HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Chapter 7:
Distributed Systems:
Warehouse-Scale Computing

Fall 2012
Sini Ruohomaa
Slides joint work with Jussi Kangasharju et al.




Warehouse-scale computing overview
Workloads and software infrastructure
Failures and repairs

Note: Term “Warehouse-scale computing” originates from
Google - Examples typically of Google’s services

Trend towards WSC is more general

This chapter based on book Barroso, Holzle: “The
Datacenter as a Computer” (see course website)

Ruohomaa: Distributed Systems 2



What is Warehouse-Scale Computing (WSC)?

Essentially: Modern Internet services

Massive scale of...
Software infrastructure
Data repositories
Hardware platform

Program is a service

Consists of tens of interacting programs
Different teams, organizations, etc.

Ruohomaa: Distributed Systems 3



WSC vs. Data Centers

Both look very similar to the outside
“Lots of computers in one building”

Key difference:

Data centers host services for multiple providers
Little commonality between hardware and software
Third-party software solutions

WSC run by a single organization

Homogeneous hardware and software and management
In-house middleware

Ruohomaa: Distributed Systems



Cost Efficiency

Cost efficiency extremely important
Growth driven by 3 main factors:
Popularity increases load
Size of problem increases (e.g., indexing of Web)

Highly competitive market

Need bigger and bigger systems > Cost efficiency!

Ruohomaa: Distributed Systems



Future of Distributed Computing?

WSC is not just a collection of servers
New and rapidly evolving workloads
Too big to simulate - New design techniques
Fault behavior
Energy efficiency
New programming paradigms

Design spectrum:
One computer - Multiple computers - Data center
WSC = Multiple data centers operating together
Modern CDN: “Server” = WSC data center

Ruohomaa: Distributed Systems



Architectural Overview

Storage

Networking

Storage hierarchy

Latency, bandwidth, capacity
Power usage

Handling failures

Ruohomaa: Distributed Systems



General architecture

Servers, e.g., 1-U servers

Racks

Interconnected racks

Ruohomaa: Distributed Systems



Storage
Tradeoff: NAS vs. local disks as distributed filesystem?

Network Attached Storage (NAS):
Easier to deploy, responsibility lies with vendor

Collection of disks:
Must implement own filesystem abstraction (e.g., GFS)
Lower hardware costs (desktop vs. enterprise disks)
Reliability issues and replication?
More network traffic due to writes (GFS)

Ruohomaa: Distributed Systems



Network

48-port 1 Gbps Ethernet switches are “cheap”
Good bandwidth within one rack

Problem: Cluster-level bandwidth?

Bigger and faster switches prohibitively expensive?

Hierarchical network organization:
Good bandwidth within rack
Less bandwidth within cluster

Programmer must keep this in mind! (transparency?)

Ruohomaa: Distributed Systems

10



Storage Hierarchy

Server:
N processors, X cores/CPU, local cache, DRAM, disks
Fast, but limited capacity
Rack:
Individual servers, combined view
A bit slower, but more capacity
Cluster:
View over all racks

Slower, but more capacity

Tradeoff: Bandwidth, latency, capacity

Ruohomaa: Distributed Systems

11



Power Usage

No single culprit on server level (30% of total power use)
CPU 33%

DRAM 30%
Disk 10%
Network 5%
Other 22%

Further optimization targets on cluster/WSC level
Cooling of data center (50%-)
UPS to handle power outages (7-12%, less significant)

Ruohomaa: Distributed Systems 12



Handling Failures

At this scale, things will break often
Application must handle them

More details later

Ruohomaa: Distributed Systems

13



Workloads and Software Infrastructure

Different levels of abstraction

Platform-level software

Firmware, kernel, individual OS

Cluster-level infrastructure software
Distributed software for managing resources and services
“OS for a datacenter” / middleware
Distributed FS, RPC, MapReduce, ...

