
Last Chapter:

Course Rehash

Fall 2012

Lecturer: Sini Ruohomaa

(Slides copied/summarized from other course

material.)

Definition and Goals of Distributed Systems

 Collection of independent computers – appears to users

as single coherent system

 Goals:

 Making resources accessible

 Openness

 Scalability

 Security

 Fitting the given concrete environment

 Fulfilling system design requirements

 Distribution transparency

 Challenges with all of these (see Chapter 1)

Ruohomaa et al.: Distributed Systems

Transparencies (RM-ODP standard, 1998)

Transparency Description

Access Hide differences in data representation and how a resource is accessed

Location Hide where a resource is located (*)

Migration

Hide that a resource may move to another location (*)

(the resource does not notice)

Relocation

Hide that a resource may be moved to another location (*)

while in use (the others don’t notice)

Replication Hide that a resource is replicated

Transaction Hide that multiple competing users perform concurrent actions on the resource

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or on disk

(*) Note the various meanings of ”location”: network address (several layers) ; geographical address

Ruohomaa et al.: Distributed Systems

False assumptions everyone makes when

developing their first distributed application:

 The network is reliable

 The network is secure

 The network is homogeneous

 The topology does not change

 Latency is zero

 Bandwith is infinite

 Transport cost is zero

 There is one administrator

 There is inherent, shared knowledge

 By Peter Deutsch

Ruohomaa et al.: Distributed Systems

Remote Procedure Calls (RPC)

Steps involved in doing remote computation through RPC

Ruohomaa et al.: Distributed Systems

RPC Design Issues

 Delivery guarantees: RPC/RMI failure semantics

 Maybe (no retransmit)

 At-least-once (retransmit + re-execute)

 At-most-once (retransmit + duplicate filtering to not redo)

 (Un-achievable: exactly-once)

 Handling exceptions

 Transparency (algorithmic vs. behavioral)

Ruohomaa et al.: Distributed Systems

Persistence and Synchronicity in Communication

Persistent communication of letters back in the days of the Pony Express.

Ruohomaa et al.: Distributed Systems

Time and Clocks

NOTE: Time is monotonous

Real time (17:30:21) Universal time

(- Synchronize clocks!)

Interval length (3 ms) Computer clock

Order of events (1.,2.) Logical clocks

(Universal time)

What we need? How to solve?

Ruohomaa et al.: Distributed Systems

Synchronization of Clocks:

Software-Based Solutions

 Techniques:

 time stamps of real-time clocks

 message passing

 round-trip time (local measurement)

 Cristian’s algorithm – ask centralized clock

 Berkeley algorithm – synchronized within a group

 NTP: Network time protocol (Internet)

Ruohomaa et al.: Distributed Systems

Example Problem: Totally-Ordered Multicasting (3)

Guaranteed delivery order

- new message => HBQ

- when all predecessors have

 arrived: message => DQ

 How to detect this?

- when at the head of DQ:

 message => application

 (application: receive …)

Application

hold-back queue

delivery queue

delivery

Message passing system

Ruohomaa et al.: Distributed Systems

Logical Clocks: Vector Timestamps

Goal:

timestamps should reflect causal ordering

L(e) < L(e’) => “ e happened before e’ “

=>

Vector clock
each process Pi maintains a vector Vi :

1. Vi[i] is the number of events that have occurred at Pi

 (the current local time at Pi)

2. if Vi[j] = k then Pi knows about (the first) k events that have

occurred at Pj

 (the local time at Pj was k, as Pj sent the last message that Pi has

received from it)

Ruohomaa et al.: Distributed Systems

Causal Ordering of Multicasts (1)

Event:
message sent

m1

m2

m3

0

0

0

0

0

0

1

0

0

1

0

0

1

0

0

1

1

0

1

0

1

1

1

0

1

1

1

1

1

1

1

1

1

Timestamp [i,j,k] :

i messages sent from P

j messages sent form Q

k messages sent from R

0

0

0

2

1

1

2

1

1

2

2

1

m4

m5

P

Q

R

R: m1 [100] m4 [211]

 m2 [110] m5 [221]

 m3 [101]

m5 [221] vs. 111 m4 [211] vs. 111

Ruohomaa et al.: Distributed Systems

Coordination and Agreement

 Reserving resources (distributed mutual exclusion) :

- Centralized, Ricart-Agrawala, Token ring

 Elections (electing coordinator, initiator): Bully algorithm, Ring algorithm

 Multicasting: a sensibly ordered reliable multicast would be nice (see ch. 5)

 Distributed transactions: snapshots/checkpointing, two-phase commit

Pi

Pi

Pi Pi

Pi

Pi
X

Ruohomaa et al.: Distributed Systems

Reasons for Data Replication
 Dependability requirements

 availability
- at least some server somewhere
- wireless connections => a local cache

 reliability (correctness of data)
- fault tolerance against data corruption
- fault tolerance against faulty operations

 Performance
 response time, throughput
 scalability

- increasing workload
- geographic expansion

 mobile workstations => a local cache
 Price to be paid: consistency maintenance

 performance vs. required level of consistency
 (need not care  updates immediately visible)

Ruohomaa et al.: Distributed Systems

Consistency: Data-Centric Consistency Models (1)

Consistency models at the level of read and write operations. Next: grouping operations.

