
582669 Supervised Machine Learning

lectures in Spring 2011, period III

Jyrki Kivinen

1

Relationship to other courses etc.

• elective master’s level course in specialisation area Algorithms and
Machine Learning, continues from Introduction to Machine Learning

• Introduction to Machine Learning is not a necessary pre-requisite but
helps a lot in (a) understanding the basic concepts and (b) seeing the
larger context.

• Students are assumed to have basic knowledge of linear algebra,
probability theory and calculus.

• We will need a little bit of multivariate calculus but explain the needed
concepts when we get there.

• We don’t need any sophisticated data structures or algorithmic
techniques.

• Homework will include small computer exercises. Familiarity with, e.g.,
Matlab, Octave or R will help.

• other courses in this area include Unsupervised Machine Learning and
Probabilistic Models

2

Practicalities

• Grade consists of homework (20%) and exam (80%).

• Homework needs to be turned in in writing each week (details to be
announced soon).

• There is no textbook. Lecture notes will appear on the course web
page. In addition you may be required to read some original articles.

3

Contents (general)

Supervised machine learning is a wide area. We cover a variety of topics
chosen partly based on the lecturer’s personal preferences.

Our point of view is largely that of computational learning theory: we are
interested in provable performance guarantees for learning algorithms.

We consider mainly (binary) classification.

See lecture notes of Introduction to Machine Learning for

• other types of learning (unsupervised learning, reinforcement learning,
. . .)

• other aspects of supervised learning and different algorithms
(regression, decision trees, nearest neighbour, . . .)

• techniques one needs in addition to a learning algorithm (preprocessing,
cross-validation, . . .)

• typical applications.

4

Table of Contents (preliminary)

1. Introduction
• basic setting and concepts
• main frameworks for analysis: online learning and statistical learning

2. Online learning
• linear classification
• the Perceptron algorithm
• understanding and deriving relative loss bounds (also known as

regret bounds)

3. Statistical learning
• basic statistical learning theory, connection to online learning
• complexity measures: VC-dimension and Rademacher complexity
• Support Vector Machine (SVM)

5

1. Introduction

We discuss briefly the general setting of machine learning and some closely
related disciplines.

On a more technical level, we get familiar with some basic concepts:

• supervised learning, classification, loss function

• online learning: the basic scenario and some introductory results

• statistical learning: the basic scenario and some introductory results.

6

What is supervised machine learning?

For the purposes of this course,

• learning is how a system improves its performance in some task based
on some observations

• in machine learning this is performed by some algorithm

• in supervised machine learning the task is assigning labels to given
objects.

7

As a representative supervised learning task, consider the following:

• We wish to build a system that inputs a digitized image and decides
whether the image represents a human face.

• Here the objects are images and labels are “face” and “non-face.”

• We train (teach) the system by giving it a large set of images that have
been labelled (“face” or “non-face”) by a human “expert.”

• After training, the system hopefully can correctly label also images that
were not in the training data.

We shall soon give a more precise definition of the supervised machine
learning task, and in particular what are the criteria for evaluating learning
algorithms.

Before that, let’s briefly look at machine learning from a more general point
of view.

8

Machine learning and related fields

Historically, machine learning is part of artificial intelligence.

Artificial intelligence is sometime characterized as the study of
computational problems on which humans still outperform computers. The
classical “machine learning approach” to such problems is to have a human
create examples of desired behoviour, and let the computer come up with a
general algorithm.

Typical applications include

• finding meaningful information from low-level observation data
(machine vision)

• building complicated logical models, such as expert systems

• planning in games.

9

Learning has of course been studied intensively in fields such as psychology,
neurobiology and cognitive science

• goal: find out how humans and other organisms actually learn.

• very difficult, only very limited things can be directly measured

• different from the machine learning problem of finding out what is a
good way to learn (for machines)

• models from neurobiology etc. can still provide inspiration for machine
learning

• even “biologically motivated” machine learning approaches (such as
so-called neural networks) are quite different from actual biological
learning.

10

Similar problems arise in other areas, too:

Signal processing

• need to adapt to changes in channel properties

• very specific problems and constraints

• well-developed theory, established technologies

• similar to online learning.

Statistics

• a lot of classical statistics concerns hypothesis testing etc.

• emphasis often in getting results in form that humans can understand

• however there is a significant body of statistics research where at least
the basic setting is similar to machine learning

• increase in computational power enables new kinds of methods.

11

Data mining

• emerged much later than statistics and signal processing

• starting point often in data bases: what extra value can we get from
our huge masses of data?

• usually want results that are intelligible to humans

• problem setting often quite loose (“are there any interesting patterns in
the data?”).

Generally there is no point in trying to define exact boundaries between
these disciplines:

• often just different emphasis in similar problems

• theoretical frameworks, new algorithms etc. propagate from one area to
another

• however there may be significant communication difficulties between
researches from different fields.

12

Supervised learning—basic concepts

The most basic components of a supervised learning scenario are

• an input space X, the elements of which are also called instances

• an output space Y , the elements of which are often called labels.

Typically, the learning algorithm

• receives as input a sample (also called the training set)
((x1, y1), . . . , (xm, ym)) of m labelled instances, where xi ∈ X and yi ∈ Y
for all i

• outputs a hypothesis h : X → Y .

Intuitively, if we then receive further examples (the test set) (xi, yi) ∈ X × Y ,
i = m+ 1, . . ., from the same source that produced the sample, we expect
that the predictions h(xi) of our hypothesis are close to the correct labels yi.
We will soon make this more precise.

13

Loss functions

We use a loss function L to quantitatively evaluate the goodness of the
hypothesis. If we predict with ŷ = h(x), but the correct label is y, we incur
loss L(y, (̂y)). Usually L(y, y) = 0 (no loss if prediction was exactly correct)
and L(y, ŷ) > 0 if ŷ 6= y.

We naturally need different loss functions for different output spaces Y . In
classification, Y is a small finite set and the labels y ∈ Y are not assumed to
have any further structure or meaning. The labels are called classes. The
most basic loss function for classification is the discrete or zero-one loss

L0−1(y, ŷ) =

{
0 if y = ŷ
1 if y 6= ŷ.

That is, we simply count mistakes.

14

The case |Y | = 2 is called binary classification. We usually choose as labels
Y = {−1,1 } or Y = {0,1 }, whichever allows for most convenient notations.

Binary classification is (in particular in computational learning theory and
artificial intelligence) often also called concept learning. The explanation is
that subsets c ⊆ X of the input space are traditionally called concepts, and a
concept c ⊆ X can naturally be identified with the binary classifier

f(x) =

{
1 if x ∈ c
0 otherwise.

15

Many classification algorithms produce besides a prediction of the most
likely label also some estimate of how reliable the prediction is.

For example, with Y = {0,1 }, if the algorithm knows it is just guessing, it
could signal this with output ŷ = 1/2. However, the discrete loss function
does not support this.

One possible refinement (for Y = {0,1 }) is to allow continuous-valued
predictions 0 ≤ p ≤ 1 and use absolute loss

Labs(y, p) = |y − p| .
Notice that Labs(y, p) is the expectation of the discrete loss Labs(y, ŷ) if we
choose ŷ = 1 with probability p and ŷ = 0 with probability 1− p.

We will later see how using the absolute loss may lead to more meaningful
performance bounds.

16

Another possibility for y ∈ {0,1 } and 0 ≤ p ≤ 1 is the logarithmic loss

Llog(y, p) =

{
− ln(1− p) if y = 0
− ln p if y = 1.

(The base of the logarithm does not really matter. Here we use natural
logarithm ln; another popular choice is log2.)

The logarithmic loss comes from information theory. If we observe an event
A that had probability p of occuring, we assign − ln p as the information
content of the observation. Thus, for y ∈ {0,1 }, the logarithmic loss
Llog(y, p) is the information content of observing y when the probability of 1
is p and probability of 0 is 1− p.

17

There are various reasons why

− lnP (A)

is a good measure for the information content of event A. Let us here just
notice that if A and B are two independent events, then
P (A ∩B) = P (A)P (B) and

− lnP (A ∩B) = − lnP (A)− lnP (B).

In other words, with this definition the information content of two
independent events together is the sum of the information contents of the
individual events. This is a nice and intuitive property to have.

18

Both absolute and logarithmic loss can be generalised to multi-class
classification (i.e. case |Y | > 2).

Let Y = { b1, . . . , bk }.

We now allow a prediction p to be a probability distribution over Y . In other
words, p = (p1, . . . , pk) where pi ≥ 0 for all i and

∑
i pi = 1. We interpret pi as

the probability given by the algorithm for the label bi.

Analogously, we represent the label y = bi by a vector y where yi = 1 and
yj = 0 for j 6= i. This y can be interpreted as a probability distribution
where the label bi occurs with probability 1.

19

We can now take as loss L(y,p) any distance measure between the
distribution y and p. Popular distance measures include the variation
distance

dvar(y,p) =
1

2

∑
i

|yi − pi|

and Kullback-Leibler divergence (or relative entropy)

dKL(y,p) =
∑
i

yi ln
yi

pi
.

In the special case k = 2, variation distance becomes absolute loss and
Kullback-Leibler divergence becomes logarithmic loss. (We interpret the
prediction 0 ≤ p ≤ 1 used for absolute and logarithmic loss as the probability
distribution (1− p, p) over the set {0,1 }.)

20

We use the term hard classification to denote the case where the hypothesis
is required to output just a single label (so we use zero-one loss).

Soft classification is the case where the hypothesis outputs probability
distributions.

Besides classification, the other major type of supervised learning is
regression.

In regression, Y = R (or Y = [a, b] for some a, b ∈ R). The most commonly
used loss function is the squared loss

Lsq(y, ŷ) = (y − ŷ)2.

On this course we will not say much about regression.

21

Linear classification

We mainly consider the case where instances are real vectors, i.e. X ⊆ Rn for
some n (including the special cases X = {0,1 }n and X = {−1,1 }n). Linear
classifiers are a very useful class of hypotheses for binary classification of
real vectors.

A linear classifier f : X → Y has the form

f(x) = sign(w · x),

where

• w = (w1, . . . , wn) ∈ Rn is the weight vector

• w · x =
∑n

i=1wixi

• sign(z) = 1 if z ≥ 0 and sign(z) = −1 otherwise (here we have taken
Y = {−1,1 }).

22

Often we include as linear classifiers also those with a slightly more general
form

f(x) = sign(w · x− b),
where we have included an extra parameter b ∈ R called the bias or threshold.

If instead of hard classifications ŷ = ±1 we want probabilities 0 ≤ p ≤ 1, we
can replace the sign function for example with the logistic sigmoid:

f(x) = σ(w · x− b),
where

σ(z) =
1

1 + exp(−z)
.

We will later see several examples of learning algorithms that produce
(usually hard) linear classifiers.

23

Supervised learning—summary of basic concepts

• A supervised learning algorithm produces a hypothesis h, which maps
instances x ∈ X into labels h(x) ∈ Y .

• The hypothesis is based on a sample ((x1, y1), . . . , (xm, ym)), where
xi ∈ X and yi ∈ Y .

• The performance of hypothesis h on an example (x, y) is evaluated in
terms of the loss L(y, h(x)).

• Typical loss functions include zero-one loss (discrete loss) for hard
classification, absolute loss and logarithmic loss for soft classification
and square loss for regression.

• Linear classifiers are a useful class of hypotheses for binary classification
of real vectors.

We now have sufficient concepts to state formally our two main learning
models: online and statistical learning. We start with the online model
which is mathematically simpler. We illustrate both models by some very
basic algorithms.

24

Online learning: basics

In online learning, we do not produce just a single hypothesis based on a
sample. The sample points are given one by one, and the hypothesis is
updated after each of them.

More precisely, learning proceeds as a sequence of trials. At trial (or time
step) t, for t = 1, . . . , T where the horizon T may or may not be known in
advance, the following takes place

1. the algorithm receives the input xt ∈ X

2. the algorithm outputs the prediction ŷt = ht(xt) ∈ Y , where the
hypothesis ht comes from trial t− 1 (and h1 is some arbitrary initial
hypothesis)

3. the algorithm receives the correct label yt ∈ Y and incurs the loss
L(yt, ŷt)

4. the algorithm updates the hypothesis ht into ht+1 based on xt, yt and
possibly some information remembered from previous trials.

25

For an online learning algorithm A on example sequence
S = ((x1, y1), . . . , (xT , yT)), we define the total loss in terms of a loss
function L as

L≤T(S,A) =
T∑
t=1

L(yt, ŷt).

This gives a well-defined numerical performance measure, but it is not at all
obvious what values of the total loss can be considered “good” performance
and what are “poor.”

We resolve this issue by considering relative loss bounds, where we relate
the total loss of the algorithm to the total losses of some fixed hypothesis
h : X → Y , defined analogously as

L≤T(S, h) =
T∑
t=1

L(yt, h(xt)).

This becomes clearer after some examples.

26

Online learning: the halving algorithm

For a relative loss bound, we first fix some finite class of hypotheses H,
where each h ∈ H is a function X → Y . It does not matter what the
hypotheses h ∈ H are. However the following analysis is most interesting if
|H| is fairly large and we suspect that at least one h ∈ H is fairly accurate
for the data we have at hand, while most of them are likely to be quite bad.
We present an algorithm for finding the “good” hypothesis from among the
“bad” ones.

We consider binary classification with Y = {−1,1 }. To get started, assume
a simplified scenario where one of the hypotheses h∗ ∈ H is actually perfect:
we have yt = h∗(xt) for all t. Don’t worry too much about this assumption,
we shall soon remove it. However the point is that the algorithm does not
know which of the hypotheses is the perfect one.

27

Consider the following algorithm.

Algorithm 1.1 (The Halving Algorithm):

Initialise V ← C.
For t = 1, . . . , T :

1. Input xt ∈ X.
2. V − ← {h ∈ V | h(xt) = −1 } and

V + ← {h ∈ V | h(xt) = 1 }
3. If |V −| > |V +| then output ŷt = −1

else output ŷt = 1.
4. Input yt.
5. If yt = −1 then V ← V −, else V ← V +.

The set V maintained by the algorithm is called the version space. It
consists of hypotheses that are consistent, i.e., have not made a mistake yet.

In Step (3) the prediction is decided by a majority vote among the
consistent hypotheses.

In Step (5) the version space is updated. The assumption that there is a
perfect hypothesis guarantees that the version space never gets empty.

28

Theorem 1.2: If there is h∗ ∈ H such that yt = h∗(xt) for all t, then the
Halving Algorithm (HA) makes at most log2 |H| mistakes, i.e.,

L≤T0−1(S,HA) ≤ log2 |H| .
Proof: HA predicts as the majority of the version space. If the HA made a
mistake, so did at least half of the consistent hypotheses, so the size of the
version space is reduced at least by a factor 1/2.

Hence, after HA has made M mistakes, the size |V | of the version space is
at most |H| (1/2)M .

However the version space never gets empty, so |H| (1/2)M ≥ 1. This yields
M ≤ log2 |H|. 2

Notice a fundamental idea used in online learning: we cannot control when
a mistake happens, but we can make sure that when one happens, we
“learn” a lot.

29

Online learning: the Weighted Majority algorithm

In the more realistic case that no perfect hypothesis exists, the Halving
Algorithm is useless, because the version space tends to get empty.