Application-level software
Actual application, e.g., Gmail, Google Maps

Ruohomaa: Distributed Systems 14



Datacenter vs. Desktop

Differences in developing software

Datacenter:
Parallelism (both data and requests)
Workload changes: rapid development cycles
Homogeneous platform
Hiding (masking) failures

Ruohomaa: Distributed Systems

15



Basic Techniques

Reliability Availability

Replication Yes
Partitioning Yes
Load balancing Yes
Timers

Integrity checks
App.-specific Yes

Compression
Eventual consistency Yes

Ruohomaa: Distributed Systems

Yes
Yes

Yes
Yes

Yes

16



Cluster-Level Infrastructure Software

Resource management
Mapping of tasks to resources
Hardware abstraction and basic services
Distributed storage, message passing, ...
Deployment and maintenance
Software distribution, configuration, ...
Programming frameworks
Hide some of the above from programmer
Examples: MapReduce, BigTable, Dynamo

Ruohomaa: Distributed Systems

17



MapReduce

Google’s framework for processing large data sets on
clusters
Name from map and reduce (functional programming)
Not really much in common with real “map” and “reduce”
One master, multiple (levels) of slaves
Map:
Master partitions input, distributed to slaves
Slaves may do the same
Reduce:
Slave sends its result to its master
Eventually root-master will get result

Ruohomaa: Distributed Systems 18



Application-Level Software

What is the application?
First was search, then many others have appeared

Datacenter must support general-purpose computing
Too expensive to tailor datacenters for applications
Changing workloads - Faster to adapt software

Two application examples:

The standard keyword search
Find similar scientific articles (see book for description)

Ruohomaa: Distributed Systems 19



Search

Inverted index

Set of documents matching a keyword
Size of index similar to original data
Consider query “new york restaurant”

Must search each of three terms

Find documents matching every term

Sorting (PageRank + other criteria) > Result
Latency must be low (user waiting)
Throughput must be high (many users)
Read-only index - Easily parallelizable

Ruohomaa: Distributed Systems

20



Monitoring Infrastructure

Service-level dashboards
Real-time monitoring of few key indicators (latency, thru’put)
Can extend to some more indicators
Performance debugging tools
Dashboards only show the problem, we want the “why”
No need for real-time (compare CPU profilers)
Blackbox monitoring vs. instrumentation approach
Platform-level monitoring
Everything above is needed, but not sufficient
Need a higher-level view (see book for details)

Ruohomaa: Distributed Systems 21



Buy vs. Build?

Buy:
Typical solution

Build:
Google’s (and others’) approach
Original reason: No third-party solutions available
More software development and maintenance work
Improved flexibility

In-house software can take “shortcuts”

Not implement every feature

Ruohomaa: Distributed Systems

22



v Failures

Traditional software not good with failures
Result: Make hardware more reliable

WSC is different because of scale
Imagine 30 year MTBF = 10,000 hours MTBF
WSC with 10,000 servers = 1 failure per day

Software must handle failures

Application or middleware
Middleware makes applications simpler

Ruohomaa: Distributed Systems 23



Positive Side Effect

Failures are a fact of life

Can buy cheaper hardware

Upgrades are simpler
Upgrade, kill, reboot

Same for hardware upgrades

“Failure is an option” ©
Can allow servers to fail, makes life simpler

Ruohomaa: Distributed Systems

24



Caveats
Cannot ignore reliability completely

Hardware must be able to detect errors and failures
Not necessary to recover too, but can pay off to include it

Not detecting hardware errors is risky

See book for nice example
Every piece of software would need to handle everything

Ruohomaa: Distributed Systems 25



Categorizing Faults

Corrupted
Data lost or corrupted
Can data be regenerated or not?
Unreachable
Service unreachable by users
User network reliability?
Degraded
Service available, but degraded (e.g. slow)
What can be still done?
Masked
Fault occurs, but is completely masked from user

Ruohomaa: Distributed Systems

26



Sources of Faults

Hardware not the common culprit (~10%)

Software and configurations are bigger problems

Exact numbers depend on study
Hardware problem = affects single computer

Software/configuration problem = many computers
simultaneously

Ruohomaa: Distributed Systems 27



Causes of Crashes

Anecdotal evidence points to software
Hardware: Memory or disk

DRAM errors happen, but can be helped with ECC
Some errors still persist

Real crash rate higher than studies predict
Again points to software

Predicting problems in WSC not useful
Need to handle failures anyway
Could be useful in other systems

Ruohomaa: Distributed Systems

28



When something breaks, it must be repaired

Two important characteristics of WSC

No need to repair immediately!
Optimize time of repair technician

Collect lot of health data from large number of servers
Use machine learning to optimize actions

Ruohomaa: Distributed Systems 29



Summary: Key Challenges

Rapidly changing workloads: new radical services
Building balanced systems from imbalanced components
Energy use

Amdanhl’'s Law: performance gains come from more cores

Ruohomaa: Distributed Systems 30



Chapter Summary

Warehouse-scale computing overview
Workloads and software infrastructure

Failures and repairs

Ruohomaa: Distributed Systems

31



