
582669 Supervised Machine Learning (Spring 2011)
Homework 3 (10 February)

Turn this homework in no later than Tuesday, 8 February, at 15:00.

1. Suppose we know for some online prediction algorithm in the expert setting a loss bound

LA ≤
(

1 +
η

4

)
L∗ +

lnn

η
,

where LA is the loss of the algorithm with learning rate η, L∗ is the loss of the best expert and
n is the number of experts. Assume we know a bound K such that L∗ ≤ K. Show how we can
choose a learning rate that depends only on K and n and results in a regret bound

LA − L∗ ≤ a
√
L∗ lnn

for some a > 0. What value a you can get, and what is the learning rate you use for that?

Hint: The main ingredients are

• writing the bound as LA − L∗ ≤ g(η, L∗, n) for some g and

• minimising g(η,K, n) as a function of η.

Remark: This is the bound we would get by considering Corollary 2.8 from the lectures in the
limit of small η and dropping terms that are Θ(η2) or smaller. Thus, the bound is not exactly
satisfied by the Aggregating Algorithm. Nevertheless this problem shows the basic idea leading
to the square root style regret bounds. The proof of the actual Aggregating Algorithm bound
stated in Theorem 2.9 is given by Cesa-Bianchi et al., How to use expert advice, Theorem 4.4.3,
and a bit complicated.

2. (a) Show that the arithmetic mean of non-negative numbers a1, . . . , an is at least their geo-
metric mean, i.e.,

1

n

n∑
i=1

ai ≥

(
n∏

i=1

ai

)1/n

.

(b) Given p ∈ Rn and q ∈ Rn such that pi ≥ 0 and qi ≥ 0 for all i and
∑n

i=1 pi =
∑n

i=1 qi = 1,
we define their relative entropy (or Kullback-Leibler divergence) as

dKL(p, q) =

n∑
i=1

pi ln
pi
qi
.

Show that
dKL(p, q) ≥ 0

holds for all p and q (that satisfy the conditions above). This is known as the information
inequality.

Hint: Both of these can be proven by applying Jensen’s inequality to the convex function f(x) =
− ln(x). In other words, you can write the inequalities as

−
∑
i

vi lnxi ≥ − ln
∑
i

vixi

for suitable chosen vi and xi.

More problems on the next page!



3. Consider the following Muroga’s function defined for x ∈ {−1, 1 }d:

if x1 = 1 then return 1
else if x2 = 1 then return −1
else if x3 = 1 then return 1
. . .
else if xd = 1 then return 1
else return −1.

(This is for odd d, for even d the signs at the end go the other way). Show that Muroga’s function
can be represented as a linear classifier (you may use a threshold term if you wish). What margin
do you get?

You do not need to show that your construction is optimal, but for extra credit (worth one
regular problem) you may prove that the largest possible margin is exponentially small in d.

4. Consider the linear classifier f(x) = sign(w · x) for x ∈ Rd where w1 = w2 = 1 and wi = 0 for
i = 3, . . . , d.

We generate a random sample as follows. First, we draw a large number of instances xt from
the uniform distribution over the cube [−1, 1]d. Then we classify the instances using the above
classifier f . Finally, we discard from the sample the points where the margin is below some value
γ we decide in advance. Therefore we get a sample that is linearly separable with margin γ by
the classifier f .

Implement the sampling method and the Perceptron algorithm. Study how the number of mis-
takes made by the algorithm changes when you

• keep dimension d fixed but let the margin γ vary

• keep the margin γ fixed but let dimension d vary.

Is the behaviour of the algorithm similar to what you would expect from the Perceptron Con-
vergence Theorem?

Your solution should consist of a brief explanation of the observations you made, a couple of
representative plots to support this, and a printout of your program code.
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