The solution is to use a “soft” version space. We maintain a weight for
each hypothesis h ∈ H. Initially all weights are one, intuitively meaning that
all hypotheses are fully in the version space. When a hypothesis h makes a
mistake, we multiply its weight by a factor 0 < β < 1, intuitively meaning
that we reduce its presence in the “soft” version space. When voting for the
prediction, the influence of a hypotheses is based on its current weight.

Thus we rely more on those hypotheses that up to now have not made too
many mistakes.

30

We get the following.

Algorithm 1.3 (Weighted Majority, WM): Let H = {h1, . . . , hn }. At
time t, hypothesis hi has weight wt,i ∈ [0,1]. The algorithm has learning rate
0 < β < 1 as parameter.

Initialise w1,i = 1 for all i.
Repeat for t = 1, . . . , T :

1. Input xt ∈ X.
2. Let P = { i | hi(xt) = 1 } and M = { i | hi(xt) = −1 }.
3. Calculate W+

t =
∑

i∈P wt,i
and W−

t =
∑

i∈M wt,i.
4. If W−

t > W+
t then ŷt = −1,

else ŷt = 1
5. For i = 1, . . . , n:

if hi(xt) = yt then wt+1,i = wt,i
else wt+1,i = βwt,i.

Notice that using β = 0 would give the Halving Algorithm.

31

We analyse the performance of WM in terms a potential function Pt = c lnWt

where Wt = W+
t +W−

t =
∑

iwt,i and the constant c > 0 will be fixed later.

Since Wt is intuitively the size of our soft version space, a drop in the
potential corresponds to a reduction in the version space and thus learning.
Again, we wish to show that whenever we make a mistake, we learn a lot.

This approach is somewhat similar to the use of potential function in
amortised analysis.

Lemma 1.4: If

c =

(
ln

2

1 + β

)−1

,

then for all t we have

L0−1(yt, ŷt) ≤ c ln
Wt

Wt+1
= −(Pt+1 − Pt).

In other words, whenever the algorithm makes a mistake, the potential
decreases by at least 1.

32

Proof: Since the potential never increases, the case yt = ŷt is clear.

Consider for example ŷt = −1 and yt = 1, so L0−1(yt, ŷt) = 1. Then
W+
t ≤Wt/2, and

Wt+1 = W+
t + βW−

t

= (1− β)W+
t + β(W+

t +W−
t)

≤ (1− β)
Wt

2
+ βWt

=
1 + β

2
Wt,

so the claim follows. 2

33

Theorem 1.5: For all 0 < β < 1 and all hypotheses h ∈ H we have

L0−1(S,WM) ≤ cηL0−1(S, h) + c lnn,

where again n = |H|,

c =

(
ln

2

1 + β

)−1

and η = ln
1

β
.

Remark: Naturally the bound is tightest if we compare against the best
hypothesis:

L0−1(S,WM) ≤ cηmin
h∈H

L0−1(S, h) + c lnn.

Notice that the theorem makes no assumption about the sequence S or the
hypotheses h ∈ H. It simply states that if at least one hypothesis is good,
then so is the algorithm (albeit worse by a constant factor cη and term
c lnn). On the other hand, if all the hypotheses in H are bad, the bound is
not very useful. However in such a situation it would not be reasonable to
require good performance from a learning algorithm based on H, anyway.

34

We can optimise the bound by tuning β:

• slow learning:

lim
β→1−

cη = 2 and lim
β→1−

c =∞.

• fast learning:

lim
β→0+

cη =∞ and lim
β→0+

c =
1

ln 2
≈ 1,44.

⇒ if all experts are bad, choose β ≈ 1;
in one expert is really good, choose β ≈ 0

Choosing the optimal β requires either (usually unrealistic) advance
knowledge (how much is minhL0−1(S, h)) or complicated tuning “on the
fly”. We shall return to this.

35

Curve (x, y) = (cη, c), 0 < β < 1; asymptotes x = 2 and y = 1/ ln 2.

36

Proof of Theorem: By summing the estimates from previous lemma for
t = 1, . . . , T we get

L0−1(S,WM) ≤
T∑
t=1

−(Pt+1 − Pt)

= P1 − PT+1

= c lnn− c lnWT+1.

The claim follows, since for all hi ∈ H we have

WT+1 ≥ wt+1,i

= βL0−1(S,hi)

= exp(−ηL0−1(S, hi)).

2

37

Weighted Majority vs. Bayes

We consider the following scenario:

• There are n hypotheses: H = {h1, . . . , hn }.

• The instances x1, . . . , xT are obtained somehow (doesn’t matter how).

• We pick a target hypothesis h∗ ∈ H at random so that each hi has
probability 1/n of being picked.

• The labels Y1, . . . , YT ∈ {0,1 } are defined by h∗ but subject to
classification noise at some rate 0 < ν < 1/2:

Yt =

{
h∗(xt) with probability 1− ν

1− h∗(xt) with probability ν.

(We capitalise Yi to emphasise that it is a random variables and use yi
to denote some particular value it gets.)

38

Let M(t, i) = L≤t0−1(S, hi) be the number of mistakes made by hi in the first t
trials. If hi is the target, then the probability of a mistake by hi at any given
trial is the same as the noise rate ν. Therefore

Pr[Y1 = y1, . . . , Yt = yt | h∗ = h] = νM(t,i)(1− ν)t−M(t,i) =

(
ν

1− ν

)M(t,i)

(1− ν)t.

We write β = ν/(1− ν), Y = (Y1, . . . , Yt) and y = (y1, . . . , yt) and apply
Bayes’s formula:

Pr[h∗ = hi | Y = y] =
Pr[Y = y | h∗ = hi] Pr[h∗ = hi]∑
j Pr[Y = y | h∗ = hj] Pr[h∗ = hj]

=
βM(t,i)(1− ν)t(1/n)∑
j β

M(t,j)(1− ν)t(1/n)

=
βM(t,i)∑
j β

M(t,j)

=
wt,i∑
j wt,j

where wt,j is the weight used in the WM algorithm.

39

Thus, the normalised weight

vt,i =
wt,i∑
j wt,j

of the WM algorithm is actually the posterior probability of hypothesis hi
being the target.

Further, the WM algorithm predicts 0 at trial t if the total posterior
probability of hypotheses predicting 0 is larger than the total posterior
probability of hypotheses predicting 1. This is the “Bayesian” thing to do,
for hard classification.

(The algorithm actually compares unnormalised weights wt,i, but that makes
no difference since the normalisation factor

∑
j wt,j is the same for all

hypotheses.)

We have seen that in this particular case, our online algorithm has a nice
Bayesian interpretation. However this is not the case for online algorithms in
general. Still, we can consider this as an additional motivation for the
multiplicative update rule of the algorithm. (The other motivation is the
loss bounds we can prove.)

40

Statistical learning: the basics

Fix some input space X, label set Y , hypothesis class H and loss function L.
Suppose there is some fixed but unknown probability measure P on X × Y .
The true risk of hypothesis h ∈ H is defined as

R(h) = E(x,y)∼P [L(y, h(x))]

where E(x,y)∼P [·] denotes expectation when (x, y) is drawn according to P .

Example 1.6: Let X ⊆ Rn and Y = R, and let p1 be some probability density
function over X. Fix some function h : X → Y and a parameter σ > 0. We
could now define a probability measure P over X × Y by a density function

p(x, y) = p1(x)φ(y;h(x), σ),

where φ(y;µ, σ) is the density function of the normal distribution with mean
µ and variance σ. That is, drawing (x, y) according to P consists of first
drawing x according to p1 and then drawing y from a normal distribution
centered at h(x) and with variance σ.

This is a fairly common model, but our scenario is more general since it
allows the noise to have different form at different points x. 2

41

In statistical learning,

• the input is a sample S = ((x1, y1), . . . , (xm, ym)) of m examples
(xi, yi) ∈ X × Y that are assumed to be drawn independently from P

• the output is some hypothesis ĥ ∈ H

• the goal is find ĥ with as small true risk as possible.

This type of learning, where examples are obtained at the same time, is
called batch learning, as opposed to online learning.

The problem is of course that we don’t know P . However the sample gives
us some partial information we can use.

42

Statistical learning: Empirical Risk Minimisation

Without knowing P , we cannot evaluate the true risk of a hypothesis. It is
natural idea to approximate the true risk of h by the empirical risk

R̂(h) =
1

m

m∑
i=1

L(yi, h(xi)).

For any given h, the expectation of the empirical risk is the true risk, and
for reasonably large m the variance is fairly small (for nice loss functions).

Empirical risk minimisation (ERM) means simply choosing as hypothesis ĥ
the one from H that has the smallest empirical risk.

The problem is that for large H, it’s still quite possible that for some
hypothesis h the empirical risk happens to be much smaller than the true
risk, and such h might well be picked by ERM. This leads to a bad
hypothesis, and an over-optimistic estimate of its performance.

Hence, some restriction on H is needed for ERM to work.

43

Statistical learning: noise-free PAC model

As with online learning, we consider here the case where H is finite, with
|H| = n. Later in the course we consider infinite hypothesis spaces. Let
Y = {0,1 } and, for simplicity, let X be finite.

Again, we start with the unrealistic noise-free setting. We assume there is
an unknown probability measure P1 on X and an unknown target h∗ ∈ H
such that

P (x, y) =

{
P1(x) if y = h∗(x)

0 otherwise.

With this assumption, there is always at least one hypothesis (namely the
target h∗) that has zero empirical error. Hence, the ERM algorithm becomes

Pick as ĥ any consistent h ∈ H (i.e. one that makes no mistakes on
the training sample).

44

Theorem 1.7: Let ε > 0 and δ > 0 be arbitrary. In the noise-free case, if

m ≥
1

ε
ln
|H|
δ

then with probability at least 1− δ any consistent hypothesis has true risk at
most ε.

Comment: We call ε the accuracy parameter and δ the confidence
parameter. The idea is that we consider it acceptable to have a true risk of
ε or smaller. However, we must also allow that with probability δ we get an
unrepresentative sample and the true risk of our hypothesis may be much
higher.

Since 1/δ appears only logarithmically in the bound, we can achieve high
confidence with quite reasonable sample sizes. Decreasing ε is much more
expensive. This happens also more generally in the bounds for statistical
learning.

45

Proof: We say that a sample is bad if there is a hypothesis h ∈ H such that

• h is consistent with S but

• h has true error larger than ε.

We need to show that the probability of bad samples is at most δ.

Consider first any fixed h ∈ H that has true risk larger than ε. That is, the
probability of drawing an example (x, y) such that h(x) = y is less than 1− ε.
If h is consistent with S, we have drawn m such examples. The probability
of this is less than

(1− ε)m ≤ exp(−εm) ≤ exp(− ln(|H| /δ)) =
δ

|H|
.

There are at most |H| different hypotheses h for which this could happen.
Hence the probability that it happens to at least one of them is at most

|H| ·
δ

|H|
= δ.

(This is known as the union bound.) 2

46

The noise-free model is the basic version of PAC learning (Probably
Approximately Correct) which was introduced by Valiant in 1983. Notice
that in the theorem

• the sample size m grows polynomially in 1/ε and 1/δ.

• the probability measure P is unknown and arbitrary.

The PAC model has been very important in stimulating computational
learning theory. However the assumption about no noise is usually quite
unrealistic, and the sample size bounds one gets at least by basic techniques
are impractically large.

47

Statistical learning: agnostic PAC model

In the noise-free PAC model, we assumed that the target had zero true risk.
Our hypothesis had with high confidence risk at most ε.

Consider now a more realistic situation with no “perfect” target. We still
have a hypothesis class H and a fixed but unknown probability measure P
over X × Y . In agnostic PAC learning, our goal is to find a hypothesis ĥ
such that

R(ĥ) ≤ min
h∈H

R(h) + ε

holds with high confidence.

In other words, choosing the hypothesis ĥ based purely on the sample
increases the true risk only by ε compared to picking the optimal hypothesis
using full knowledge of P .

Notice how this is somewhat similar in spirit to relative loss bounds in online
learning.

The basic setting works for any loss function, but again we consider only
classification with discrete loss in more detail.

48

Theorem 1.8: Assume ĥ ∈ H is chosen by ERM and

m ≥
2

ε2
ln
|H|
δ
.

Then with probability at least 1− δ we have

R(ĥ) ≤ min
h∈H

R(h) + ε.

Proof: Let

h∗ = arg min
h∈H

R(h)

be the hypothesis which achieves minimal true risk. It is sufficient to show
that with probability at least 1− δ we have R̂(h∗) ≤ R(h∗) + ε

2
and

R̂(h) ≥ R(h)− ε
2

for all h ∈ H − {h∗ }. Namely, if these conditions hold and
R(h) > R(h∗) + ε, then

R̂(h) ≥ R(h)−
ε

2
> R(h∗) + ε−

ε

2
≥ R̂(h∗),

so ERM cannot choose h.

49

We use the following Hoeffding’s Inequalities:

Lemma 1.9: Let S =
∑m

i=1Xi, where the Xi are independent random
variables with ai ≤ Xi ≤ bi for some ai, bi ∈ R. Then

Pr[S ≥ E[S] + t] ≤ exp

(
−

2t2∑m
i=1(bi − ai)

)
Pr[S ≤ E[S]− t] ≤ exp

(
−

2t2∑m
i=1(bi − ai)

)
.

In our case, mR̂(h) is the sum of m independent random variables
L0−1(yi, h(xi)) that take values 0 and 1, and E[mR̂(h)] = mR(h).

50

Now

Pr[R̂(h) ≤ R(h)− ε/2] = Pr[mR̂(h) ≤ mR(h)−mε/2]

≤ exp

(
−

2m2ε2/4

m

)
= exp

(
−
mε2

2

)
≤

δ

|H|
.

We apply this for h 6= h∗. Similarly we see that

Pr
[
R̂(h) ≥ R(h) +

ε

2

]
≤

δ

|H|
,

and we apply this for h = h∗. The union bound now gives the desired result.
2

51

By slightly modifying the proof of Theorem 1.8 we get the following
uniform convergence result.

Theorem 1.10: Let

m ≥
1

2ε2
ln

2 |H|
δ

.

Then with probability at least 1− δ we have∣∣R̂(h)−R(h)
∣∣ ≤ ε for all h ∈ H.

In other words, with probability at least 1− δ we have

max
h∈H

∣∣R̂(h)−R(h)
∣∣ ≤ ε.

Remark: Notice that here and in Theorem 1.8 the bound for m is O(1/ε2),
while for the noise-free PAC model (Theorem 1.7) it was only O(1/ε). This
is a real difference between the noise-free and agnostic model, not just
some slackness in our analysis.

Remark: The interesting part is getting similar results for infinite H.

52

Proof: From Hoeffding’s Inequality we have

Pr[R̂(h) ≤ R(h)− ε] = Pr[mR̂(h) ≤ mR(h)−mε]

≤ exp

(
−
m2ε2

m

)
= exp

(
−2mε2

)
≤

δ

2 |H|
,

and similarly

Pr[R̂(h) ≥ R(h) + ε] ≤
δ

2 |H|
.

We apply the union bound to these 2 |H| inequalities. 2

53

2. Online learning

We see more examples of online learning algorithms:

• the Aggregating Algorithm that generalises the Weighted Majority

• the Perceptron Algorithm for learning linear classifiers.

We get more familiar with the basic analysis techniques

• relative loss bounds

• potential functions

• margin-based bounds for linear classifiers.

54

Combining expert advice

First we want to slightly generalise the scenario underlying the Weighted
Majority algorithm.

