
Chapter 7:

Distributed Systems:

Warehouse-Scale Computing

Fall 2012

Sini Ruohomaa

Slides joint work with Jussi Kangasharju et al.

2

Chapter Outline

 Warehouse-scale computing overview

 Workloads and software infrastructure

 Failures and repairs

 Note: Term “Warehouse-scale computing” originates from

Google  Examples typically of Google’s services

 Trend towards WSC is more general

 This chapter based on book Barroso, Hölzle: “The

Datacenter as a Computer” (see course website)

Ruohomaa: Distributed Systems

3

What is Warehouse-Scale Computing (WSC)?

 Essentially: Modern Internet services

 Massive scale of…

 Software infrastructure

 Data repositories

 Hardware platform

 Program is a service

 Consists of tens of interacting programs

 Different teams, organizations, etc.

Ruohomaa: Distributed Systems

4

WSC vs. Data Centers

 Both look very similar to the outside

 “Lots of computers in one building”

 Key difference:

 Data centers host services for multiple providers

 Little commonality between hardware and software

 Third-party software solutions

 WSC run by a single organization

 Homogeneous hardware and software and management

 In-house middleware

Ruohomaa: Distributed Systems

5

Cost Efficiency

 Cost efficiency extremely important

 Growth driven by 3 main factors:

 Popularity increases load

 Size of problem increases (e.g., indexing of Web)

 Highly competitive market

 Need bigger and bigger systems  Cost efficiency!

Ruohomaa: Distributed Systems

6

Future of Distributed Computing?

 WSC is not just a collection of servers

 New and rapidly evolving workloads

 Too big to simulate  New design techniques

 Fault behavior

 Energy efficiency

 New programming paradigms

 Design spectrum:

 One computer  Multiple computers  Data center

 WSC = Multiple data centers operating together

 Modern CDN: “Server” = WSC data center

Ruohomaa: Distributed Systems

7

Architectural Overview

 Storage

 Networking

 Storage hierarchy

 Latency, bandwidth, capacity

 Power usage

 Handling failures

Ruohomaa: Distributed Systems

8

General architecture

 Servers, e.g., 1-U servers

 Racks

 Interconnected racks

Ruohomaa: Distributed Systems

9

Storage

 Tradeoff: NAS vs. local disks as distributed filesystem?

 Network Attached Storage (NAS):

 Easier to deploy, responsibility lies with vendor

 Collection of disks:

 Must implement own filesystem abstraction (e.g., GFS)

 Lower hardware costs (desktop vs. enterprise disks)

 Reliability issues and replication?

 More network traffic due to writes (GFS)

Ruohomaa: Distributed Systems

10

Network

 48-port 1 Gbps Ethernet switches are “cheap”

 Good bandwidth within one rack

 Problem: Cluster-level bandwidth?

 Bigger and faster switches prohibitively expensive?

 Hierarchical network organization:

 Good bandwidth within rack

 Less bandwidth within cluster

 Programmer must keep this in mind! (transparency?)

Ruohomaa: Distributed Systems

11

Storage Hierarchy

 Server:

 N processors, X cores/CPU, local cache, DRAM, disks

 Fast, but limited capacity

 Rack:

 Individual servers, combined view

 A bit slower, but more capacity

 Cluster:

 View over all racks

 Slower, but more capacity

 Tradeoff: Bandwidth, latency, capacity

Ruohomaa: Distributed Systems

12

Power Usage

 No single culprit on server level (30% of total power use)

 CPU 33%

 DRAM 30%

 Disk 10%

 Network 5%

 Other 22%

 Further optimization targets on cluster/WSC level

 Cooling of data center (50%-)

 UPS to handle power outages (7-12%, less significant)

Ruohomaa: Distributed Systems

13

Handling Failures

 At this scale, things will break often

 Application must handle them

 More details later

Ruohomaa: Distributed Systems

14

Workloads and Software Infrastructure

 Different levels of abstraction

 Platform-level software

 Firmware, kernel, individual OS

 Cluster-level infrastructure software

 Distributed software for managing resources and services

 “OS for a datacenter” / middleware

 Distributed FS, RPC, MapReduce, …

 Application-level software

 Actual application, e.g., Gmail, Google Maps

Ruohomaa: Distributed Systems

15

Datacenter vs. Desktop

 Differences in developing software

 Datacenter:

 Parallelism (both data and requests)

