
582669 Supervised Machine Learning (Spring 2011)
Course examination, solutions (Jyrki Kivinen)
General comment: The exam turned out to be more difficult than intended (in
particular, too long). As partial compensation, the exam points were multiplied by 1.2
in the grading of the course.

1. This is directly from Homework 1(a).

2. (a) This is from pages 87–88 of the lecture notes. A complete answer should
also include a definition of “margin.”

(b) This is given on pages 91–93 of the lecture notes.

3. (a) We formulate the problem as follows:

Variables: w ∈ Rd, r ∈ R
minimise R

subject to ‖w − xi‖22 −R ≤ 0 for i = 1, . . . ,m.

Notice that we have used the squared radius R = r2 to make the problem
convex.
To obtain the dual, we write the Lagrangian

L(w, R,α) = R +
m∑
i=1

αi(‖w − xi‖22 −R)

where αi ≥ 0. To minimise with respect to the original variables, we calculate
the derivatives

∂L(w, R,α)

∂w
= 2

m∑
i=1

αi(w − xi)

∂L(w, R,α)

∂R
= 1−

m∑
i=1

αi.

and set them to zero, getting

w =
m∑
i=1

αixi

m∑
i=1

αi = 1.

(Notice that together with the constraints αi ≥ 0 these equations imply
that the centre w is inside the convex hull of the points xi, which seems



intuitive.) Substituting this into the Lagrangian we get

L(w, R,α) = R +
m∑
i=1

αi(‖w − xi‖22 −R)

=
m∑
i=1

αi(w ·w − 2w · xi + xi · xi)

= w ·w − 2w ·w +
m∑
i=1

αixi · xi

=
m∑
i=1

αixi · xi −
m∑
i=1

m∑
j=1

αiαjxi · xj.

Hence, the dual function is

G(α) =
m∑
i=1

αixi · xi −
m∑
i=1

m∑
j=1

αiαjxi · xj,

and the dual problem is maximising this under the constraints αi ≥ 0 and∑
i αi = 1. (Notice that by complementary slackness, we have αi 6= 0 only

when ‖w − xi‖ is exactly
√
R. Hence, moving points xi inside the interior

of the ball does not change the solution, which again is intuitively correct.)
Suppose now that the instances are actually feature vectors, so xi = ψ(zi)
for some zi. Here ψ is a feature map, for which we assume the corresponding
kernel function is k. The dual function now becomes

G(α) =
m∑
i=1

αik(xi, xi)−
m∑
i=1

m∑
j=1

αiαjk(xi, xj)

and the constraints remain the same. Thus, we can solve the dual without
explicitly computing any feature vectors. The solution in feature space is
then

w =
m∑
i=1

αiψ(zi).

(b) For the soft version, we introduce for each constraint a slack variable ξi.
Analogously to soft-margin SVM, the optimisation problem becomes

Variables: w ∈ Rd, R ∈ R, ξ1, . . . , ξm
minimise R + C

∑m
i=1 ξi

subject to ‖w − xi‖22 −R− ξi ≤ 0 for i = 1, . . . ,m
ξi ≥ 0 for i = 1, . . . ,m

where C > 0 is a parameter we choose in practice by cross-validation or
some similar method.
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4. (a) Now H is the class of monotone conjunctions over n variables.
Claim 1: VCdim(H) ≤ n.
Proof: There are exactly 2n monotone conjunctions, since for each of the n
variables we can choose to include it or not include it in the formula. (As
noted in the problem, not including any variables gives the function that is
identically +1.) Since always VCdim(H) ≤ log2 |H|, the claim follows. 2
Claim 2: VCdim(H) ≥ n.
Proof: We construct a set of n elements z1, . . . ,zn that is shattered by
H. Let zii = −1 for all i, and zij = 1 when i 6= j. Consider any set I ⊆
{ 1, . . . , n }. We need to show that there is a monotone conjunction f such
that f(zi) = 1 if i ∈ I, and f(zi) = 1 if i 6∈ I. We choose f = ∧i 6∈Ivi.
If i 6∈ I, then f(z) = −1 for any instance z with zi = −1. In particular,
f(zi) = −1.
If i ∈ I, then vi does not appear in the conjuntion f . Since for zi we have
zij = 1 for all j 6= i, we have in particular zij = 1 for all j such that vj is
included in the conjunction. Hence, f(zi) = 1. 2

(b) There is a universal constant C such that the following holds: Assume that
VCdim(H) = d < ∞, and that there is some probability distribution P
over X × Y . Let 0 < ε, δ ≤ 1. Assume we draw a sample of m points
((x1, y1), . . . , (xm, ym)) independently from P , where

m ≥ C

ε2

(
d ln

2

ε
+ ln

2

δ

)
.

Then with probability at least 1− δ we have∣∣∣R(h)− R̂(h)∣∣∣ ≤ ε

for all h ∈ H. Here R and R̂ are the true and empirical risks for the discrete
loss:

R(h) = E(x,y)∼P [L0−1(y, h(x))]

R̂(h) =
1

m

m∑
i=1

L0−1(yi, h(xi))].
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