Consider the following (unrealistic) example:

On each day t of the year, we want to predict whether the stock market
goes up (yt = 1) or down (yt = −1).

There are n experts Ei, i = 1, . . . , n, who are also predicting this. Let
Ei,t ∈ {−1,1 } be the prediction of expert Ei for day t.

On day t, for t = 1, . . . , T , we

1. receive the experts’ predictions E1,t, E2,t, . . . , En,t

2. make our own prediction ŷt ∈ {−1,1 } based on the expert advice we
just received

3. receive the outcome yt ∈ {−1,1 }, suffer loss L0−1(yt, ŷt) and possibly
update our rule for producing ŷ in Step 2.

55

Notice that the original scenario of the Weighted Majority algorithm is a
special case. There we had Ei,t = hi(xt). Now we allow arbitrary Ei,t.

In our stock market setting, it could be that

• most experts are analysts making their predictions based on news they
gather from different public sources

• some experts are analysts who have different sources of inside
information

• a few experts might be just tossing a coin

• one expert might be an evil mastermind manipulating the whole market.

It makes no difference where the experts’ predictions come from, as long as
we have them all available every morning.

56

Almost realistic examples

Task: managing a stock portfolio
Experts: “invest all money in stock x”, for different stocks x

Task: disk spin-down in a laptop
Experts: “spin down after x seconds idle” for a set of values x

Task: virtual memory paging
Experts: RAND, FIFO, LIFO, LRU, MRU, . . .

“Almost realistic” means that the algorithms we shall soon see have worked
well in realistic simulations.

All these examples have additional complications because the real-world cost
of false predictions is not just L0−1.

57

Notice that hi and xt appear in the original Weighted Majority algorithm
only in combination hi(xt). By replacing hi(xt)← Et,i we get the following
algorithm for the experts setting.

Initialise w1,i = 1 for all i.
Repeat for t = 1, . . . , T :

1. Input xt ∈ X.
2. Let P = { i | Ei,t = 1 } and M = { i | Ei,t = −1 }.
3. Calculate W+

t =
∑

i∈P wt,i
and W−

t =
∑

i∈M wt,i.
4. If W−

t > W+
t then ŷt = −1,

else ŷt = 1
5. For i = 1, . . . , n:

if Ei,t = yt then wt+1,i = wt,i
else wt+1,i = βwt,i.

58

Let us reconsider also the loss bound (Theorem 1.5) for Weighted Majority:

L0−1(S,WM) ≤ cηL0−1(S, hi) + c lnn.

for all i.

Rewriting L0−1(S, hi) =
∑T

t=1L0−1(yt, hi(xt)), we see that in the proof, too,
the hypotheses hi and inputs xt appear only in combination hi(xt). Writing
again hi(xt) = Ei,t, we get the bound

L0−1(S,WM) ≤ cη
T∑
t=1

L0−1(yt, Ei,t) + c lnn.

We conclude that the Weighted Majority algorithm satisfies the loss bound

L0−1(S,WM) ≤ cη min
1≤i≤n

T∑
t=1

L0−1(yt, Ei,t) + c lnn.

also in the expert setting, where the experts’ predictions Ei,t can be anything.
As long as at least one expert has small loss, so has the WM algorithm.

59

Lower bound for Weighted Majority

We noticed earlier that in the bound

L0−1(S,WM) ≤ cη min
1≤i≤n

T∑
t=1

L0−1(yt, Ei,t) + c lnn

the coefficients cη and c are such that

cη ≥ 2 and c ≥
1

ln 2
.

Can we improve upon these constants? We prove a (partial) negative
answer.

60

Theorem 2.1: Let A be any online prediction algorithm for combining
expert advice. There are arbitrarily large values n and M , and sequences of
experts’ predictions Ei,t and outcomes yt, such that for which it is possible
that

• there are n experts and

• the best expert makes at most M mistakes but

• the algorithm A makes at least

2M + log2
n

2
= 2M +

1

ln 2
lnn− 1

mistakes.

61

Proof: Let n = 2k+1 for some k ≥ 1, and T = 2M + k. Choose T predictions
Ei,t for n experts as follows:

• For 1 ≤ t ≤ k let Ei,t = Ei+2k,t = 1 if bit t in the binary representation of i
is 1, and Ei,t = Ei+2k,t = −1 otherwise.

• For k + 1 ≤ t ≤ T let Ei,t = 1 and Ei+2k,t = −1.

Now for any sequence of outcomes (y1, . . . , yT)

• there is one i such that both Ei and Ei+2k predict the first k answers
correctly and

• for all i at least one of Ei or Ei+2k get at least half the answers
k + 1, . . . , T right.

Hence, the best expert makes at most M mistakes.

On the other hand, for given A and Ei we can always pick an answer
sequence such that A always makes a mistake (take yt = −ŷt). 2

62

Example 2.2: k = 2, n = 2k+1 = 8, M = 3; T = k + 2M = 8.

The predictions of the experts are as follows:

t 1 2 3 4 5 6 7 8
E1 -1 -1 1 1 1 1 1 1
E2 1 -1 1 1 1 1 1 1
E3 -1 1 1 1 1 1 1 1
E4 1 1 1 1 1 1 1 1
E5 -1 -1 -1 -1 -1 -1 -1 -1
E6 1 -1 -1 -1 -1 -1 -1 -1
E7 -1 1 -1 -1 -1 -1 -1 -1
E8 1 1 -1 -1 -1 -1 -1 -1

Suppose the correct answers are

(y1, . . . , y8) = (1,−1,1,−1,−1,−1,−1,1).

After 2 rounds, E2 and E6 have no mistakes.

After the whole sequence, E6 has done 2 ≤M mistakes (and E2 4 = 2M − 2
mistakes).

63

Thus, our upper bound is fairly tight in worst case. How realistic is “worst
case”?

Intuitively the term (ln 2)−1 lnn = log2 n seems right: to find the best out of
n experts we need at least log2 n bits of information.

On the other hand, the factor 2 in 2L0−1(Ei) seems a bit dubious. In our
lower bound it clearly is a result of looking very hard for a worst-case yt and
forcing the algorithm to make hard predictions.

For the learning result, the factor 2 implies that even with large amounts of
data the algorithm is not guaranteed to converge towards the best expert,
which is bad. We address this by considering soft classification with
absolute loss.

64

The Aggregating Algorithm

We generalise the Weighted Majority algorithm for loss functions that can in
principle be arbitrary, and show that this actually works for the absolute loss.

First notice that the update rule

wt+1,i =

{
wt,i if yt = Ei,t
βwt,i if yt 6= Ei,t

can be written as

wt+1,i = wt,i exp(−ηL0−1(yt, Ei,t))

where η = − lnβ. We can now obviously replace L0−1 with some other loss
function.

65

The fundamental part of the analysis was defining a potential function

Pt = c lnWt = c ln
n∑
i=1

wt,i

and showing that for a suitable c the majority vote ŷ satisfies

L0−1(yt, ŷt) ≤ Pt − Pt+1 = c ln
Wt

Wt+1
.

Now we are doing soft classification and wish to allow 0 ≤ ŷ ≤ 1. Can we
find ŷ such that

Labs(yt, ŷt) ≤ c ln
Wt

Wt+1

holds for some c? Notice that we still assume yt ∈ {0,1 }. However we can
allow also the experts to produce soft classifications 0 ≤ Et,i ≤ 1.

66

Lemma 2.3: Choose any η > 0 and

c ≥
(

2 ln
2

1 + e−η

)−1

.

Then for any set of weights wt,i, i = 1, . . . , n, and experts’ predictions Et,i
there is a prediction ŷt such that

Labs(yt, ŷt) ≤ c ln
Wt

Wt+1

holds for any yt ∈ {0,1 }.

Remark: At the start of the trial, we know wt,i and Ei,t, but of course not
yt. Knowing wt,i, we also know Wt, but not Wt+1. However, if we knew yt,
we could use Ei,t to calculate Wt+1 and thus see for which values ŷt the
inequality holds. The idea is to simply consider both possible values
yt ∈ {0,1 } separately and combine the conditions.

In the proof we know a basic result known as Jensen’s inequality.

67

Theorem 2.4 (Jensen’s Inequality): Let X be an arbitrary real-valued
random variable and f a convex real-valued function defined on an interval
that includes the range of X (which need not be bounded). Then

f(EX) ≤ Ef(X)

where E denotes expectation.

“Proof”: The case where X has two possible values x1 and x2 follows
directly from the definition of convexity. (See picture on next page.) More
general case by induction and continuity. 2

Corollary 2.5: If f is convex then

f

(∑
i

vixi

)
≤
∑
i

vif(xi)

for all x and b such that
∑

i vi = 1 and vi ≥ 0. 2

If f is concave, the inequality flips the other way (and the best way to
remember the right way is to remember the picture on next page).

68

x1 x2

f(EX)

f(x1)

f(x2)

Ef(X)

EX

Recall that f is convex if
for all x1 and x2 and 0 ≤
α ≤ 1 we have

f(αx1 + (1− α)x2)
≤ αf(x1) + (1− α)f(x2).

A sufficient condition is
that f ′′(x) ≥ 0 for all x.

69

Proof of Lemma: For y ∈ {0,1 }, let

Wt+1(y) =
n∑
i=1

wt,i exp(−ηLabs(y, Ei,t))

be the value that Wt+1 would take if yt = y. Define normalised weights
vt,i = wt,i/Wt, for which

∑
i vi = 1. Then

ln
Wt

Wt+1(y)
= − ln

Wt+1(y)

Wt
= − ln

n∑
i=1

vt,i exp(−ηLabs(y, Ei,t)).

Since Labs(0, ŷ) = ŷ and Labs(1, ŷ) = 1− ŷ, we need to have

ŷ ≤ −c ln
n∑
i=1

vt,i exp(−ηEi,t)

1− ŷ ≤ −c ln
n∑
i=1

vt,i exp(−η(1− Ei,t)).

70

Let β = e−η. Since the function z 7→ βz is convex, for 0 ≤ z ≤ 1 we have

β(1−z)a+zb ≤ (1− z)βa + zβb

for all a, b ∈ R. Choosing a = 0 and b = 1 gives us

βz ≤ 1− z + zβ.

We get

−c ln
n∑
i=1

vt,i exp(−ηEi,t) ≥ −c ln
n∑
i=1

vt,i(1− Ei,t + βEi,t)

= −c ln(1− (1− β)rt)

and

−c ln
n∑
i=1

vt,i exp(−η(1− Ei,t)) ≥ −c ln
n∑
i=1

vt,i(1− (1− Ei,t) + β(1− Ei,t))

= −c ln(1− (1− β)(1− rt))

where rt =
∑n

i=1 vt,iEi,t.

71

Thus, it is sufficient to show for all 0 ≤ rt ≤ 1 that

ŷ ≤ −c ln(1− (1− β)rt)
1− ŷ ≤ −c ln(1− (1− β)(1− rt)).

We combine the conditions as

1 + c ln(1− (1− β)(1− rt)) ≤ ŷ ≤ −c ln(1− (1− β)rt).

Obviously a suitable ŷ exists, if and only if

1 + c ln(1− (1− β)(1− rt)) ≤ −c ln(1− (1− β)rt).

In this case one suitable choice would be

ŷ =
1

2
(1 + c ln(1− (1− β)(1− rt))− c ln(1− (1− β)rt)) .

We could also go back to the original conditions for ŷ and choose

ŷ =
1

2

(
1 + c ln

n∑
i=1

vt,i exp(−η(1− Ei,t))− c ln
n∑
i=1

vt,i exp(−ηEi,t)

)
.

72

Finally, to verify

1 + c ln(1− (1− β)(1− rt)) ≤ −c ln(1− (1− β)rt),

first use Jensen’s inequality and the concavity of ln to see that

2c ·
(

1

2
ln(1− (1− β)(1− rt)) +

1

2
ln(1− (1− β)rt)

)
≤ 2c ln

(
1− (1− β)(1− rt) + 1− (1− β)rt

2

)
= −2c ln

2

1 + β

so with our choice

c =

(
2 ln

2

1 + β

)−1

we get

1 + c ln(1− (1− β)(1− rt)) + c ln(1− (1− β)rt) ≤ 1− 2c ln
2

1 + β
= 0

so the condition is satisfied. 2

73

The generalisation of the Weighted Majority algorithm is the following.

Algorithm 2.6 (Aggregating Algorithm (AA)):

Given: loss function L, learning rate η > 0, factor c > 0

Initialise w1,i = 1 for all i.
Repeat for t = 1, . . . , T :

1. Receive all expert predictions Ei,t.
2. Let Wt =

∑N
i=1wt,i and, for y ∈ {0,1 },

Wt(y) =
∑N

i=1wt,i exp(−ηL(y, Ei,t)).
3. Predict with any ŷt satisfying L(y, ŷt) ≤ c ln(Wt/Wt+1(y))

both for y = 0 and y = 1. (If no such ŷt exists, the algorithm fails.)
4. Receive yt and for all i let wt+1,i = wt,i exp(−ηL(yt, Ei,t)).

Remark: Previous lemma shows precisely that with L = Labs and

c =
(
2 ln(2/(1 + e−η))

)−1
, the Aggregating Algorithm never fails. Other such

parameter combinations include L = Llog and c = η = 1, and L = Lsq, η = 2
and c = 1/2, but we will not show the proofs here.

74

Theorem 2.7: If the Aggregating Algorithm never fails, it satisfies for any
trial sequence S the loss bound

L(S,AA) ≤ cη min
1≤i≤N

L(S, Ei) + c lnn,

where L(S, Ei) =
∑T

t=1L(yt, Ei,t).

Proof: Basically the same as for the Weighted Majority. By assumption we
have

L(yt, ŷt) ≤ Pt − Pt+1

for all t, where Pt = c lnWt. Summing over t, we get

L(S,AA) ≤ P1 − PT+1.

We have P1 = c lnn and

−PT+1 = −c lnWT+1

≤ −c lnwt+1,i

= −c ln exp

(
−η

T∑
t=1

L(yt, Ei,t)

)
= cηL(S, Ei)

for any 1 ≤ i ≤ n. 2

75

Corollary 2.8: Let η > 0 be arbitrary and β = e−η. With
c = (2 ln(2/(1 + β)))−1, the Aggregating Algorithm for absolute loss achieves

Labs(S,AA) ≤
η

2 ln(2/(1 + β))
min

1≤i≤n
Labs(S, Ei) +

1

2 ln(2/(1 + β))
lnn.

Remark Comparing this to the Weighted Majority bound

L0−1(S,WM) ≤
η

ln(2/(1 + β))
min

1≤i≤n
L0−1(Ei) +

1

ln(2/(1 + β))
lnn

and remembering the interpretation of absolute loss as expected number of
mistakes, we see that allowing randomised (soft) predictions saves a factor
2 in the loss bound.

76

Tuning the learning rate

The bound of the previous corollary contains the learning rate η = − lnβ as
a free parameter. The choice of such parameters often has a large impact
on the performance of the algorithm, both in practice and in theoretical
analysis. In batch learning, the most common approach to parameter tuning
is cross-validation. (See Introduction to Machine Learning.) In online
learning, it is not clear what could replace cross-validation, and anyway we
also want to have some insight into the theory, too.

Let us denote the loss of the best expert by L∗ = miniL0−1(S, Ei) The basic
idea is that if L∗ and lnn are known, the bound from previous corollary is
simply a function of η. We then choose η so as to minimise the bound (or
some more convenient approximation of it).

