HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Chapter 2:
Distributed Systems:
Interprocess communication

Fall 2012

Sini Ruohomaa
Slides joint work with Jussi Kangasharju et al.

Chapter Outline

Overview of interprocess communication
Remote invocations (RPC etc.)
Persistence and synchronicity

Ruohomaa et al.: Distributed Systems

‘ Middleware Protocols

Application

Middleware

Transport

Network

Data link

Physical

Network

An adapted reference model for networked communication.

Ruohomaa et al.: Distributed Systems

‘*‘ Remote Procedure Calls

Basic idea:

“passive” routines

Available for remote clients

Executed by a local worker process, invoked by local infrastructure
See examples in book

Ruohomaa et al.: Distributed Systems 4

Achieve access transparent procedure call
Cannot fully imitate local calls:
Naming, failures, performance
Global variables, context dependent variables, pointers
Call-by-reference vs. call-by-value
Call semantics
Maybe, at-least-once, at-most-once
Exception delivery
Can be enhanced with other properties
Asynchronous RPC
Multicast, broadcast
Location transparency, migration transparency, ...
Concurrent processing

Ruohomaa et al.: Distributed Systems

‘\ RPC: a Schematic View

System A

XY Z

Thread P

Y=FNCT(X,Y)*

System B

RPC
package

FNCT(a,b)
c:={comp}

return c.

a:=X; b:=Y;

A

y

» RPC

package

Ruohomaa et al.: Distributed Systems

Implementation of RPC

RPC components:
RPC Service (two stubs)
interpretation of the service interface
packing of parameters for transportation
Transportation service: node to node
responsible for message passing
part of the operating system
Name service: look up, binding
name of procedure, interface definition

Ruohomaa et al.: Distributed Systems

o Passing Value Parameters

Client machine Server machine

Client process | Server process
1. Client call to .
procedure Implementation 6. Stub makes
of add local call to "add"
_ Server stub _
L k=addi) — Client stub L k=addi
. n 1] ‘/{ \ AT n
proc: "add proc: "add
int: val() 2. Stub builds int__val() S. Stub unpacks
int: val() message int.__val()) message
A
. proc: "add" 4. Server OS
Client OS it val(p) Server OS hands message
_ int: _ val() . to server stub

3. Message is sent
across the network

Steps involved in doing remote computation through RPC

Ruohomaa et al.: Distributed Systems

Writing a Client and a Server

Uuidgen

Interface
definition file

v

IDL compiler

Client code Client stub Header Server stub Server code
i #include #include
[_—l—)c compier ?
Client Client stub Server stub Server
object file object file object file object file
J . \ \ 4
. Runtime Runtime T
Linker library library Llnuer
h 4 h 4

Client Server
binary binary

The steps in writing a client and a server in DCE RPC.

Ruohomaa et al.: Distributed Systems

Binding a Client to a Server

3. Look up server

Client machine

Directory machine

Directory
sever g _ :
2. Register service

Server machine

Client

5. Do RPC
Il A

4. Ask for endpoint

"{ Server

DCE
daemon

"y

1. Register endpoint

.

/

Example: Client-to-server binding in DCE.

Ruohomaa et al.: Distributed Systems

Endpoint
table

10

Implementation of RPC

Server: who will execute the procedure?
One server process
infinite loop, waiting in “receive’
call arrives : the process starts to execute
one call at a time, no mutual exclusion problems
A process is created to execute the procedure
parallelism possible
overhead
mutual exclusion problems to be solved
One process, a set of thread skeletons:
one thread allocated for each call

Ruohomaa et al.: Distributed Systems

11

Design Issues

Language independent interface definition
Exception handling
Delivery guarantees

RPC / RMI semantics

maybe

at-least-once

at-most-once

(un-achievable: exactly-once)
Transparency (algorithmic vs. behavioral)

Ruohomaa et al.: Distributed Systems

12

RPC: Types of failures

Client unable to locate server
Request message lost
retransmit a fixed number of times
Server crashes after receiving a request or reply message lost
(cannot be told apart!)
Client resubmits request, server chooses:
Re-execute procedure: service should be idempotent
Filter duplicates: server should hold on to results until
acknowledged
Client crashes after sending a request
Orphan detection: reincarnations, expirations

Reporting failures breaks transparency

Ruohomaa et al.: Distributed Systems 13

Fault tolerance measures

Retransmit | Duplicate | Re-execute/ | Invocation
request | filtering retransmit | semantics
no N/A N/A maybe
yes no re-execute | at-least-
once
yes yes retransmit at-most-
reply once

Ruohomaa et al.: Distributed Systems

14

Reliable Client-Server Communication

Point-to-Point Communication (“reliable”)
masked: omission, value
not masked: crash, (timing)
Recall the RPC failure classes:
the client unable to locate the server
a message is lost (request / reply)
the server crashes (before / during / after service)

the client crashes

Ruohomaa et al.: Distributed Systems

15

REQ

Server Crashes

Server

REP

Receive
Execute
Reply

(a)

