means
conditional independence, and 2 points for the comparison in the multidimensional
case. (However, note the remark about rescaling above.)

4. [15 points]

(a) For what kind of tasks can we use the K-means algorithm? Explain carefully
what the inputs and outputs of the algorithm are, and give a very brief intuitive
explanation of how the results are to be interpreted.
K-means is used for clustering. Input is a pairwise distance matrix (or data and
a function to compute distances), and output is a partitioning of the data plus
cluster centroids. (One point was deducted if the centroids were not mentioned,
which was quite common.) Clusters are sets of point that tend to be more similar
to each other and to points in other clusters. Max 3 points.

(b) Describe the actual K-means algorithm (Lloyd’s algorithm). The description
should be brief and on a high level.
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See the course material for a description. Max 4 points. Grading on a case-by-base
basis.

(c) Define formally the objective (or cost) function that the K-means algorithm tries
to minimise. Comment on how the objective function changes in the two stages of
each iteration of Lloyd’s algorithm.
The cost function is the sum

K∑
j=1

∑
x∈Dj

‖x− µj‖22 =
n∑

i=1

∥∥xi − µj(i)
∥∥2
2
,

where µj is the cluster centroid of the jth cluster, and j(i) indicates the assigned
cluster for the ith data point. (There were several solutions suggesting that the
cost function is the sum of pairwise distances between each pair of points that
are assigned to the same cluster, but this is not correct.) Each stage of Lloyd’d
algorithm decreases the cost function or keeps it the same. Points: 2 points for
defining the cost function (either one of the above equivalent formulations was
sufficient), 2 more for knowing that the two stages of Lloyd’s algorithm never
increase the cost.

(d) Consider the following set of data points.
8.1 Overview 491

(a) Original points. (b) Two clusters.

(c) Four clusters. (d) Six clusters.

Figure 8.1. Different ways of clustering the same set of points.

in the sense of Chapter 4 is supervised classification; i.e., new, unlabeled
objects are assigned a class label using a model developed from objects with
known class labels. For this reason, cluster analysis is sometimes referred
to as unsupervised classification. When the term classification is used
without any qualification within data mining, it typically refers to supervised
classification.

Also, while the terms segmentation and partitioning are sometimes
used as synonyms for clustering, these terms are frequently used for approaches
outside the traditional bounds of cluster analysis. For example, the term
partitioning is often used in connection with techniques that divide graphs into
subgraphs and that are not strongly connected to clustering. Segmentation
often refers to the division of data into groups using simple techniques; e.g.,
an image can be split into segments based only on pixel intensity and color, or
people can be divided into groups based on their income. Nonetheless, some
work in graph partitioning and in image and market segmentation is related
to cluster analysis.

8.1.2 Different Types of Clusterings

An entire collection of clusters is commonly referred to as a clustering, and in
this section, we distinguish various types of clusterings: hierarchical (nested)
versus partitional (unnested), exclusive versus overlapping versus fuzzy, and
complete versus partial.

Hierarchical versus Partitional The most commonly discussed distinc-
tion among different types of clusterings is whether the set of clusters is nested

Let K = 3 and take the three right-most points as initial cluster means (exem-
plars/prototypes). Simulate the algorithm for a couple of iterations. Draw the
cluster assignments and the cluster means after each iteration.
The fisrt iteration groups the five top-most points to a cluster whose centroid is
initialized as the top-left point of the three right-most points, and the four bottom-
most points to a cluster whose centroid is initialized as the bottom-left point of the
three right-most points, and the single right-most point as its own cluster whose
centroid is the point itself. The second iteration moves the cluster centroids to the
center of the said cluster, and groups the four top-left points as a cluster, the three
bottom-left points as another, and the three right-most points as a third. Finally,
the centroids are shifted to the centers of these cluster, after which the algorithm
terminates. Max 4 points: 1 point for the iterative process, 1 point for assigning
points to clusters correctly (or almost correctly), 1 point for moving the centroids
(at least almost) correctly, 1 point for overall correctness (determined case by case).
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