77

In reality things are not so simple, since η must be fixed at the beginning,
when one would not usually know L∗.

The first approach to this problem is to assume that at least some upper
bound K ≥ L∗ is available in advance.

Theorem 2.9: Define h(z) = 1 + 2
√
z + z/ ln 2. If K is such that L∗ ≤ K

and η = lnh((lnn)/K), then

Labs(S,AA) ≤ L∗ +
√
K lnn+

lnn

2 ln 2
.

(Proof: Plug in value of η to previous corollary and crank; details omitted.)

Of course if we knew L∗ in the beginning, we would get the best bound by
choosing K = L∗.

If we know T in advance, which is a much more reasonable assumption, we
could choose K = T .

Further, if we assume that H is closed with respect to complementation, i.e.
for all h ∈ H there is h̄ ∈ H such that h̄(x) = 1− h(x), we could choose
K = T/2. If H is originally not closed with respect to complementation, we
can always make it so by at most doubling |H| = n. This only increases the
term lnn to lnn+ ln 2 in the bound.

78

There are still problems with using the upper bound L∗ ≤ T/2:

• This might still be a very loose estimate.

• We might not know even T in advance.

Before briefly discussing these issues, consider first the bound we get with
K = T/2. We rewrite it as

Labs(S,AA)− L∗ ≤
√

(T/2) lnn+
lnn

2 ln 2
.

The quantity Labs(S,AA)− L∗ is called the regret of the Aggregating
Algorithm. Intuitively, this is how much we afterwards regret that we did
not know the best expert in advance. Thus, the algorithm has regret
O(T 1/2) (in this context we consider n a constant). Equivalently,

Labs(S,AA)

T
−
L∗

T
≤
√

2 lnn

T
+

lnn

2T ln 2
,

so the regret per time unit goes to zero at rate O(T−1/2). This suggests
that in some sense the algorithm is converging towards the best expert.

79

The interpretation of the sublinear regret

Labs(S,AA)− L∗ = O
(
T 1/2

)
as some kind of convergence has one major flaw. The bound requires that η
is chosen suitably as a function of T and fixed in the beginning. Therefore it
is not the case that for any single instance of the Aggregating Algorithm
the regret per time (Labs(S,AA)− L∗)/T would go to zero as T increases.
Rather, we must consider a different instance of the AA, with different η,
for each value T .

The two major methods for dealing with this are

• the doubling trick

• self-confident tuning.

We explain only the basic ideas. For details (which are complicated) see
Auer, Cesa-Bianchi and Gentile, Adaptive and self-confident learning
algorithms.

80

The doubling trick

Suppose we do not know even T in advance. We can dynamically adjust η
as follows.

1. Let B ← B0 for some suitable initial value B0 > 0.

2. Choose η according to Theorem 2.9 with K = B. Let M be the
resulting mistake bound.

3. Run the algorithm until one of the following happens:
• Mistake count exceeds M . Set B ← 2B (“doubling”). Reset the

weights of the algorithm, and the mistake count. Go to Step 2.
• We finish without exceeding M mistakes, and are happy.

Thus, the run of the algorithm consists of stages. During Stage i, we act as
if we knew L∗ ≤ 2iB0.

Since the estimate B increases, the value η decreases as we go from one
stage to the next one. Therefore it really is necessary to reset the weights,
otherwise we might never recover from the effect of too large learning rate
in some early stage.

81

By carefully choosing B and summing up all the stages we get for this
algorithm

L0−1(S,A) ≤ L∗ + a
√
L∗ lnn+ b lnn

for some a, b > 0. Very roughly, the idea is the following:

• In the last stage, the estimate B is at most double the loss of the best
expert (for that stage).

• Hence, the regret for the last stage is at most some constant times the
optimum.

• Because of how doubling works, total regret in all earlier stages is at
most the same as (the upper bound for) the last stage.

Doubling is probably not a good strategy in practice, since the weights
must be reset at the beginning of each stage, losing anything we learned
previously.

Nevertheless, one should be aware of this concept, since it is often
mentioned in the theory literature (also in the context of non-machine
learning algorithms).

82

Self-confident algorithms

The learning rate given in Theorem 2.9 was

η = ln
(

1 + 2
√
z +

z

ln 2

)
where z = (lnn)/K and K ≥ L∗. The interesting case is large L∗, i.e. small

z. Since η = 2
√
z +O(z), we approximate it η = d

√
(lnn)/K for some d > 0.

The idea of self-confident algorithms is that instead of trying to bound L∗ in
the beginning, we allow η to change and use increasingly accurate estimates
for L∗. Hence, at time t we use learning rate

ηt = d

√
lnn

L≤t∗

where d > 0 is a suitable constant and

L≤t∗ = min
1≤i≤n

t∑
j=1

L0−1(yj, Ei,j)

is the loss of the best expert up to time t which can easily be observed.

83

Intuitively, we are always using slightly wrong learning rate, but the effect of
this on any trial can be bounded so that we again can bound the total loss
as

L0−1(S,A) ≤ L∗ + a
√
L∗ lnn+ b lnn

for some a, b > 0.

This technique can be used also for example in linear classification
algorithms (of which we will soon see some examples). There L≤t∗ is not as
easy to evaluate exactly as in the expert setting, so we use estimates.
Possible estimates include

• Ct where C is an upper bound for loss in single trial

• the loss of the algorithm
∑t

j=1L0−1(yj, ŷj).

The first estimate leads to η = C ′/
√
t for some C ′. This is simple and fairly

popular in practice.

The second estimate is more theoretical, but it gives the name of this
approach: the algorithm is confident that its own loss is pretty close to L∗.

84

Online learning of linear classifiers

Let X = Rd and Y = {−1,1 }. We use the notation f(·;w, b) for the linear
classifier

f(x;w, b) = sign(w · x− b) =

{
−1 if w · x < b
1 if w · x ≥ b.

We use notation f(·;w) for the important special case where b is fixed to
zero.

The normalised margin of example (x, y) with respect to f(·;w, b) is

y(w · x− b)
‖w‖2

where ‖w‖2 =
(∑d

i=1 |wi|
2
)1/2

is the Euclidean norm.

The margin is positive (or zero) if f(x;w, b) = y and negative otherwise.
The absolute value of the margin is the geometric distance of x from the
hyperplane { z | w · z = b }, i.e. the decision boundary.

We call y(w · x− b) the unnormalised margin.

85

We sometime include the threshold value b as part of the weight vector w,
so we do not need to consider it separately in the learning algorithm.

• Suppose we have an algorithm A that learns linear classifiers of the
form f(·;w) (with threshold fixed to zero).

• Based on a sample s = ((x1, y1), . . . , (xm, ym)) ∈ (Rd×{−1,1 })m, we wish
to learn a classifier f(·;w, b) where the threshold b may be non-zero.

• For x = (x1, . . . , xd) ∈ Rd, let x̃ = (x1, . . . , xd,1) ∈ Rd+1, and similarly
S̃ = ((x̃1, y1), . . . , (x̃m, ym)) ∈ (Rd+1 × {−1,1 })m.

• We apply the algorithm A with sample S̃, obtaining a weight vector
w̃ = (w̃1, . . . , w̃n, w̃d+1) ∈ Rd+1.

• The d dimensional classifier f(·;w, b) is obtained as w = (w̃1, . . . , w̃d) ja
b = −w̃d+1.

Now f(x;w, b) = f(x̃, w̃).

86

The Perceptron Algorithm

This is the most basic algorithm for linear classification. We fix threshold
b = 0; to get the more general case, use the reduction on previous page.

Algorithm 2.10 (The Perceptron Algorithm):

Initialise w1 ← 0.
For t = 1, . . . , T do the following:

1. Get the instance xt ∈ Rd.
2. Predict ŷt = sign(wt · xt) ∈ {−1,1 }.
3. Get the correct answer yt ∈ {−1,1 }.

Let σt = 1 if yt 6= ŷt and σt = 0 if yt = ŷt.
4. Update wt+1 ← wt + σtytxt.

In other words, if no mistake is made, σt = 0 and the weight vector remains
unchanged.

87

Theorem 2.11 (Perceptron Convergence Theorem): Let B > 0 be
such that ‖xt‖2 ≤ B for all t. Assume that for some u ∈ Rd the classifier
f(·;u) has normalised margin at least γ > 0 on all examples (xt, yt) (i.e., the
sample is linearly separable with margin γ). Then the Perceptron Algorithm
makes at most

T∑
t=1

σt ≤
B2

γ2

mistakes.

Remark: The mistake bound does not explicitly depend on T or d. They
could even be infinite (if the notations and definitions are generalised
suitably; we omit the details).

Remark: We could equivalently formulate the separability assumption as

• some u with ‖u‖2 = 1 satisfies ytu · xt ≥ γ for all t, or

• some u with ‖u‖2 ≤ 1/γ satisfies ytu · xt ≥ 1 for all t.

88

Before the proof, consider briefly the implications.

Suppose we have a sample of m examples

s = ((x1, y1), . . . , (xm, ym)) ∈ (Rd × {−1,1 })m.
For k = 1,2,3, . . ., let sk be the sample of mk examples obtained by taking k
copies of s and putting them one after another.

Running the Perceptron on sk, if there ever are m consecutive time steps
during which no mistake was made, the algorithm has learned to predict all
the examples correctly. Hence there will be no more updates, and the
algorithm has converged.

Suppose some u has margin at least α > 0 on s. The margin is of course
the same for sk, for all k. If

r =
maxt ‖xt‖2

2

α2
,

then for any k the Perceptron Algorithm makes at most r mistakes on sk.

In particular, if we take k = r + 1, we know that in sk there must be some
sequence of m consecutive examples during which there were no mistakes.

Hence, after repeating the sample at most r + 1 times the algorithm has
converged to a consistent hypothesis (wt such that yjwt · xj > 0 for all j).

89

The previous remark is related to applying online algorithms to the
statistical learning setting. We shall return to this later in more detail. For
now, just some brief remarks:

• Linear classifiers in high-dimensional spaces are a very rich concept
class. In modern machine learning applications it is common to have
n� m. (This is often the result of using feature maps, of which more
soon.) In this case running the Perceptron through the sample
sufficiently many times will produce a consistent hypothesis, no matter
what the actual data is (barring some pathological special cases). This
is an example of overfitting.

• Various methods exist to avoid overfitting. They include early stopping
and keeping the weights “small” by regularisation.

• Algorithmically, if the margin is small then the problem of finding a
consistent linear classifier may be more efficiently solved by linear
programming.

90

Proof of the Perceptron Convergence Theorem: Without loss of
generality we can take ‖u‖2 = 1. Then ytu · xt ≥ γ for all t.

The idea is to show that wt converges towards cu where c > 0 is a suitable
constant. (Recall that u and cu for c > 0 define the same classifier.)

We define a potential function

Pt =
1

2
‖cu−wt‖2

2 ,

where c > 0 is to be fixed later. Initially P1 = c2 ‖u‖2
2 /2 = c2/2. Always

Pt ≥ 0.

Next we lower bound the drop of potential at time t as

Pt − Pt+1 ≥
(
cγ −

B2

2

)
σt.

91

For σt = 0 the claim is clear. Assume σt = 1, so ytwt · xt ≤ 0.

By simply writing the squared norms as dot products it is easy to verify

1

2
‖u−w‖2

2 −
1

2

∥∥u−w′∥∥2

2
= (w′ −w) · (u−w)−

1

2

∥∥w −w′∥∥2

2
.

for all u,w,w′ ∈ Rd. (Notice that since the dot product on the right-hand
side can be negative, this shows that the squared Euclidean distance does
not satisfy the triangle inequality.)

By plugging in u← cu, w ← wt and w′ ← wt+1, and noticing
wt+1 −wt = ytxt, we get

Pt − Pt+1 = ytxt · (cu−wt)−
1

2
‖xt‖2

2 .

Since ‖xt‖2 ≤ X, ytu · xt ≥ γ and ytwt · xt ≤ 0, we get

Pt − Pt+1 ≥ cγ −
B2

2
.

92

By summing over t we get

c2

2
≥ P1 − PT+1

≥
T∑
t=1

(Pt − Pt+1)

≥
(
cγ −

X2

2

) T∑
t=1

σt

which for c ≥ X2/(2γ) becomes

T∑
t=1

σt ≤
c2

2cγ −X2
.

We get the desired bound by choosing c = X2/γ. (A straightforward
differentiation shows that this choice of c maximises

2cγ −X2

c2

and thus gives the best bound.) 2

93

To get some geometrical intuition, denote by ϕ(u,x) the angle between
vectors u and x. That is,

cosϕ(u,x) =
u · x

‖u‖2 ‖x‖2

.

Do the standard simplification trick of replacing (xt, yt) by (x̃t,1) where
x̃t = ytxt. The condition ytu · xt ≥ γ then becomes u · x̃t ≥ γ.

For simplicity, consider the special case ‖xt‖2 = 1 for all t. The condition
becomes cosϕ(u, x̃t) ≥ γ. Thus for all x̃t we have

ϕ(u, x̃t) ≤ arccos γ =
π

2
− θ

for some constant θ > 0. All the x̃t are in a certain cone opening around the
vector u in angle π/2− θ.

Suppose we now simply want to find any w such that w · x̃t > 0 for all t.
Thus any positive margin is acceptable. Then we can pick any w in the
interior of the cone opening in an angle θ around u.

The idea of the Perceptron Convercence Theorem is that every mistake
twists wt towards u by a fixed amount, and after a finite number of
mistakes wt is in the cone and no further mistakes occur.

94

Example 2.12: Let g be a k-literal conjunction over n variables. That is,

g(x) = x̃i1 ∧ . . . ∧ x̃ik,
where each literal x̃j is either xj or xj.

For i = 1, . . . , d, define uj = 1 if g contains the literal xj and uij = −1 if g
contains the literal xj. Further, introduce an extra variable xd+1 that is
always set to 1, and let ud+1 = −k + 1. For all other i we set ui = 0. Then

g(x) = sign

(
d+1∑
i=1

uixi

)
and this linear classifier has unnormalised margin 1. Since
‖u‖2 =

√
k · 12 + (d− k) · 02 + (k − 1)2, the normalised margin is

(2k2 − 2k + 1)−1/2.

95

Assume now that the sequence ((xt, yt)) ∈ ({−1,1 }d × {−1,1 })T is such
that yt = g(xt) for all t. Then ‖xt‖2

2 = d+ 1 for all t. Plugging this and the
margin to the Perceptron Convergence Theorem, we get

T∑
i=1

σt ≤ d(2k2 − 2k + 1).

In practical applications, we of course never know that the target is a
k-literal conjunction. Nevertheless bounds like this do give useful intuition
about what affects the performance of the algorithm.

Notice in particular that the mistake bound is linear in d even if the target is
extremely simple, say k = 1. By experimenting, we can see that this is how
the algorithm actually behaves, not just some loose upper bound.
2(Example)

96

Feature mappings

Consider learning classifiers over instance base X. In principle a feature map
is any function ψ : X → Rr, for some r. The r components ψi(x) are called
features of x, and Rr is the feature space.

Given a feature map ψ and a linear prediction algorithm A (e.g. the
Perceptron), we can learn classifiers X → {−1,1 } by doing the following at
time t:

1. Get input xt.
2. Give ψ(xt) as input to A.
3. Get prediction ŷt from A and give it as your prediction.
4. Get correct answer yt and give to A.

