
582669 Supervised Machine Learning (Spring 2011)
Homework 1 (27 January)

Turn this homework in no later than Tuesday, 25 January, at 15:00. Details on where to turn in
your homework will appear on the course web page soon.

1. Consider soft binary classification with some appropriate loss function L. Suppose that for some
reason we believe that the next label y is 1 with probability q, and 0 with probability 1 − q.
Then a natural prediction would be p which minimises the expected loss

(1− q)L(0, p) + qL(1, p).

Such a value p is called the Bayes optimal prediction.

Determine the Bayes optimal prediction, as a function of q, for absolute loss L0,1, logarithmic
loss Llog and square loss Lsq.

2. Let X = { a, a+ 1, . . . , b− 1, b } for some integers a and b. Let H : X → { 0, 1 } consist of all
functions hp.q where

hp,q(x) =

{
1 if p ≤ x ≤ q
0 otherwise

(i.e., H consists of all the indicator functions of intervals restricted to X).

Give a computationally efficient implementation to the Halving Algorithm for this hypothesis
class. In other words, explain how you can keep track of the version space and perform the
necessary voting. You should get the running time at least down to O(b− a) per trial. By using
efficient data structures, a logarithmic time should also be possible.

Give your solution as a fairly high-level pseudocode, but explain the data structures in sufficient
detail so that the running times are justified.

Remark: On this course we do not often analyse the running times of algorithms. The Halving
Algorithm (and its relatives like Weighted Majority) are an exception. Because the mistake
bound depends only logarithmically on |H|, it allows quite large hypothesis classes. Then the
naive O(|H|) implementation is impractical, and it becomes an interesting question, for which
classes the algorithm can be implemented efficiently.

3. This is a small programming exercise for familiarising you with doing simple online learning in
your programming environment of choice. It is recommended that you use Matlab, Octave, R
or similar. If you really want, you may use some other language, assuming that the teaching
assistant Panu Luosto understands it sufficiently to grade your work. In unclear cases, check this
in advance with Panu.

Consider the following setting.

• There are T inputs x1, . . .xT , where each xt = (xt,1, . . . , xt,n) ∈ {−1, 1 }n is an n-
dimensional vector. Each component xt,i is 1 with probability 1/2 and −1 with probability
1/2.
• The concept class is H = {h1, . . . , hn } where hi picks the ith component of the input:
hi((x1, . . . , xn)) = xi.
• The labels yt ∈ {−1, 1 } are determined by

yt =

{
x1 with probability 1− ν
−x1 with probability ν

for some ν > 0. In other words, h1 is the target concept but there is classification noise
with rate ν.



Implement the Weighted Majority algorithm in this setting. Try it with a couple of values for n
(say n = 100 and n = 1000) and ν (say ν = 0.2 and ν = 0.4) and see, how the choice of learning
rate β affects the behaviour of the algorithm. In particular, making following kinds of plots may
be illuminating:

• Plot the normalized weights vt,i = wt,i/
∑

j wt,j as a function of t; compare the “relevant”
weight vt,1 to “irrelevant” ones vt,j , j 6= 1, or plot all the weights into the same figure.

• Plot the cumulative loss
∑t

j=1 L0−1(yt, ŷt) as a function of t.

• Plot the cumulative mistake count with respect to the “unnoisy” labels,
∑t

j=1 L0−1(xt,1, ŷt),
as a function of t.

In general, you should see that with β close to 0 the algorithm behaves erratically, with β close
to 1 more smoothly but also takes more time. In most cases T = 500 or fewer iterations should
be sufficient to see what is going on.

Your answer to this problem should consist of a brief explanation of the observations you made,
supported by some plots, and your program code (which doesn’t need to be polished, but some
comments in the code might be useful if you do something non-obvious). Don’t include all the
plots you make, just half a dozen or so representative ones. You are not expected to make
a systematic study of this setup, which after all is a bit artificial. The goal is to make the
Weighted Majority algorithm a bit more concrete and prepare for later exercises with other
online algorithms.
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