A server in client-server communication
Normal case
Crash after execution
Crash before execution

REQ Server
» Receive
Execute
No REP

Ruohomaa et al.: Distributed Systems

Crash

(b)

REQ Server
» Receive
No REP

(c)

= E.g.: Printer server crashes (Fig. 8-8)

Client Printer Server (“print queue”)

Strategy: Message client, then Print Strategy: Print, then Message
Client’s request reissue strategy MPC MC(P) C(MP) PMC PC(M) C(PM)
Always (at-least-once semantics) DUP OK OK DUP DUP OK
Never (maybe Semantics) OK ZERO ZERO OK OK ZERO
Only when not ACKed (depends) OK ZERO OK OK DUP OK
Only when ACKed (madness!) DUP OK ZERO DUP OK ZERO

Different combinations of client and server strategies in the presence of
server crashes (client hears of crash, decides: reissue request / not?)
M: send the completion message OK = Text printed once
P: tell printer to print text DUP = Text printed twice
C. crash ZERO = Text not printed
ACK: Recelpt of the completion message

Ruohomaa et al.: Distributed Systems 17

Client Crashes: No one there to receive areply

Orphan: an active computation looking for a non-existing parent

Solutions
extermination: the client stub records all calls,
after reboot any orphans on record are explicitly killed
reincarnation: time is divided into epochs, client reboot =>
broadcast “new epoch” => servers kill the client’s old requests
gentle incarnation: “new epoch” => ook for parents, kill real orphans
expiration: a “time-to-live” for each RPC (+ possibility to request for
a further time slice)
New problems: grandorphans, reserved locks, entries in remote
queues,

Ruohomaa et al.: Distributed Systems 18

o Persistence and Synchronicity in Communication

Messaging interface

Sending host

Communication server

Communication server

Receiving host

Buffer independent

hosts

of communicating Routing
program

A

To other (remote)
communication

1] ——

Application

—L

server \

L Routing
Application program
A& $ l i/
0S5 0S
N A
Local buffer Local network

YJ!—«NV\
Internetwork
— Incoming message

-v
T \os

any

1,

Local buffer

General organization of a communication system in which hosts are connected through a network

Ruohomaa et al.: Distributed Systems

19

= Persistent vs. Transient Communication

Persistent communication
A submitted message is stored in the system until delivered
to the receiver
(the receiver may start later, the sender may stop earlier)
Transient communication
A message is stored only as long as the sending and
receiving applications are executing
(the sender and the receiver must be executing in parallel)

Ruohomaa et al.: Distributed Systems 20

Pony and rider

Post
office

Mail stored and sorted, to

Post
office

be sent out depending on destination
and when pony and rider available

Post
| office | - >
f‘fv ‘

-

Persistent Communication — Pony Express Style

- | Post
office

Persistent communication of letters back in the days of the Pony Express.

Ruohomaa et al.: Distributed Systems

21

Sychronous and Asynchronous
Communication

Asynchronous communication
the sender continues immediately after submission;
something else takes care of the rest
Synchronous communication
the sender is blocked until
the message is received by e.g. middleware to deliver to
target application (synchrony)
the message is delivered to the target ()
the response to it has arrived ()

Ruohomaa et al.: Distributed Systems 22

~ Persistence and Synchronicity in Communication

A sends message A sends message A stobped
and continues ':L iﬁﬁped and waits until accepted runnirsg
A A
Message Is stored
at B's location for Accepted
later delivery \ Time
- —p
| B starts and B is not B starts and
Bis not receives runnhing receives
running message message
(@) (b)

Persistent asynchronous communication

Persistent (delivery-based) synchronous communication

Ruohomaa et al.: Distributed Systems 23

Persistence and Synchronicity in Communication

A sends message Send request and wait
and continues until received

Message can be A
sentonly if B is
running Request ACK
Time Is received Time
————— _ B \ __________’_
¥ | T —
B receives Running, but doing Process
message something else request

(©) (d)

Transient asynchronous communication
Receipt-based transient synchronous communication

Ruohomaa et al.: Distributed Systems 24

"o Persistence and Synchronicity in Communication

Send request and wait until Send request

accepted f and wait for reply
A

A — o O — A

Request Request Accepted
Is received Accepted T Is received T
ime ime
B o I . B Y .
—_— * S P
Running, but doing Process Running, but doing Process
something else request something else request
() (f)

Delivery-based transient synchronous communication at message delivery
Response-based transient synchronous communication

Ruohomaa et al.: Distributed Systems 25

Chapter Summary

Overview of interprocess communication
Remote invocations (RPC etc.)
Persistence and synchronicity

Ruohomaa et al.: Distributed Systems

26