Thus, the linear algorithm A sees a transformed sequence
((ψ(xt), yt)) ∈ (Rr × {−1,1 })T . Ideally, we hope to choose ψ such that this
sequence is linearly separable with large margin.

The original instance base X need not be a subset of Rn for any n.
However, having X = Rn with n� r is an important special case.

97

Example 2.13: Consider learning k-clause l-CNF formulas over n variables.
Such formulas are of the form φ1 ∧ . . . ∧ φk, where each clause φi is a
disjunction of l literals (variables or negated variables). We choose as
features all disjunctions of at most l literals. Thus, for n = 4 and l = 2 we
have

ψ(x) = (false, true, x1, x2, x3, x4, x1, x2, x3, x4,

x1 ∨ x2, x1 ∨ x3, x1 ∨ x4, x1 ∨ x2, x1 ∨ x3, x1 ∨ x4,

x1 ∨ x2, x1 ∨ x3, x1 ∨ x4, x1 ∨ x2, x1 ∨ x3, x1 ∨ x4,

x2 ∨ x3, x2 ∨ x4, x2 ∨ x3, x2 ∨ x4, x2 ∨ x3, x2 ∨ x4, x2 ∨ x3, x2 ∨ x4,

x3 ∨ x4, x3 ∨ x4, x3 ∨ x4, x3 ∨ x4).

(The ordering of the features is of course unimportant.) Here r = 34. In
general we can roughly estimate estimate r ≤ (2n+ 1)l.

Assume now yt = g(xt) where xt ∈ {−1,1 }n and g is a k-clause l-CNF
formula. Then yt = g̃(ψ(xt)) where g̃ is a k-literal conjunction. Based on the
previous example, we know that using the Perceptron Algorithm with this
feature map will make at most

r(2k2 − 2k + 1) ≤ (2n+ 1)l(2k2 − 2k + 1)

mistakes. 2

98

Example 2.14: A monomial over (real-valued) variables x1, . . . , xn is a
product xk1

1 . . . x
kn
n . The degree of the monomial is k1 + · · ·+ kn. Let r be the

number of degree k monomials over n variables, and let ψi, i = 1, . . . , r, be
these monomials. A degree k polynomial over x is a sum

r∑
i=1

aiψi(x)

where ai ∈ R. A degree k polynomial classifier is a classifier g that can be
represented as g(x) = sign(p(x)) for some degree k polynomial p. The
feature map ψ reduces learning degree k polynomial classifiers to learning
linear classifiers in r dimensions.

It can be shown that r =
(
n+k
k

)
. As a useful estimate, we have(n

k
+ 1

)k
≤
(n+ k

k

)
≤
(en

k
+ e

)k
.

As a practical application, consider classifying images given as pixel vectors.
Using a linear classifier would allow us to give weights to individual pixels,
which is often not very informative. Using degree 2 polynomials allows us to
consider correlations between pair of pixels. In general, degree k polynomials
consider interactions between groups of k pixels. 2

99

The Kernel Trick

This is an important technique that makes feature mapping particularly
attractive for linear learning.

The feature spaces Rr of interesting feature mappings tend to have very
large r. This is a computational problem, since it looks like we would need
to do a lot of manipulation of r-dimensional vectors.

A kernel function for feature map ψ is a function k : X2 → R such that
k(x, z) = ψ(x) ·ψ(z) for all x, z ∈ X. Here · is the dot product in the
r-dimensional feature space. Often the kernel is much simpler to compute
than the actual feature map (examples follow).

To apply to the Perceptron, notice that with feature map ψ we have
wt =

∑t−1
j=1 σjyjψ(xj). Therefore

wt ·ψ(xt) =
t−1∑
j=1

σjyjψ(xj) ·ψ(xt) =
t−1∑
j=1

σjyjk(xj, xt).

100

We get the following algorithm:

Algorithm 2.15 (Kernelised Perceptron):

For t = 1, . . . , T do the following:
1. Get the instance xt ∈ X.
2. Let pt =

∑t−1
j=1 σjyjk(xj, xt). Predict ŷt = sign(pt).

3. Get the correct answer yt ∈ {−1,1 }.
4. If ytpt ≤ 0, set σt = 1 and store yt and xt.

Otherwise σt = 0 and xt can be discarded.

Instead of storing (and manipulating) an explicit feature space weight vector
wt, which would have r components, we store O(T) instances xt and
coefficients σt. For large enough T , this can be a computational problem,
too.

101

Theorem 2.16: Let ψ : X → Rr be a feature map with kernel k, and write
B2 = maxt k(xt, xt). If there is a vector u ∈ Rr such that ‖u‖2 = 1 and
ytu ·ψ(xt) ≥ γ > 0 for all t, then the Kernelised Perceptron makes at most

B2

γ2

mistakes on sequence ((xt, yt)).

Proof: This is a direct corollary the the original Perceptron Convergence
Theorem applied to the sequence ((ψ(xt), yt)). Notice that
‖ψ(x)‖2

2 = ψ(x) ·ψ(x) = k(x, x). 2

The vector u in the theorem can be any vector in the feature space. We do
not require u = ψ(z) for some z ∈ X.

Next we consider some basic examples of kernels.

102

Example 2.17 (Monomial kernel): Consider X ⊆ Rn and the kernel

k(x, z) = (x · z)q .

This corresponds to an r dimensional feature space, where r =
(
n+q−1

q

)
is the

number of monomials over n variables with degree exactly q. (For constant
q, we have r = Θ(nq).)

To see this, denote the monomials by ψ1(x1, . . . , xn), . . . , ψr(x1, . . . , xn). By
simply multiplying out, we get

(x · z)q = (x1z1 + · · ·+ xnzn)q

=
r∑

j=1

cjψj(x1z1, . . . , xnzn)

=
r∑

j=1

cjψj(x1, . . . , xn)ψj(z1, . . . , zn)

for some constants cj (that depend on n and q). For example, in case
n = q = 2 we get

(x1z1 + x2z2)2 = (x1z1)2 + 2x1z1x2z2 + (x2z2)2.

If we define ψ̃j(x) = c
1/2
j ψj(x), we see that k(x, z) = ψ̃(x) · ψ̃(z).

103

Hence, the kernel k corresponds to features which are the monomials ψj
with some weights c1/2

j . We have reduced computing the dot product in
Θ(nq) dimensional feature space to computing the dot product in n
dimensional space and taking a power which does not depend on n. 2

104

Example 2.18 (Polynomial kernel): The degree q polynomial kernel,
again for X ⊆ Rn, is given by

kq(x, z) = (x · z + c)q

where c > 0 is some suitable constant. It can be shown that the dimension
of the feature space is r =

(
n+q
q

)
and each feature is one of the r monomials

of degree at most q multiplied by some constant.

The values of these constants can be determined by writing

kq(x, z) =
q∑

j=0

(q
j

)
cq−j(x · z)j

and rewriting (x · z)j as in previous example. For practical purposes this is
not really interesting:

We do not really care about the details of the feature map, since
we never need to compute it and the kernel tells us all we need to
know.

The expansion above does indicate that the larger c, the less weight is given
to high-degree monomials. 2

105

Example 2.19 (All subsets kernel): Again X ⊆ Rn. We take as features
the functions ψA for all A ⊆ {1, . . . , n } where

ψA(x) =
∏
i∈A

xi.

In other words, we have all monomials where each individual variable may
have degree at most 1. There are 2n such monomials, and the kernel can be
written as

k(x, z) =
n∏
i=1

(1 + xizi).

This has an interesting application to Boolean functions. We encode true
as 1 and false as 0 (instead of the ±1 encoding we have been using). Then
for x ∈ {0,1 }n, the features ψA are exactly the monotone conjunctions over
n variables. Further, we can include non-monotone ones by using

k′(x, z) =
n∏
i=1

(1 + xizi)(1 + (1− xi)(1− zi))

or equivalently replacing x ∈ {0,1 }n by
(x1, . . . , xn,1− x1, . . . ,1− xn) ∈ {0,1 }2n.

106

Denote the feature map corresponding to k′ by ψ′. It has 4n features that
for x ∈ {0,1 }n become all the conjunctions, with false having several
representations.

An arbitrary l-term DNF formula can be represented as sign(u ·ψ′(x)) where
‖u‖2

2 = l and the unnormalised margin is 1/2. Thus, it would seem that with
this kernel the Perceptron could learn arbitrary Boolean formulas with O(n)
time per update.

Unfortunately, this will not work, since maxx k′(x,x) = 2n so the mistake
bound becomes

2n

1/(2
√
l)2

= l2n+2

which is larger than |X| = 2n. Since this also means that the number of
non-zero σt can be Ω(2n), also the computational efficiency becomes
questionable. 2

107

Example 2.20 (Gaussian kernel): For X ⊆ Rn, we define

k(x, z) = exp

(
−
‖x− z‖2

2

2σ2

)
where σ > 0 is a suitably chosen parameter. (The ”suitable” values depend
on application and may not be trivial to find.) This is also known as the
radial basis function (RBF) kernel.

In this case the feature space is actually not Rn for any finite n but an
infinite dimensional Hilbert space. Still, the computations can be done in
finite time using kernels and the mistake bound analysis can be done using
some inner product in some feature space. We ignore the formal details for
now.

Since now k(x,x) = 1 for all x ∈ Rn, we can interpret the kernel as a
similarity measure:

‖ψ(x)−ψ(z)‖2
H = 〈ψ(x)−ψ(z),ψ(x)−ψ(z)〉H

= 〈ψ(x),ψ(x)〉H − 2 〈ψ(x),ψ(z)〉H + 〈ψ(z),ψ(z)〉H
= k(x,x)− 2k(x, z) + k(z, z)
= 2− 2k(x, z)

where ‖·‖H and 〈·, ·〉H refer to the norm and inner product in the Hilbert
space.

108

A large number of easy-to-compute kernels are known, and more are being
developed. We shall not try to list them here, but it should be noted that
kernels exist for a wide variety of instance classes X (trees, graphs, strings,
text documents, . . .).

The recent interest in kernels among the machine learning community is
largely due to the success of Support Vector Machines (SVMs) that are a
statistical learning algorithm based on kernels and large margins. Kernels
themselves are an old idea in mathematics, and their use in ”machine
learning” goes back to 1960’s.

We return to SVMs later, and consider some theoretical issues we ignored
here (such as, given k(·, ·), is it really a kernel for some feature map).

Despite its simplicity, the Kernelised Perceptron is surprisingly good. More
sophisticated algorithms (such as SVM) can be more accurate, but often
not by much, and they are computationally much more expensive.

109

Online learning with non-separable data

Often there is no u with positive margin on all the examples:

• the examples may contain errors

• the target classifier may be non-linear

• a target classifier may not exist at all (or the target is ”probabilistic”)

We generalise our bounds for this scenario by considering the hinge loss (or
soft margin loss).

For any margin parameter µ ≥ 0 we define
the hinge loss as

Lµ(u,x, y) = max {0, µ− yu · x } .
If yu · x ≤ 0, then Lµ(u,x, y) ≥ µ.
If yu · x ≥ µ, then Lµ(u,x, y) = 0.

���
XXX

C
C
C�
�
�

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

0 µ

110

Given some sequence S = ((xt, yt)) ∈ (Rn × {−1,1 })T , define for any linear
prediction algorithm A and any fixed weight vector u ∈ Rn

Lµ(S,A) =
T∑
t=1

Lµ(wt,xt, yt) and Lµ(S,u) =
T∑
t=1

Lµ(u,xt, yt).

Define similarly the discrete losses L0−1(A) and L0−1(u).

If yu · x ≤ 0, then Lµ(u,x, y) ≥ µ. Therefore

L0−1(u) ≤
1

µ
Lµ(u).

Ideally, we would wish to have bounds of the form

L0−1(S,A) ≤ aL0−1(S,u) + b

for some constants a and b (that might depend on norms of xt etc.).
However, this seems very difficult. We settle for weaker bounds of the form

L0−1(S,A) ≤
a

µ
Lµ(S,u) + b.

111

We obtain the desired bound for Perceptron by analysing the following more
general algorithm in terms of hinge loss and then considering some special
cases.

Algorithm 2.21 (Marginalised Perceptron (MP)):
parameters: learning rate η > 0, margin parameter ρ ≥ 0.

Initialise w1 = 0 ∈ Rn.
Repeat for t = 1, . . . , T :
1. Get input xt ∈ Rn.
2. Predict ŷt = sign(wt · xt).
3. Get correct answer yt ∈ {−1,1 }.
4. If ytwt · xt ≤ ρ then σ̃t = 1.

Otherwise σ̃t = 0.
5. Let w′t+1 = wt + ησ̃tytxt.
6. If

∥∥w′t+1

∥∥
2
> 1 then wt+1 = w′t+1/

∥∥w′t+1

∥∥
2
.

Otherwise wt+1 = w′t+1.

We get the usual Perceptron by taking ρ = 0 and omitting the normalisation
(step 6). The value η is then irrelevant.

If ytwt · xt ≤ ρ, we say that a margin error occurred, which we denote by
σ̃t = 1. Step 6 forces the hypothesis to stay inside the unit ball.

112

Remarks on the marginalised Perceptron

The original Perceptron algorithm is conservative: it only updates its
hypothesis when a mistake occurs. Choosing ρ > 0 makes the algorithm
aggressive: updates may occur even when there was no actual error. This
may lead to faster learning.

Assuming linearly separable data, the original Perceptron algorithm stops as
soon as a consistent hypothesis is achieved. Using ρ > 0 also has the effect
of forcing the algorithm to go on until margin ρ is achieved. We combine
this with a normalisation step in order to get a normalised margin ρ.

113

We start by stating a bound on margin errors.

Theorem 2.22: Assume ‖u‖2 ≤ 1 and ‖xt‖2 ≤ X for all t. Then for any
0 ≤ ρ < µ and 0 < η < 2(µ− ρ)/X2 the Marginalised Perceptron has

T∑
t=1

σ̃t ≤
Lµ(u)

µ− ρ− ηX2/2
+

1

2η(µ− ρ− ηX2/2)
.

Intuitively µ is our idea of the margin with which the examples “should” be
linearly separable. If the examples actually are not separable with margin µ,
we want to consider the difference as “noise” that makes learning harder
but ideally should not affect the end result.

Then ρ is the goal we set to our algorithm. We would wish to set ρ as close
to µ as possible, but this will cost more margin errors.

After we have decided our goal by fixing ρ, the learning rate η can be tuned
to get the fastest learning.

This becomes clearer by considering two extreme examples.

114

Example 2.23: Choose ρ = 0, so σ̃t = σt. By straightforward calculus, we
can find η such that the bound is minimised. The optimised bound is

T∑
t=1

σt ≤
Lµ(u, S)

µ
+

X2

2µ2
+

(
2Lµ(u, S)

µ
+

X2

2µ2

)1/2(
X2

2µ2

)1/2

=
Lµ(u, S)

µ
+O

(√
Lµ(u, S)

)
if we consider X and µ as constants. This gives a bound for how much the
performance of the algorithm degrades, if the data are not linearly separable.

If we take ρ = 0 and omit the normalisation step, we get a bound for the
usual Perceptron when the data is not linearly separable. The fact that our
bound would seem to suggest a particular value η is an artefact of our proof
technique. 2

115

Example 2.24: Assume that u actually separates ((xt, yt)) with margin µ,
so Lµ(u, S) = 0. Choose ρ = (1− ε)µ for some 0 < ε ≤ 1.