All processes see writes from each other in the order they
were performed. Writes from different processes may not always
be seen in the same order by other processes.

FIFO

All processes see causally-related shared accesses in
the same order.

Causal

All processes see all shared accesses in the same order.
Accesses are not ordered in time

Sequential

All processes see all shared accesses in the same order.
Accesses are furthermore ordered according to a
(nonunique) global timestamp

Linearizability

Absolute time ordering of all shared accesses matters.
Strict

Description Consistency

Ruohomaa et al.: Distributed Systems

Summary of Consistency Models (2)

Models built around grouping operations and synchronization.

Shared data associated with a synchronization variable

are made consistent when a critical section is entered.

Entry

All shared data are made consistent after the exit out of the

critical section (and up-to-dateness checked upon entry)

Release

Shared data can be counted on to be consistent only after

an explicit synchronization is done

Weak

Description Consistency

Ruohomaa et al.: Distributed Systems

Client-Centric Consistency

Monotonic reads, Monotonic Writes, Read your Writes, Writes Follow Reads

Ruohomaa et al.: Distributed Systems

Replica Placement (1)

 The logical organization of different kinds of copies of a data

store into three concentric rings.

Ruohomaa et al.: Distributed Systems

Update Propagation to Replicas

 Update route: client writes to copy, who writes to {other
copies}

 Whose responsibility – “push” or “pull”?

 Issues:
 Consistency of copies
 Cost: traffic, maintenance of state data

 What information is propagated?

 Notification of an update (invalidation protocols)

 Transfer of data itself or diff (useful if high reads-to-writes ratio)

 Propagate the update operation: e.g. order_flight(x,y)

(active replication)

Ruohomaa et al.: Distributed Systems

Epidemic Protocols

 Example: Epidemic protocols (ch. 4.5)

 A node with an update: infective

 A node not yet updated: susceptible

 A node not willing / able to spread the update: removed

 Propagation protocol example: anti-entropy

- Node P picks randomly another node Q, and…

- Three information exchange alternatives:

P pushes to Q or P pulls from Q or PQ push-pull

- Push good early, pull when many infected, push-pull best

 Variant of this: gossiping

Ruohomaa et al.: Distributed Systems

Consistency Protocols

 Consistency protocol: implementation of a consistency model

 The most widely applied models

 Sequential consistency

 Weak consistency with synchronization variables

 Atomic transactions (cf. ACID properties)

 The main approaches

 Primary-based protocols (remote write, local write)

 Replicated-write protocols (active replication, quorum based)

 (Cache-coherence protocols)

Ruohomaa et al.: Distributed Systems

Fault Tolerance Basic Concepts

Dependability includes

 Availability – system can be used immediately

 Reliability – runs continuously without failure

 Safety – failures do not lead to disaster

 Maintainability – recovery from failure is easy

Note: security is a separate issue from these.

Ruohomaa et al.: Distributed Systems

Basic concepts: Fault, error, failure

 Fault: e.g. bad design/bug/physical limitation (causes error)

 Error: system state is incorrect (may lead to failure)

 Failure: cannot meet promises (e.g. full delivery of service)

--

--

--

client

server

fault

error
failure

Ruohomaa et al.: Distributed Systems

Failure models: Different types of failures

Type of failure Description

Crash failure A server halts, but is working correctly until it halts

Omission failure

 Receive omission

 Send omission

A server fails to respond to incoming requests

A server fails to receive incoming messages

A server fails to send messages

Timing failure A server's response lies outside the specified time interval

Response failure

 Value failure

 State transition failure

The server's response is incorrect

The value of the response is wrong

The server deviates from the correct flow of control

Arbitrary failure

(= Byzantine failure)

A server may produce arbitrary responses at arbitrary times

Crash: fail-stop, fail-safe (detectable), fail-silent (seems to have crashed)

Ruohomaa et al.: Distributed Systems

Failure models: Timing failures

Class of Failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its
rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the
stated bound.

Ruohomaa et al.: Distributed Systems

Summary of Fault Tolerance Methods

 Failure detection, failure masking (quiet recovery)

 Forward and backward recovery

 Distributed snapshots, coordinated checkpointing,

message logging and “replaying events”

 Process resilience

 Voting, Byzantine generals

 Primary with hot and cold standby

 Reliable communication, e.g. reliable multicast

 Handling group changes (how to find out?)

 Virtual synchrony

Ruohomaa et al.: Distributed Systems

This Course In a Nutshell

 What is distribution and a distributed system?

 Reasons? Goals? Challenges?

 Distributed decision-making and communication:

 Working together: clocks, mutual exclusion,

elections, transactions

 Replication: Why? How to handle updates and

consistency? What kind of consistency needed?

 Fault tolerance: What to do when things go

wrong? How to prepare for it?

 Don’t forget real-world applicability!

 Where to simplify? What to assume?

Ruohomaa et al.: Distributed Systems

