
582669 Supervised Machine Learning (Spring 2011)
Course examination, Tuesday 1 March, 16:00–19:00 A111
Examiner: Jyrki Kivinen

Answer all the problems. The maximum score for the exam is 48 points. You may
answer in Finnish, Swedish or English.
When you are asked to give an algorithm, bound etc., make sure that you explain
briefly but precisely all the relevant terms, underlying assumptions etc.

1. [8 points] Consider the Weighted Majority algorithm on a class of hypotheses
H = {h1, . . . , hn }. Prove that if for some M ≥ 0 there are k different hypotheses
hi ∈ H such that for a given sequence S they all satisfy L0−1(hi, S) ≤ M , then
the loss of the Weighted Majority algoritm satisfies

L0−1(S,WM) ≤ cM ln
1

β
+ c ln

n

k
.

Here β is the learning rate of WM and c is the constant for which we proved the
inequality

L0−1(ŷt, yt) ≤ Pt − Pt+1

where Pt = c ln
∑n

i=1wt,i and wt,i is the weight of hypothesis i at time t (with
initial weights w1,i = 1). You may assume this second inequality as known, and
you do not need to care about the actual value of the constant c.

2. [4+8 points]

(a) Give the pseudocode for the Perceptron algorithm (the most basic online
algorithm we had for linear classification, without any additions we intro-
duced later). State also the Perceptron Convergence theorem (the most basic
mistake bound for the above algorithm).

(b) Prove the Perceptron Convergence theorem.

Continues on the reverse side!



3. [10+4 points]

(a) We are given m points xi ∈ Rd, i = 1, . . . ,m. The problem is to find the
smallest enclosing ball in Rd for the points. In other words, we need to find
a centre w ∈ Rd and radius r such that ‖w − xi‖2 ≤ r holds for all i, and
r is as small as possible. Formulate this as a convex optimisation problem.
Obtain the dual function for the problem. Using the dual show that the
problem can be kernelised; in other words, if we replace xi by some feature
vectors ψ(xi), the problem can be written in terms of the corresponding
kernel function k(·, ·).

(b) In the “soft” version of the smallest enclosing ball, we do not require that
all the points must be inside the ball, but charge a loss for the points that
are outside, with the loss being larger for points farther away from the ball.
Formulate this as a convex optimisation problem.

Hint: The intention is that parts (a) and (b) relate to each other like the hard-
margin and soft-margin SVM. However in part (b) you are only asked to write out
a suitable formulation of the original problem (there are more than one reasonable
ways of doing this), not find the dual etc.

4. [8+6 points]

(a) Consider X = {−1, 1 }n and recall that for I ⊆ { 1, . . . , n }, we define the
monotone conjunction fI = ∧i∈Ivi as a function from X to {−1, 1 } such
that fI(x) = 1 if xi = 1 for all i ∈ I, and fI(x) = −1 otherwise. (In the
special case I = ∅ we accordingly interpreted fI(x) = 1 for all x.)
Let H = { fI | I ⊆ { 1, . . . , n } } be the class of such monotone conjunctions.
Prove that the Vapnik-Chervonenkis dimension of H is n.

(b) Assuming you know that the Vapnik-Chervonenkis dimension of your hy-
pothesis class is d, give a bound that relates the empirical risks R̂(h) and
true risks R(h) of hypotheses h to each other. Don’t worry about the values
of any constant factors etc., just try to get the form of the bound right.
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