The bound is minimised for η = (µ− ρ)/X2, giving

T∑
t=1

σ̃t ≤
X2

ε2µ2
.

Setting ε = 1 gives the familiar Perceptron mistake bound.

More generally, if we know the optimal margin µ, we can force the algorithm
to find a hypothesis with margin within ε of optimal, but the number of
updated needed for that grows as O(1/ε2).

Knowing µ in advance is often not realistic. There are more sophisticated
algorithms that can approximate the optimal margin without knowing it in
advance. 2

116

Proof of Marginalised Perceptron bound: We consider the potential

Pt =
1

2
‖u−wt‖2

2 .

This time we use the learning rate η to take care of proper scaling.

We decompose the potential decrease as

Pt − Pt+1 =
1

2
‖u−wt‖2

2 −
1

2

∥∥u−w′t+1

∥∥2

2

+
1

2

∥∥u−w′t+1

∥∥2

2
−

1

2
‖u−wt+1‖2

2 .

Since u is within the unit ball B = {w | ‖w‖2 ≤ 1 }, and wt+1 is the
projection of w′t+1 onto that ball, we can estimate

1

2

∥∥u−w′t+1

∥∥2

2
−

1

2
‖u−wt+1‖2

2 ≥ 0.

117

As in the Perceptron convergence proof, we have

1

2
‖u−wt‖2

2 −
1

2

∥∥u−w′t+1

∥∥2

2
= (w′t+1 −wt) · (u−wt)−

1

2

∥∥wt −w′t+1

∥∥2

2

= ησ̃tyt(u−wt) · xt −
1

2
η2σ̃t ‖xt‖2

2 .

We estimate σ̃tytwt · xt ≤ σ̃tρ and σ̃tytu · xt ≥ σ̃tµ− Lµ(u,xt, yt). Combining
with the previous, we get

Pt − Pt+1 ≥ −ηLµ(u,xt, yt) + σ̃tη
(
µ− ρ− ηX2/2

)
.

The result follows by summing over t = 1, . . . , T and noticing P1 = 1
2
‖u‖2

2
and PT+1 ≥ 0. 2

118

Online prediction: summary We were interested in relative loss

bounds or regret bounds of the form

L(A,S) ≤ (1 + o(1)) min
f∈F

L(f, S)

where F is some comparison class of predictors (e.g., a set of experts, or all
norm-bounded linear predictors). We did not always get exactly this form, in
particular with discrete loss.

The algorithms are in general simple to implement and run fast.

Analysis is based on potential functions. With linear prediction, margins are
important. Mathematical tools include Jensen’s inequality, but in general we
do not need any deep results from mathematics.

119

Some interesting topics that we omitted

• the Perceptron is not attribute-efficient: it does not really take
advantage of the situation when the “target” classifier is sparse. The
attribute-efficient counterpart is called Winnow.

• There is a family of p-norm algorithms (1 ≤ p ≤ 2) that interpolate
between the Perceptron and Winnow.

• The ideas about linear classifier learning (attribute-efficient and
otherwise) can be generalised to linear and logistic regression.

• The online prediction model can be extended to model situations where
the “target” changes over time.

• All this is a special case of online convex optimisation. A central tool is
Bregman divergences, which include squared Euclidean distance and
relative entropy.

• In the so-called bandit model, the algorithm gets only partial feedback
about its predictions.

• Follow the Perturbed Leader is another algorithm for combining expert
advice. It is particularly interesting for special cases where the experts
come from a known class of combinatorial objects (say, trying to learn
a minimum spanning tree online).

120

After this part of the course you are able to . . .

• interpret relative loss bounds and explain the role of potential functions
in obtaining them

• reproduce the loss bound proofs for the Aggregating Algorithm and the
Perceptron Algorithm and apply their basic ideas on related problems

• apply Jensen’s inequality in different situations

• explain and apply the basic idea of kernels to linear online classification.

121

3. Statistical learning

We start by introducing

• the Support Vector Machine (SVM)

which is a very popular batch-learning algorithm for linear classifiers. It is
usually used with kernels to implement a feature map, and uses quadratic
optimisation to maximise a margin, or more generally to minimise
margin-based cost function.

We continue by introducing complexity measures of hypothesis classes that
can be used to prove uniform convergence of empirical risks to true risks:

• Vapnik-Chervonenkis (VC) dimension, which is a fairly simple measure
of just the hypothesis class

• Rademacher complexity, which incorporates the input distribution,
making things more complicated but allowing more accurate bounds, in
particular in terms of margins.

122

Support Vector Machine: basics

It is quite possible to use SVMs as plain linear classifiers, without a feature
mapping. However the possibility of kernelising the SVM is so central in
both applications and theory that from the beginning we assume that our
examples are of the form (ψ(xj), yj) where ψ is the feature mapping.

The algorithm then produces a classifier of the form

g(x) = sign

 m∑
j=1

αjyjk(x, xj)

 ,

where k(·, ·) is the kernel corresponding to ψ and αj ≥ 0 are coefficients
determined by an optimisation procedure.

Typically most of the coefficients αj are zero. The vectors ψ(xj) with αj > 0
are called support vectors.

There are two main versions of SVM classifier: hard margin SVM which
enforces a positive margin on all sample points, and soft margin SVM which
minimises a continuous cost function based on the hinge loss.

There are also SVM-based algorithms for regression and unsupervised
learning.

123

A note on feature spaces

Assume that the feature mapping ψ is a function from X to H. In most
examples up to now, the feature space H has been just Rd for some d ∈ N, it
has been possible to write out explicitly the features ψi(x), i = 1, . . . , d, and
the kernel function k(x, x′) gives the usual dot product ψ(x) ·ψ(x′).

However, the only thing we really have required is that the feature space H
is a vector space (over R) that also has an inner product 〈·, ·〉 satisfying the
usual conditions

positive definiteness: 〈x, x〉 ≥ 0 for all x ∈ H, with equality only for
x = 0

symmetricity: 〈x, y〉 = 〈y, x〉 for all x, y ∈ H,
linearity: 〈ax+ by, z〉 = a 〈x, z〉+ b 〈y, z〉 for all x, y, z ∈ H and a, b ∈ R.

Using the inner product we can as usual define the norm

‖x‖ = (〈x, x〉)1/2 .

124

In addition to taking inner products, we shall be doing optimisation over H.
Therefore, we also need H to be complete.

An infinite sequence (x1, x2, . . .) in a norm space is a Cauchy sequence if

lim
n→∞

sup
m>n
‖xm − xn‖ = 0.

The space A is complete, if for any Cauchy sequence (xn) there is a point
x ∈ A such that limn→∞ xn = x.

Thus, we are going to require that H is a complete inner product space.
(Completeness is with respect to the norm defined by the inner product.)
Such spaces are called Hilbert spaces.

We shall not go further into the theory of Hilbert spaces. Just notice that
the most common examples are Rd equipped with the usual dot product, and

`2 =

{
(x1, x2, x3, . . .) ∈ R∞ |

∞∑
i=1

|xi| <∞

}
with the inner product

〈x,y〉 =
∞∑
i=1

xiyi.

125

Optimising margins

Assume now that we have chosen a kernel k on X, and thus implicitly a
feature map ψ : X →H for some Hilbert space (H, 〈·, ·〉). We consider
functions f : X → R of the form

f(x) = 〈w,ψ(x)〉 − b
for some w ∈ H and b ∈ R. Notice that we now explicitly include the bias b.
As usual, we get a classifier as g(x) = sign(f(x)).

Recall that
|f(x)|
‖w‖

is the geometrical distance between the point ψ(x) and the hyperplane
f(x) = 0 (in Hilbert space H). Further, yf(x) > 0 means that g(x) = y.

126

Suppose now that the sample is linearly separable in the feature space, i.e.,
some w ∈ H satisfies yjf(xj) > 0 for all j. For doing empirical risk
minimisation, it would be sufficient to pick any such w as our hypothesis.
However, here we actually pick the one that maximises the margin. This
seems intuitively natural, and also turns out to result in a good bound for
the true risk.

For notational convenience, we formalise this as a minimisation problem.

Optimisation 3.1: Variables w ∈ H, b ∈ R, µ ∈ R

minimise −µ
subject to µ ≥ 0

yi(〈w,ψ(xi)〉 − b)− µ ≥ 0 for i = 1, . . . ,m
‖w‖2 ≤ 1.

127

Remarks: A variable assignment is feasible if it satisfies all the constraints.
In our case, if (w, b, µ) is feasible, then (rw, rb, rµ) is feasible for all
0 < r ≤ 1/ ‖w‖. This means that

1. If feasible solutions exist, the optimum occurs for ‖w‖ = 1.

2. We would get the same solutions, up to rescaling, by minimising ‖w‖2

subject to constraints yi(〈w,ψ(xi)〉 − b) ≥ 1. This formalisation is a
quadratic optimisation problem.

128

Brief introduction to convex optimisation

Consider the following problem where f , pi and qi are functions Rn → R.

Optimisation 3.2: Variables x ∈ Rn

minimise f(x)
subject to pi(x) ≤ 0 for i = 1, . . . ,m

qj(x) = 0 for j = 1, . . . , l.

The problem is convex if f is convex, pi is convex for i = 1, . . . ,m, and qj is
affine for j = 1, . . . , l (i.e., qj(x) = uj · x+ bj for some uj ∈ Rn, bj ∈ R).

Notice that Optimisation 3.1 is convex (with some trivial rewriting of the
constraints).

The feasible set is the set of x such that the constraints pi(x) ≤ 0 and
qj(x) = 0 are satisfied. For a convex problem, the feasible set is convex
(i.e., if x and y are feasible, so is (1− v)x+ vy for all 0 ≤ v ≤ 1).

129

The gradient is the generalisation of the derivative for functions of several
variables.

Consider a function f : Rd → R. We obtain the partial derivative of f with
respect to xi by differentiating f with respect to xi while keeping the rest of
the variables constant:

∂f(x1, . . . , xd)

∂xi
= lim

h→0

f(x1, . . . , xi + h, . . . , xd)− f(x1, . . . , xi, . . . , xd)

h
.

The gradient ∇f(x) is just the vector of the partial derivatives:

∇f(x) =

(
∂f(x)

x1
, . . . ,

∂f(x)

xd

)
.

If the gradient is defined everywhere, i.e. f is everywhere differentiable, then
at any x that is a local optimum (minimum or maximum) of f , the gradient
∇f(x) is zero. (If, say, ∂f(x)/∂x3 is positive, then f(x) could be increased
by increasing x3 and decreased by decreasing x3.)

130

Consider now g : R→ Rd and f : Rd → R. We have a chain rule

df(g(z)

dz
=

d∑
i=1

g′i(z)
∂f(y)

∂yi
= g′(z) · ∇f(y)

where the partial derivatives of f are evaluated at y = g(z).

In particular, consider how fast f increases when we move from point x in
direction r:

df(x+ hr)

dh
= r · ∇f(x)

where we substituted h← 0 on the right-hand side. Thus, keeping the norm
of r constant, we see that f increases the fastest when r is parallel to
∇f(x), and remains constant (as a first-order approximation) if r is
orthogonal to ∇f(x).

In other words, ∇f(x) is perpendicular to the level curve {y | f(y) = f(x) }
at x, and points to the direction of steepest ascent.

131

Suppose now that we have just one inequality constraint:

minimise f(x)
over x ∈ Rn
subject to p(x) ≤ 0.

To get a physical representation of the situation, consider f(x) as the
potential (say, elevation) at point x, so the negative gradient −∇f(x) is the
force acting on a particle at point x.

Further, along the surface p(x) = 0 there is a fence. For a particle at point
x with p(x) = 0, the fence exerts a contraint force that is just sufficient to
keep the particle on the right side. The constraint force is perpendicular to
the fence and points invards, so it is −λ∇p(x) for some λ > 0.

Since we assume an infinitely strong fence, we have no prior knowledge of
how large λ might be. However, if the particle does not touch the fence, the
constraint force is zero: if p(x) 6= 0, then λ = 0, which we write as
λp(x) = 0.

132

The solution to the optimisation problem is the point x∗ at which the
particle is at balance, i.e., the net force acting on it is zero. Summarising
the conditions, we get

∇f(x∗) + λ∇p(x∗) = 0
λ ≥ 0

λp(x∗) = 0.

If there are several inequality constraints, then each fence pi(x) can exert its
own constraint force −λi∇pi(x), again subject to λi ≥ 0 and λipi(x) = 0.

For equality constraints, the particle is prevented from leaving the surface
qj(x) = 0. The constraint force is still perpendicular to the surface, but can
be to either direction, so it is given by βj∇qj(x) where βj ∈ R.

133

By combining all the above, we get the Karush-Kuhn-Tucker (KKT)
conditions for optimisation problem 3.2:

∇f(x∗) +
m∑
i=1

λi∇pi(x∗) +
l∑

j=1

βj∇qj(x∗) = 0

pi(x
∗) ≤ 0 for i = 1, . . . ,m

qj(x
∗) = 0 for j = 1, . . . , l
λi ≥ 0 for i = 1, . . . ,m

λipi(x
∗) = 0 for i = 1, . . . ,m.

If the problem is convex (and satisfies some regularity conditions), there are
no local minima, and the KKT conditions can be proved to be necessary
and sufficient for x∗ to be the solution of Optimisation 3.2.

If the problem is not convex, the situation is more complicated, but often
the KKT conditions are still necessary.

134

A further important notion is Lagrange duality (or simply duality).

Given Optimisation 3.2, we define the Lagrangian L : Rn × Rm × Rl → R by

L(x,λ,β) = f(x) +
m∑
i=1

λipi(x) +
l∑

j=1

βjqj(x).

(Compare with KKT conditions.) The new variable λi is called the Lagrange
multiplier for the constraint pi(x) ≤ 0, and similarly for βj.

The dual function is g : Rm × Rl → R ∪ {−∞} where

g(λ,β) = inf
x∈Rn

L(x,λ,β).

Since g is a pointwise infimum of affine functions, it is concave even if the
original (primal) problem is not convex.

135

The infimum of affine functions is concave.

136

Let x be feasible (i.e., satisfy the constraints), λi ≥ 0 for all i, and βj ∈ R
arbitrary. Since pi(x) ≤ 0, we have

m∑
i=1

λipi(x) +
l∑

j=1

βiqi(x) ≤ 0.

Therefore

L(x,λ,β) = f(x) +
m∑
i=1

λipi(x) +
l∑

j=1

βiqi(x) ≤ f(x)

which implies

g(λ,β) = inf
x′∈Rn

L(x′,λ,β) ≤ f(x).

137

We can now define the dual problem of the primal problem 3.2 as the
following.

Optimisation 3.3: Variables: λ ∈ Rm, β ∈ Rl

maximise g(λ,β)
subject to λi ≥ 0 for i = 1, . . . ,m.

We call (λ,β) ∈ Rm × Rl dual feasible if λi ≥ 0 for all i.

Let x∗ be a solution to the primal 3.2 and (λ∗,β∗) to the dual 3.3. (They
need not be unique.)

Given a feasible x and dual feasible (λ,β), the remark on previous page gives

g(λ,β) ≤ g(λ∗,β∗) ≤ f(x∗) ≤ f(x).

Many optimisation algorithms produce a sequence of dual-primal feasible
(x,λ,β), from which we thus get immediately an estimate of how far we are
from the optimal values.

138

Given primal-dual feasible (x,λ,β), the quantity f(x)− g(λ,β) is called the
duality gap.

