
582669 Supervised Machine Learning (Spring 2011)
Homework 2 (3 February)

Turn this homework in no later than Tuesday, 1 February, at 15:00.

1. We consider the Weighted Majority algorithm (page 31 of the lecture notes) with η and c as in
Theorem 1.5 (page 34). In this problem you are asked to generalise the proof of Theorem 1.5.

(a) Show that if for someM ≥ 0 there are k different hypotheses hi that all satisfy L0,1(S, hi) ≤
M , then

L0,1(S,WM) ≤ cηM + c ln
n

k
.

(b) Change the initialisation of the algorithm so that w1,i = pi for all i, where pi > 0 for all i
and

∑n
i=1 pi = 1 but otherwise p is arbitrary. Show that for the modified algorithm WM′

we have
L0,1(S,WM′) ≤ min

1≤i≤n

(
cηL0,1(S, hi) + c ln

1

pi

)
.

2. We modify the Weighted Majority algorithm (page 31) as follows, in order to use it for soft
classification with logarithmic loss:

• In Step 5 we set wt+1,i = wt,i exp(−ηLlog(yt, hi(xt)), where η = − lnβ. (Notice that the
original update can be written as wt+1,i = wt,i exp(−ηL0−1(yt, hi(xt)), so this seems a
natural generalisation.)

• Instead of the majority vote of Steps 3 and 4, we predict with the weighted average

ŷt =

n∑
i=1

vt,ihi(xt)

where vt,i = wt,i/
∑n

j=1 wt,j .

As before, consider the potential Pt = c lnWt where Wt =
∑n

j=1 wt,j . Show that if η = c = 1 we
have

Llog(yt, ŷt) = Pt − Pt+1.

What loss bound do you get from this?

Notice: You should also assume that the hypotheses hi are soft classifiers, i.e. functions hi : X →
[0, 1].

3. We take 1000 fair coins and toss each of them 10 times. All tosses are assumed to be independent.

(a) What is the probability for a given coin to come up heads 10 times?

(b) What is the probability that at least one coin comes up heads 10 times? Calculate the exact
value.

(c) Derive an upper bound for at least one coin coming up heads 10 times, using the results
from part (a) and the union bound. Compare with the exact value from part (b).

Continues on the next page!



4. Boolean formulae are a common form of representing binary classifiers over X = { 0, 1 }n. We
introduce Boolean variables v1, . . . , vn, where vi intuitively means that xi = 1.

A monotone conjunction is a formula of the form vi1 ∧ . . . ∧ vik . It represents a classifier
f : { 0, 1 }n → { 0, 1 } such that f((x1, . . . , xn)) = 1 if xi1 = · · · = xik = 1. Also such clas-
sifiers f are called monotone conjuntions.

More generally, a conjunction is of the form ṽi1∧. . .∧ ṽik , where ṽj is either vj or vj . It represents
a classifier f where f((x1, . . . , xn)) = 1 if xj = 1 for all j such that vj appears in the conjunction,
and xj = 0 for all j such that vj appears in the conjunction,

(a) Give an efficient algorithm that receives as input a sample ((x1, y1), . . . , (xm, ym)) where
(xj , yj) ∈ { 0, 1 }n × { 0, 1 }, and outputs a monotone conjunction that is consistent with
the sample, if one exists. In other words, give an algorithm for Empirical Risk Minimisation
of monotone conjunctions in the noise-free PAC model. Your algorithm is not required to
work if there is no consistent monotone conjunction. Use Theorem 1.7 to estimate how
large a sample you need for n = 100, ε = 0.1 and δ = 0.001.
Hint: find the longest consistent monotone conjunction.

(b) Use you algorithm from part (a) as a basis for a similar algorithm for general conjunctions.
Again, use Theorem 1.7 to estimate how large a sample you need for n = 100, ε = 0.1 and
δ = 0.001.
Hint: transform input vectors (x1, . . . , xn) into (x1, . . . , xn, 1− x1, . . . , 1− xn).

(c) For extra credit (worth one regular problem). You may wish to skip this unless you are
familiar with NP-completeness. Consider learning monotone conjunctions with Empirical
Risk Minimisation in the agnostic PAC model. Show that the problem

input: a sample ((x1, y1), . . . , (xm, ym))

output: a monotone conjunction f such that R̂(f) is as small as possible (for a
monotone conjunction f)

is NP-hard. The difference to part (a) is that now we do not assume the existence of a
consistent monotone conjunction.
Hint: reduction from Set Cover.

Remark: Generally on this course we do not spend much time on computational complexity.
However it is worth noticing that Empirical Risk Minimisation in the agnostic case is often
computationally much more difficult than in the noise-free case.

2


