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Definition and Goals of Distributed Systems 

 Collection of independent computers – appears to users 

as single coherent system 

 Goals: 

 Making resources accessible 

 Openness  

 Scalability 

 Security 

 Fitting the given concrete environment 

 Fulfilling system design requirements 

 Distribution transparency 

 Challenges with all of these (see Chapter 1) 
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Transparencies (RM-ODP standard, 1998) 

Transparency Description 

Access Hide differences in data representation and how a resource is accessed 

Location Hide where a resource is located (*) 

Migration  

Hide that a resource may move to another location (*) 

(the resource does not notice) 

Relocation 

Hide that a resource may be moved to another location (*) 

while in use (the others don’t notice) 

Replication Hide that a resource is replicated  

Transaction Hide that multiple competing users perform concurrent actions on the resource 

Failure Hide the failure and recovery of a resource 

Persistence Hide whether a (software) resource is in memory or on disk 

(*)  Note the various meanings of  ”location”: network address (several layers) ; geographical address  
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False assumptions everyone makes when 

developing their first distributed application: 

 The network is reliable 

 The network is secure 

 The network is homogeneous 

 The topology does not change 

 Latency is zero 

 Bandwith is infinite 

 Transport cost is zero 

 There is one administrator 

 There is inherent, shared knowledge 

 

 By Peter Deutsch 
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Remote Procedure Calls (RPC) 

Steps involved in doing remote computation through RPC 
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RPC Design Issues 

 Delivery guarantees: RPC/RMI failure semantics 

 Maybe (no retransmit) 

 At-least-once (retransmit + re-execute) 

 At-most-once (retransmit + duplicate filtering to not redo) 

 (Un-achievable: exactly-once) 

 Handling exceptions 

 Transparency (algorithmic vs. behavioral) 
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Persistence and Synchronicity in Communication 

Persistent communication of letters back in the days of the Pony Express. 
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Time and Clocks 

NOTE: Time is monotonous 

Real time (17:30:21) Universal time 

(- Synchronize clocks!) 

Interval length (3 ms) Computer clock 

Order of events (1.,2.) Logical clocks 

(Universal time) 

What we need? How to solve? 
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Synchronization of Clocks:  

Software-Based Solutions 

 Techniques:  

 time stamps of real-time clocks  

 message passing  

 round-trip time (local measurement) 

 Cristian’s algorithm – ask centralized clock 

 Berkeley algorithm – synchronized within a group 

 NTP: Network time protocol (Internet) 
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Example Problem: Totally-Ordered Multicasting (3) 

Guaranteed delivery order 

- new message => HBQ 

 

- when all predecessors have  

   arrived:  message  =>  DQ 

 

   How to detect this? 

 

- when at the head of DQ: 

   message => application   

   (application: receive …) 

Application 

hold-back queue 

delivery queue 

delivery 

Message passing system 
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Logical Clocks: Vector Timestamps 

Goal:  

timestamps should reflect causal ordering 

L(e) < L(e’) =>  “ e happened before e’ “ 

=> 

Vector clock 
each process Pi maintains a vector Vi : 

1. Vi[i]  is the number of events that have occurred at Pi 

             (the current local time at Pi ) 

2. if Vi[j] = k then Pi  knows about (the first) k events that have 

occurred at Pj   

         (the local time at Pj was k, as Pj sent the last message that  Pi  has 

received from it)  
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Causal Ordering of Multicasts (1) 
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Coordination and Agreement 

 Reserving resources (distributed mutual exclusion) : 

- Centralized, Ricart-Agrawala, Token ring 

 Elections (electing coordinator, initiator): Bully algorithm, Ring algorithm 

 Multicasting: a sensibly ordered reliable multicast would be nice (see ch. 5) 

 Distributed transactions: snapshots/checkpointing, two-phase commit 

Pi 

Pi 

Pi Pi 

Pi 

Pi 
X 
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Reasons for Data Replication 
 Dependability requirements 

 availability 
- at least some server somewhere 
- wireless connections => a local cache 

 reliability (correctness of data) 
- fault tolerance against data corruption 
- fault tolerance against faulty operations 

 Performance  
 response time, throughput 
 scalability 

- increasing workload  
- geographic expansion 

 mobile workstations => a local cache 
 Price to be paid: consistency maintenance 

 performance vs. required level of consistency            
   (need not care  updates immediately visible)  
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Consistency: Data-Centric Consistency Models (1) 

Consistency models at the level of read and write operations. Next: grouping operations. 

All processes see writes from each other in the order they 
were performed.  Writes from different processes may not always 
be seen in the same order by other processes. 

FIFO 

All processes see causally-related shared accesses in 
the same order. 