The quantity f(x∗)− g(λ∗,β∗) is the optimal duality gap. The fact that it is
always non-negative, as we just saw, is called weak duality. If it is actually
zero, i.e., f(x∗) = g(λ∗,β∗), we say that strong duality holds.

Convexity with some additional conditions is a sufficient (but not necessary)
condition for strong duality. Requiring the existence of “strictly feasible”
solutions is one way of setting the extra conditions.

Theorem 3.4 (Slater): If Optimisation 3.2 is convex and there is some
x ∈ Rn such that pi(x) < 0 for 1 ≤ i ≤ m and qj(x) = 0 for 1 ≤ j ≤ l, then
strong duality holds.

Proof can be found in optimisation text books. 2

139

Assume that x∗ is primal and (λ∗,β∗) dual optimal, and strong duality holds.
Then

f(x∗) = g(λ∗,β∗)
= inf

x∈Rn
L(x,λ∗,β∗)

≤ f(x∗) +
m∑
i=1

λ∗ipi(x
∗) +

l∑
j=i

β∗j qj(x
∗)

≤ f(x∗)

where the last step follows from primal and dual feasibility. Thus the
inequalities hold as equalities, and in particular

∑m
i=1 λ

∗
ipi(x

∗) = 0. Since
each term in the sum in non-negative, we must have

λ∗ipi(x
∗) = 0 for 1 ≤ i ≤ m.

We already gave an intuitive motivation for this condition known as
complementary slackness. It means that at the optimum, the Lagrange
coefficient can be non-zero only for constraints that are active.

Another important observation is that x∗ = arg minx∈Rn L(x,λ∗,β∗).

140

Recall that the KKT conditions for (x,λ,β) are

∇f(x) +
m∑
i=1

λi∇pi(x) +
l∑

j=1

βj∇qj(x) = 0 (1)

pi(x) ≤ 0 for i = 1, . . . ,m (2)
qj(x) = 0 for j = 1, . . . , l (3)

λi ≥ 0 for i = 1, . . . ,m (4)
λipi(x) = 0 for i = 1, . . . ,m. (5)

Theorem 3.5 (Karush-Kuhn-Tucker): Let x∗ be primal and (λ∗,β∗) dual
optimal, and assume that strong duality holds. Assume futher that f and pi
are differentiable. Then (x∗,λ∗,β∗) satisfies the KKT conditions. Further, if
the primal problem is convex, then any (x,λ,β) that satisfies the KKT
conditions is optimal.

141

Proof: Let (x∗,λ∗,β∗) be as assumed. Conditions (2)–(4) are the feasibility
constraints, and (5) is the complementary slackness we just verified.

Finally, since x = x∗ minimises L(x,λ∗,β∗), the gradient of L(x,λ∗,β∗) w.r.t.
x must be zero at x = x∗.

Assume now that the problem is convex and (x̃, λ̃, β̃) satisfy the KKT
conditions. In particular, this implies feasibility. Since λ̃i ≥ 0, we see that
L(x, λ̃, β̃) is convex in x and therefore attains its minimum when the
gradient is zero. Using (1), this happens for x = x̃. We conclude

g(λ̃, β̃) = L(x̃, λ̃, β̃)

= f(x̃) +
m∑
i=1

λ̃ipi(x̃) +
l∑

j=1

β̃jqj(x̃)

= f(x̃)

where the last step uses (3) and (5). Hence, we have zero duality gap,
which implies optimality. 2

142

We are now ready to tackle the hard margin SVM optimisation 3.1. Clearly
the problem is convex, and if a positive margin is possible then Slater’s
condition is satisfied.

It should be noticed that we are (conceptually) optimising over w ∈ H for
some Hilbert space, and not w ∈ Rn. However, it is easy to see that all the
required properties still hold.

First, we set up the Lagrangian

L(w, b, µ,α, λ) = −µ−
m∑
i=1

αi(yi(〈w,ψ(xi)〉 − b)− µ) + λ(‖w‖2 − 1)

where the constraints for the Lagrange coefficients are αi ≥ 0 and λ ≥ 0.

We have omitted the constraint µ ≥ 0 since we can just check afterwards
whether it holds. If not, then the problem is not separable.

143

We get the dual by optimising away the primal variables. The derivatives are

∂L(w, b, µ,α, λ)

∂w
= −

m∑
i=1

αiyiψ(xi) + 2λw

∂L(w, b, µ,α, λ)

∂b
=

m∑
i=1

αiyi

∂L(w, b, µ,α, λ)

∂µ
= −1 +

m∑
i=1

αi.

Setting them all to zero gives us

w =
1

2λ

m∑
i=1

αiyiψ(xi)

n∑
i=1

αiyi = 0

n∑
i=1

αi = 1.

144

We now simplify the dual

g(α, λ) = inf
w,b,µ

L(w, b, µ,α, λ)

assuming
∑m

i=1 αiyi = 0 and
∑m

i=1 αi = 1. (If these conditions do not hold,
then g(α, λ) = −∞.)

Plugging also the condition for w into the Lagrangian gives us

g(α, λ) = −
m∑
i=1

αiyi 〈w,ψ(xi)〉+ λ ‖w‖2 − λ

=

(
−

1

2λ
+

1

4λ

) m∑
i,j=1

αiαjyiyjk(xi, xj)− λ

=
1

4λ
W (α)− λ

where

W (α) = −
m∑

i,j=1

αiαjyiyjk(xi, xj) = −‖2λw‖2 .

145

Maximising w.r.t. lambda gives

max
λ≥0

g(α, λ) = −(−W (α))1/2

with the maximum attained at λ = 1
2
(−W (α))1/2. Hence, the dual solution

(α∗, λ∗) is obtained as

α∗ = arg max
α

− m∑
i,j=1

αiαjyiyjk(xi, xj)

 = arg max
α

W (α),

where the optimisation is subject to
∑m

i=1 αiyi = 0 and
∑m

i=1 αi = 1, and

λ∗ =
1

2

 m∑
i,j=1

α∗iα
∗
jyiyjk(xi, xj)

1/2

.

146

We still need to recover the primal variables. Since −µ is the objective
function, strong duality implies

µ∗ = −g(α∗, λ∗) = (−W (α∗))1/2 = 2λ∗.

We already noticed

w∗ =
1

2λ∗

m∑
i=1

α∗iyiψ(xi).

To solve b∗, we notice that by complementary slackness we have
yi(〈w∗,ψ(xi)〉 − b∗) = µ∗ for any i such that α∗i 6= 0.

For simplicity, we choose as the final output (w, b) of the algorithm a scaled
version (2λ∗w∗,2λ∗b∗) of the solution to the original optimisation.

147

We summarise the preceding observations.

Algorithm 3.6 (Hard Margin SVM): Input: sample
((x1, y1), . . . , (xm, ym)) ∈ (X × {−1,1 })m

1. Obtain α∗ ∈ Rm as maximiser of

W (α) =
m∑

i,j=1

αiαjyiyjk(xi, xj)

subject to
∑m

i=1 αi = 1,
∑m

i=1 αiyi = 0 and αi ≥ 0 for all i.

2. Let µ∗ = (−W (α∗))1/2. Choose any i such that α∗i 6= 0 and set

b =
m∑
j=1

α∗jyjk(xi, xj)− yi(µ∗)2.

3. Output the classifier sign(f(·)) where

f(·) =
m∑
i=1

α∗iyik(·, xi)− b.

148

The support vectors are those feature vectors ψ(xi) for which α∗i > 0. By
the KKT conditions, the support vectors satisfy

yi(〈w∗,ψ(xi)〉 − b∗) = µ∗.

In other words, the optimal classifier has margin exactly µ∗ on the support
vectors.

(To understand the name of the method, visualise a strut of lenght µ∗ from
each support vector perpendicularly to the optimal separating hyperplane.)

Typically only a small proportion of the examples end up as support vectors.
This is important from a computational point of view. Notice that to
represent the hypothesis

f(·) =
m∑
i=1

α∗iyik(·, xi)

we need to store only those xi, yi and α∗i for which α∗i > 0.

149

If we omit the (ultimately redundant) constraint µ ≥ 0, then for any ŵ with
‖ŵ‖ = 1 there is b̂ ∈ R and µ̂ ∈ R such that (ŵ, b̂, µ̂) is feasible for the primal.
The largest possible such µ̂ is given by

µ̂ =
1

2
(min { 〈ŵ,ψ(xi)〉 | yi = 1 } −max { 〈ŵ,ψ(xi)〉 | yi = −1 }) .

Given α̂ that is feasible for the dual, let

ŵ =
1

−W (α̂)1/2

m∑
i=1

α̂iyiψ(xi)

as earlier. Then duality theory gives a bound

−(−W (α̂))1/2 ≤ −µ∗ ≤ −µ̂,
and if equality holds then we are at the optimum.

150

Soft margin SVM

Instead of having a hard constraint that the hinge losses Lµ(w,ψ(xi), yi)
must be zero, we take them as a part of the function to be minimised.

Since the non-differentiable “hinge” would be a problem in the optimisation,
we use the standard trick of introducing free variables ξi, the so-called slack
variables, and constraining them suitably.

Optimisation 3.7: Variables w ∈ H, b ∈ R, ξ ∈ Rm, µ ∈ R

minimise −µ+ C
∑m

i=1 ξi
subject to ‖w‖2 − 1 ≤ 0

−ξi ≤ 0 for i = 1, . . . ,m
µ− ξi − yi(〈w,ψ(xi)〉 − b) ≤ 0 for i = 1, . . . ,m

The parameter C > 0 is an arbitrary positive constant. In practice a suitable
value is determined by cross-validation.

Notice that after minimising w.r.t. ξi, the constraints imply
ξi = min {0, µ− yi(〈w,ψ(xi)〉 − b) } = Lµ(w,ψ(xi), yi).

151

The Lagrangian now becomes

L(w, b, µ, ξ,α,β, λ) = −µ+C

m∑
i=1

ξi−
m∑
i=1

αi(yi(〈w,ψ(xi)〉−b)−µ+ξi)−
m∑
i=1

βiξi+λ(‖w‖2−1)

where αi ≥ 0, βi ≥ 0 and λ ≥ 0. Differentiating w.r.t. the primal variables, we
get

∂L(w, b, µ, ξ,α,β, λ)

∂w
= −

m∑
i=1

αiyiψ(xi) + 2λw (6)

∂L(w, b, µ, ξ,α,β, λ)

∂b
=

m∑
i=1

αiyi (7)

∂L(w, b, µ, ξ,α,β, λ)

∂µ
= −1 +

m∑
i=1

αi (8)

∂L(w, b, µ, ξ,α,β, λ)

∂ξi
= C − αi − βi. (9)

152

Consider the dual

g(α,β, λ).

If one of the derivatives (2)–(4) is non-zero, then g(α,β, λ) = −∞. Assume
this is not the case.

Since L is convex in w, we obtain the minimum by making (1) zero. This
happens for

w =
1

2λ

m∑
i=1

αiyiψ(xi).

Further taking (2)–(4) to be zero gives us

g(α,β, λ) =
1

4λ
W (α)− λ

where

W (α) = −
m∑

i,j=1

αiαjyiyjk(xi, xj) = −‖2λw‖2

like in the hard margin case.

153

As in the hard margin case, we maximise w.r.t. λ to obtain

max
λ≥0

g(α,β, λ) = −(−W (α))1/2

with the optimum at λ = 1
2
(−W (α))1/2. The solution to the dual is given by

α∗ = arg max
α

−(−W (α))1/2 = arg max
α

W (α).

Given the dual solution (α∗, λ∗), we already know that

w∗ =
1

2λ∗

m∑
i=1

α∗iyiψ(xi) =
1

(−W (α∗))1/2

m∑
i=1

α∗iyiψ(xi).

The remaining question is, how to get b∗ and µ∗.

154

The constraint βi ≥ 0 and the KKT condition C − αi − βi = 0 together imply
the box constraint

0 ≤ αi ≤ C.
Intuitively, increasing αi increases the margin of w on the example
(ψ(xi), yi). In the hard margin case, we increase αi as much as needed to
push the slack variable to zero. In the soft margin case, we stop increasing
αi at some stage and allow the slack variable to get positive.

More formally, the complementary slackness conditions are

αi(yi(〈w,ψ(xi)〉 − b)− µ+ ξi) = 0
(C − αi)ξi = 0.

If ξi > 0, then αi = C. If αi = 0, then ξi = 0.

155

Assume first that there are some i and j such that yi = −1, yj = 1 and
0 < α∗i , α

∗
j < C. Then ξi = ξj = 0, and

yi(〈w∗,ψ(xi)〉 − b∗)− µ∗ = 0 = yj(〈w∗,ψ(xj)〉 − b∗)− µ∗

so

b∗ =
1

2
(〈w∗,ψ(xi)〉+ 〈w∗,ψ(xj)〉)

µ∗ = 〈w∗,ψ(xj)〉 − b∗.
Further,

〈w∗,ψ(xi)〉 = min { 〈w∗,ψ(xk)〉 | αk > 0, yk = −1 }
〈w∗,ψ(xj)〉 = max { 〈w∗,ψ(xk)〉 | αk > 0, yk = 1 } .

We can use these latter conditions to pick i and j, and then calculate b∗ and
µ∗, even in the special case that i and j such that 0 < α∗i , α

∗
j < C does not

exist.

156

We summarise the preceding observations.

Algorithm 3.8 (1-norm Soft Margin SVM): Parameter: C > 0
Input: sample ((x1, y1), . . . , (xm, ym)) ∈ (X × {−1,1 })m

1. Obtain α∗ ∈ Rm as maximiser of W (α) =
∑m

i,j=1 αiαjyiyjk(xi, xj) subject

to
∑m

i=1 αi = 1,
∑m

i=1 αiyi = 0 and 0 ≤ αi ≤ C for i = 1 ≤ i ≤ m.

2. Let λ∗ = 1
2
(−W (α∗))1/2 and w∗ = 1

2λ∗
∑m

i=1 α
∗
iyiψ(xi)

3. Choose i and j such that
〈w∗,ψ(xi)〉 = min { 〈w∗,ψ(xk)〉 | αk > 0, yk = −1 } and
〈w∗,ψ(xj)〉 = max { 〈w∗,ψ(xk)〉 | αk > 0, yk = 1 }.

4. Let b∗ = 1
2 (〈w∗,ψ(xi)〉+ 〈w∗,ψ(xj)〉) and µ∗ = 〈w∗,ψ(xj)〉 − b∗.

5. Output the classifier sign(f(·)) where

f(·) =
1

2λ∗

m∑
i=1

α∗iyik(·, xi)− b∗.

157

The ν SVM is just the soft margin SVM with C = 1/(νm) for some
0 < ν ≤ 1. This parameterisation has an intuitive interpretation.

Theorem 3.9: Run the ν SVM on sample S to obtain w∗, b∗ and µ∗. Then
at most νm examples in S have margin less than µ∗, and at most (1− ν)m
examples in S have margin larger than µ∗.

Proof: Recall that
∑m

i=1 αi = 1.

If ξi > 0, then αi = 1/(νm). Since αi ≥ 0, this can happen at most νm times.

Similarly, since αi ≤ 1/(νm), we need at least νm examples with αi > 0.
They all have margin at most µ∗. 2

Intutively, we can pick ν to correpond to the “noise rate” in the data. We
allow a fraction ν of the data to fail to have a large margin. (In practice,
cross-validation is still needed.)