 Workload changes: rapid development cycles

 Homogeneous platform

 Hiding (masking) failures

Ruohomaa: Distributed Systems

16

Basic Techniques

Technique Reliability Availability

Replication Yes Yes

Partitioning Yes Yes

Load balancing Yes

Timers Yes

Integrity checks Yes

App.-specific

Compression

Yes

Eventual consistency Yes Yes

Ruohomaa: Distributed Systems

17

Cluster-Level Infrastructure Software

 Resource management

 Mapping of tasks to resources

 Hardware abstraction and basic services

 Distributed storage, message passing, …

 Deployment and maintenance

 Software distribution, configuration, …

 Programming frameworks

 Hide some of the above from programmer

 Examples: MapReduce, BigTable, Dynamo

Ruohomaa: Distributed Systems

18

MapReduce

 Google’s framework for processing large data sets on

clusters

 Name from map and reduce (functional programming)

 Not really much in common with real “map” and “reduce”

 One master, multiple (levels) of slaves

 Map:

 Master partitions input, distributed to slaves

 Slaves may do the same

 Reduce:

 Slave sends its result to its master

 Eventually root-master will get result

Ruohomaa: Distributed Systems

19

Application-Level Software

 What is the application?

 First was search, then many others have appeared

 Datacenter must support general-purpose computing

 Too expensive to tailor datacenters for applications

 Changing workloads  Faster to adapt software

 Two application examples:

 The standard keyword search

 Find similar scientific articles (see book for description)

Ruohomaa: Distributed Systems

20

Search

 Inverted index

 Set of documents matching a keyword

 Size of index similar to original data

 Consider query “new york restaurant”

 Must search each of three terms

 Find documents matching every term

 Sorting (PageRank + other criteria)  Result

 Latency must be low (user waiting)

 Throughput must be high (many users)

 Read-only index  Easily parallelizable

Ruohomaa: Distributed Systems

21

Monitoring Infrastructure

 Service-level dashboards

 Real-time monitoring of few key indicators (latency, thru’put)

 Can extend to some more indicators

 Performance debugging tools

 Dashboards only show the problem, we want the “why”

 No need for real-time (compare CPU profilers)

 Blackbox monitoring vs. instrumentation approach

 Platform-level monitoring

 Everything above is needed, but not sufficient

 Need a higher-level view (see book for details)

Ruohomaa: Distributed Systems

22

Buy vs. Build?

 Buy:

 Typical solution

 Build:

 Google’s (and others’) approach

 Original reason: No third-party solutions available

 More software development and maintenance work

 Improved flexibility

 In-house software can take “shortcuts”

- Not implement every feature

Ruohomaa: Distributed Systems

23

Failures

 Traditional software not good with failures

 Result: Make hardware more reliable

 WSC is different because of scale

 Imagine 30 year MTBF = 10,000 hours MTBF

 WSC with 10,000 servers = 1 failure per day

 Software must handle failures

 Application or middleware

 Middleware makes applications simpler

Ruohomaa: Distributed Systems

24

Positive Side Effect

 Failures are a fact of life

 Can buy cheaper hardware

 Upgrades are simpler

 Upgrade, kill, reboot

 Same for hardware upgrades

 “Failure is an option” 

 Can allow servers to fail, makes life simpler

Ruohomaa: Distributed Systems

25

Caveats

 Cannot ignore reliability completely

 Hardware must be able to detect errors and failures

 Not necessary to recover too, but can pay off to include it

 Not detecting hardware errors is risky

 See book for nice example

 Every piece of software would need to handle everything

Ruohomaa: Distributed Systems

26

Categorizing Faults

 Corrupted

 Data lost or corrupted

 Can data be regenerated or not?

 Unreachable

 Service unreachable by users

 User network reliability?

 Degraded

 Service available, but degraded (e.g. slow)

 What can be still done?

 Masked

 Fault occurs, but is completely masked from user

Ruohomaa: Distributed Systems

27

Sources of Faults

 Hardware not the common culprit (~10%)

 Software and configurations are bigger problems

 Exact numbers depend on study

 Hardware problem = affects single computer

 Software/configuration problem = many computers

simultaneously

Ruohomaa: Distributed Systems

28

Causes of Crashes

 Anecdotal evidence points to software

 Hardware: Memory or disk

 DRAM errors happen, but can be helped with ECC

 Some errors still persist

 Real crash rate higher than studies predict

 Again points to software

 Predicting problems in WSC not useful

 Need to handle failures anyway

 Could be useful in other systems

Ruohomaa: Distributed Systems

29

Repairs

 When something breaks, it must be repaired

 Two important characteristics of WSC

 No need to repair immediately!

 Optimize time of repair technician

 Collect lot of health data from large number of servers

 Use machine learning to optimize actions

Ruohomaa: Distributed Systems

30

Summary: Key Challenges

 Rapidly changing workloads: new radical services

 Building balanced systems from imbalanced components

 Energy use

 Amdahl’s Law: performance gains come from more cores

Ruohomaa: Distributed Systems

31

Chapter Summary

 Warehouse-scale computing overview

 Workloads and software infrastructure

 Failures and repairs

Ruohomaa: Distributed Systems