Causal 

All processes see all shared accesses in the same order.  
Accesses are not ordered in time 

Sequential 

All processes see all shared accesses in the same order.  
Accesses are furthermore ordered according  to a 
(nonunique) global timestamp 

Linearizability 

Absolute time ordering of all shared accesses matters. 
Strict 

Description Consistency 
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Summary of Consistency Models (2) 

Models built around grouping operations and synchronization. 

Shared data associated with a synchronization variable 

are made consistent when a critical section is entered. 

Entry 

All shared data are made consistent after the exit out of the 

critical section (and up-to-dateness checked upon entry) 

Release 

Shared data can be counted on to be consistent only after 

an explicit synchronization is done 

Weak 

Description Consistency 
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Client-Centric Consistency 

Monotonic reads, Monotonic Writes, Read your Writes, Writes Follow Reads 
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Replica Placement (1) 

    The logical organization of different kinds of copies of a data 

store into three concentric rings. 
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Update Propagation to Replicas 

 Update route: client writes to copy, who writes to {other 
copies} 

 Whose responsibility – “push” or “pull”? 

 Issues:  
 Consistency of copies 
 Cost: traffic, maintenance of state data 

 What information is propagated? 

 Notification of an update (invalidation protocols) 

 Transfer of data itself or diff (useful if high reads-to-writes ratio) 

 Propagate the update operation: e.g. order_flight(x,y) 

(active replication) 
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Epidemic Protocols 

 Example: Epidemic protocols (ch. 4.5) 

 A node with an update: infective 

 A node not yet updated: susceptible  

 A node not willing / able to spread the update: removed 

 Propagation protocol example: anti-entropy  

- Node P picks randomly another node Q, and… 

- Three information exchange alternatives:               

P pushes to Q or P pulls from Q or PQ push-pull 

- Push good early, pull when many infected, push-pull best 

 Variant of this: gossiping 
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Consistency Protocols 

 Consistency protocol: implementation of a consistency model 

 The most widely applied models 

 Sequential consistency 

 Weak consistency with synchronization variables 

 Atomic transactions (cf. ACID properties) 

 The main approaches 

 Primary-based protocols (remote write, local write) 

 Replicated-write protocols (active replication, quorum based) 

 (Cache-coherence protocols) 
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Fault Tolerance Basic Concepts 

Dependability includes 

 Availability – system can be used immediately 

 Reliability – runs continuously without failure 

 Safety – failures do not lead to disaster 

 Maintainability – recovery from failure is easy 

 

Note: security is a separate issue from these. 
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Basic concepts: Fault, error, failure 

 Fault: e.g. bad design/bug/physical limitation (causes error) 

 Error: system state is incorrect (may lead to failure) 

 Failure: cannot meet promises (e.g. full delivery of service) 

 

-- 

-- 

-- 

client 

server 

fault 

error 
failure 

Ruohomaa et al.: Distributed Systems 



Failure models: Different types of failures 

Type of failure Description 

Crash failure A server halts, but is working correctly until it halts 

Omission failure 

     Receive omission 

     Send omission 

A server fails to respond to incoming requests 

A server fails to receive incoming messages 

A server fails to send messages 

Timing failure A server's response lies outside the specified time interval 

Response failure 

     Value failure 

     State transition failure 

The server's response is incorrect 

The value of the response is wrong 

The server deviates from the correct flow of control 

Arbitrary failure 

(= Byzantine failure) 

A server may produce arbitrary responses at arbitrary times 

Crash:  fail-stop, fail-safe (detectable),  fail-silent  (seems to have crashed) 
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Failure models: Timing failures 

Class of Failure Affects Description 

Clock Process Process’s local clock exceeds the bounds on its 
rate of drift from real time. 

Performance Process Process exceeds the bounds on the interval 
between two steps. 

Performance Channel A message’s transmission takes longer than the 
stated bound. 
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Summary of Fault Tolerance Methods  

 Failure detection, failure masking (quiet recovery) 

 Forward and backward recovery 

 Distributed snapshots, coordinated checkpointing, 

message logging and “replaying events” 

 Process resilience 

 Voting, Byzantine generals 

 Primary with hot and cold standby 

 Reliable communication, e.g. reliable multicast 

 Handling group changes (how to find out?) 

 Virtual synchrony 
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This Course In a Nutshell 

 What is distribution and a distributed system? 

 Reasons? Goals? Challenges? 

 Distributed decision-making and communication: 

 Working together: clocks, mutual exclusion, 

elections, transactions 

 Replication: Why? How to handle updates and 

consistency? What kind of consistency needed? 

 Fault tolerance: What to do when things go 

wrong? How to prepare for it? 

 

 Don’t forget real-world applicability! 

 Where to simplify? What to assume? 
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