158

Vapnik-Chervonenkis dimension

Theorem 1.10 gave a uniform convergence bound that

max
h∈H

∣∣R̂(h)−R(h)
∣∣ ≤ ε

holds with probability at least 1− δ, where R(h) is the true risk and R̂(h) the
empirical risk on sample of size

m ≥
1

2ε2
ln

2 |H|
δ

.

The proof was based on Hoeffding’s inequality and the union bound. The
bound is rather crude. In particular it becomes vacuous if H is infinite, for
example linear classifiers in Rd.

Our first approach to providing bounds for infinite H is based on the
Vapnik-Chervonenkis (VC) dimension.

159

Let H be a class of binary classifiers with instance space X. Let (A,B) be a
partitioning of some D ⊆ X. In other words, A ∪B = D and A ∩B = ∅. We
say that the class H realises the partitioning (A,B) if there is a classifier
h ∈ H such that

h(x) = −1 if x ∈ A
h(x) = 1 if x ∈ B.

We say that H shatters a set D ⊆ X, if every partitioning (A,B) of D is
realised by some classifier h ∈ H.

The Vapnik-Chervonenkis dimension of H, denoted by VCdim(H), is the
largest m such that H shatters a set D with |D| = m. If H shatters
arbitrarily large sets, we write VCdim(H) =∞.

Example 3.10: If VCdim(H) = d, then |H| ≥ 2d. 2

160

Example 3.11: Let X = Rn and H the class of linear classifiers where we
allow a bias term. We show that VCdim(H) = n+ 1.

To see VCdim(H) ≥ n+ 1, let xn+1 = 0, and for i = 1, . . . , n let xi be the ith
unit vector: xij = δij where δij is Kronecker delta,

δij =

{
1 if i = j
0 otherwise.

We claim that H shatters D = {x1, . . . ,xn+1 }. To see that, let

(y1, . . . , yn+1) ∈ {−1,1 }n+1 be arbitrary. By defining wi = yi for i = 1, . . . , n,
and b = −yn+1/2, we get

sign(w · xi − b) = yi

for all i.

161

To see VCdim(H) ≤ n+ 1, suppose for contradiction that H shatters
D = {x1, . . . ,xn+2 } ⊂ Rn. Then, by the familiar reduction, we see that there
is a set { x̃1, . . . , x̃n+2 } ⊂ Rn+1 that is shattered by linear classifiers with bias
0. At least one x̃i is a linear combination of the others. Without loss of
generality, assume

x̃n+2 =
n+1∑
i=1

aixi.

Choose now yi = sign(ai) for i = 1, . . . , n+ 1, and yn+2 = −1. Let w be such
that sign(w · x̃i) = yi for 1 ≤ i ≤ n+ 1. Then

sign(w · x̃n+2) = sign

(
n+1∑
i=1

aiw · x̃i

)
= 1 6= yn+2.

Thus the labeling (y1, . . . , yn+2) cannot be realised by a linear classifier. 2

162

Although we will not prove it here, we remark in passing the key
combinatorial result that makes the VC dimension important also outside
learning theory. Let ΠH(D) be the number of partitionings of D realised by
H, and

ΠH(m) = max {ΠH(D) | |D| = m } .
Thus, VCdim(H) is the largest m such that ΠH(m) = 2m. The function
ΠH(·) is called the growth function.

Lemma 3.12: If VCdim(H) = d <∞, we have

ΠH(m) ≤
d∑

i=0

(m
i

)
≤
(em

d

)d
.

2

This is known as Sauer’s Lemma. Hence, there are two cases:

• VCdim(H) = d is finite, and ΠH(m) is bounded by a polynomial of
degree d

• VCdim(H) =∞ and ΠH(m) = 2m for all m.

163

We are now ready to state one of the classical results in computational
learning theory.

Theorem 3.13 (Vapnik and Chervonenkis, 1971): Assume
VCdim(H) = d <∞. There is an absolute constant C such that

PrS∼Pm

(
sup
h∈H

∣∣R(h)− R̂(h)
∣∣ > ε

)
≤ δ

holds whenever

m ≥
C

ε2

(
d ln

2

ε
+ ln

2

δ

)
.

Here PrS∼Pm(φ) denotes the probability of φ when S is obtained by m
independent draws from distribution P .

The original bound by Vapnik and Chervonenkis actually had an extra log d
factor, which has since been removed by considerable technical effort.

We have omitted some measurability assumptions that technically should be
in the theorem. They basically say that certain sets appearing in the proof
must be measurable. We are not giving a proof for the theorem, and
therefore don’t bother writing out the assumptions. The only known
examples where the conditions do not hold are extremely contrived.

164

The bound is usually too loose to give practically useful numerical error
estimates. Despite its looseness, the bound gives useful intuition: in order
to avoid overfitting, one could control the VC dimension of the hypothesis
class.

One reason for the looseness of the bound is its worst-case nature. In
particular, it is worst case with respect to P . We now go to Rademacher
complexity that does take P into account. In particular, this will allow
bounds based on quantities such as the margin that depend on the sample
points.

165

For convenience, we will consider slightly more general uniform convergence
bounds of the form

PrS∼Pm

(
sup
f∈F

∣∣∣∣ E
z∼P

[f(z)]− E
z∼S

[f(z)]

∣∣∣∣ > ε

)
≤ δ

where

• F is a class of functions Z → R

• Ez∼P [f(z)] is the expectation of f(z) when z ∈ Z is drawn from P

• S = (z1, . . . , zm) is a sequence of m points drawn independently from P

• Ez∼S[f(z)] = 1
m

∑m
i=1 f(zi) is the empirical average of f .

The special case we are interested in for a set of classifiers H is obtained by
choosing Z = X × {−1,1 } and letting F = { `h | h ∈ H } consist of functions

`h(x, y) =

{
0 if y = f(x)
1 if y 6= f(x).

This class F is the loss class corresponding to H. Here we have considered
the 0-1 loss, but the results apply to other loss functions, too.

166

Let ri, i = 1, . . . ,m, be independent Rademacher random variables, i.e.,
ri ∈ {−1,1 } and Pr(ri = −1) = Pr(ri = 1) = 1/2.

For a class F of functions Z → R and a sample S = (z1, . . . , zm) ∈ Zm, define
the empirical Rademacher complexity as

R̂adm(F, S) = E
ri∈{−1,1 }

[
sup
f∈F

∣∣∣∣∣ 2

m

m∑
i=1

rif(zi)

∣∣∣∣∣
]
.

The sum
∑

i rif(zi) is a measure of correlation between f and the labels r.

If R̂adm(F, S) is high, then a random labelling of points z1, . . . , zm can be
accurately matched by choosing a function from F . This means that F is
rich enough that we are likely to find spurious regularities in the sample even
if in reality there are none to be found. Thus we should not trust our
empirical estimates too much.

Usually the empirical Rademacher complexity is denoted by R̂m, but we wish
to avoid confusion with our notation for the empirical risk.

167

Finally, given a probability measure P over Z, define the Rademacher
complexity of F as

Radm(F) = E
S∼Pm

[
R̂adm(F, S)

]
.

Notice that unlike the VC dimension, the Rademacher complexity depends
on P .

This leads to more accurate estimates when P is “easy”, but makes it
usually impossible to determine Radm(F) exactly in closed form.

Fortunately, for large m we have with high probability

R̂adm(F, S) ≈ Radm(F)

so in practice it is sufficient to determine the empirical Rademacher
complexity for a sample S from Pm.

168

The main result is the following.

Theorem 3.14: Let F be a class of functions Z → [0,1], and let P be a
probability measure on Z. Let 0 < δ ≤ 1. For S = (z1, . . . , zm) drawn from
Pm, with probability at least 1− δ we have

sup
f∈F

∣∣∣∣ E
z∼P

[f(z)]− E
z∼S

[f(z)]

∣∣∣∣ ≤ Radm(F) +

√
1

2m
ln

2

δ
.

Assuming we know how to evaluate Radm(F) where F is the loss class we
are interested in, we get a bound

R(h) ≤ R̂(h) + Radm(F) +

√
1

2m
ln

2

δ

which holds with probability 1− δ for all hypotheses h ∈ H, in particular for
the one chosen by Empirical Risk Minimisation (or any other learning
algorithm).

169

Consider the case where F contains all functions from Z to {0,1 }. Then
Radm(F) = 1, and the bound is trivial (as expected).

However, we see later that for many interesting classes F we have
Radm(F) = O(m−1/2). Then we can apply the following.

Corollary 3.15: Assume that Radm(F) ≤ cm−1/2 for all m. Then for

m ≥
1

ε2

(
2c2 + ln

2

δ

)
we have

sup
f∈F

∣∣∣∣ E
z∼P

[f(z)]− E
z∼S

[f(z)]

∣∣∣∣ ≤ ε
with probability at least 1− δ.

Proof: Directly from the previous theorem using

1

2
(
√
a+
√
b) ≤

√
a+ b

2

(Jensen). 2

170

Our proof of Theorem 3.14 is based on the following concentration
inequality.

Theorem 3.16 (McDiarmid): Let X1, . . . , Xm be independent random
variables taking values in some set A. Assume that f : Am → R is such that
for i = 1, . . . ,m we have a constant ci such that∣∣f(x1, . . . , xm)− f(x1, . . . , xi−1, x

′
i, xi+1, xm)

∣∣ ≤ ci
for all x1, . . . , xm, x′i ∈ A. Write f̄ = E[f(X1, . . . , Xm)]. Then for ε > 0 we have

Pr(f(X1, . . . , Xm)− f̄ ≥ ε) ≤ exp

(
−

2ε2∑m
i=1 c

2
i

)
.

2

171

As an example, we derive a version of the Hoeffding bound using
McDiarmid’s inequality.

Corollary 3.17: For i = 1, . . . ,m, let Xi be independent random variables
with ai ≤ Xi ≤ bi and E[Xi] = X̄i. Let S =

∑m
i=1Xi. Then

Pr

(∣∣∣∣∣S −
m∑
i=1

X̄i

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−

2ε2∑m
i=1(bi − ai)2

)
.

Proof: We apply McDiarmid separately to S and −S. The union bound
gives the factor 2. 2

172

Proof of Theorem 3.14: For f ∈ F we have

E
z∼P

[f(x)] ≤ E
z∼S

[f(z)] + p(S)

where

p(S) = sup
g∈F

(
E
z∼P

[g(z)]− E
z∼S

[g(z)]

)
.

We apply McDiarmid’s inequality to function p. Since g(z) ∈ [0,1], changing
one zi in S can change Ez∼S[g(z)] by at most 1/m. We solve for ε such that

exp
(
−2mε2

)
=

δ

2

and plug into McDiarmid to get

p(S) ≤ E
S∼Pm

[p(S)] +

√
1

2m
ln

2

δ

with probability at least 1− δ/2.

The key to the whole proof is now estimating ES∼Pm[p(S)].

173

First we express Ez∼P [g(z)] in terms of a hypothetical sample
S′ = (z′1, . . . , z

′
m):

E
S∼Pm

[p(S)] = E
S∼Pm

[
sup
g∈F

(
E
z∼P

[g(z)]− E
z∼S

[g(z)]

)]
= E

S∼Pm

[
sup
g∈F

(
E

S ′∼Pm

[
1

m

m∑
i=1

g(z′i)

]
−

1

m

m∑
i=1

g(zi)

)]
.

We then apply the fact supf E[f] ≤ E[supf f] to get

E
S∼Pm

[p(S)] ≤ E
S,S ′∼Pm

[
sup
g∈F

(
1

m

m∑
i=1

(g(z′i)− g(zi))

)]
.

Let now r1, . . . , rm be independent Rademacher random variables. Since
g(z′i) and g(z′i) have same distribution, g(z′i)− g(zi) has the same distribution
as ri(g(z′i)− g(zi)), and we get

E
S∼Pm

[p(S)] ≤ E
ri∈{−1,1 }

E
S,S ′∼Pm

[
sup
g∈F

(
1

m

m∑
i=1

ri(g(z′i)− g(zi))

)]
.

174

Since supx(f(x) + g(x)) ≤ supx f(x) + supx g(x), we get

E
S∼Pm

[p(S)] ≤ E
ri∈{−1,1 }

E
S,S ′∼Pm

[
sup
g∈F

(
1

m

m∑
i=1

ri(g(z′i)− g(zi))

)]

≤ E
ri∈{−1,1 }

E
S,S ′∼Pm

[
sup
g∈F

(
1

m

m∑
i=1

rig(z′i)

)
+ sup

g∈F

(
−

1

m

m∑
i=1

rig(zi)

)]

≤ 2 E
ri∈{−1,1 }

E
S∼Pm

[
sup
g∈F

∣∣∣∣∣ 1

m

m∑
i=1

rig(zi)

∣∣∣∣∣
]

= Radm(F).

By applying the same argument to −f and then taking the union bound we
see that ∣∣∣∣ E

z∼P
[f(x)]− E

z∼S
[f(z)]

∣∣∣∣ ≤ Radm(F) +

√
1

2m
ln

2

δ

holds with probability 1− δ. 2

To apply the bound, we of course need to be able to estimate Radm(F).

175

Theorem 3.18: For a fixed S ∈ Zm we have

Radm(F) ≤ R̂adm(F, S) +

√
2

m
ln

1

δ

with probability at least 1− δ over the random choice of S.

We also have

Radm(F) ≤ sup
f∈F

∣∣∣∣∣ 2

m

m∑
i=1

rif(zi)

∣∣∣∣∣+

√
8

m
ln

1

δ

with probability at least 1− δ over the random choice of r and S.

This shows that instead of calculating expectations, we can just solve a
single maximisation and have an upper bound with high confidence.

176

Proof: We prove the second estimate. The first one is proven similarly.

Let qi = (ri, zi) ∈ {−1,1 } × Z, and define

p(q1, . . . , qm) = sup
f∈F

∣∣∣∣∣ 2

m

m∑
i=1

rif(zi)

∣∣∣∣∣ .
Since we assume f(zi) ∈ [0,1], we can apply McDiarmid’s inequality with
ci = 4/m. Solving for ε such that

exp
(
−mε2/8

)
= δ

gives

ε =

√
8

m
ln

1

δ
.

2

177

Assume now that F is the 0-1 loss class for some class H of classifiers. In
other words, F = { `h | h ∈ H } where

`h(x, y) =

{
0 if y = f(x)
1 if y 6= f(x).

Recall that when F is the 0-1 loss class for H, the bound of Theorem 3.14
becomes

sup
h∈H

∣∣R(h)− R̂(h)
∣∣ ≤ Radm(F) +

√
1

2m
ln

2

δ
.

We show how empirical risk minimisation can be used to estimate Radm(F).

178

Let S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m and r ∈ {−1,1 }m be fixed. Write
S′ = ((x1, r1y1), . . . , (xm, rmym)). Since fh(x, y) = L0−1(y, h(x)) = 1

2
(1− yh(x)),

we have

2
m∑
i=1

rifh(xi, yi) =
m∑
i=1

ri −
m∑
i=1

riyih(xi)

=
m∑
i=1

ri −
m∑
i=1

(1− 2L0−1(riyi, h(xi)))

=
m∑
i=1

ri +m− 2
m∑
i=1

(1− L0−1(riyi,−h(xi))))

=
m∑
i=1

ri +m− 2mR̂′(−h)

where R̂′ is empirical risk with respect to sample S′.

179

Similarly

−2
m∑
i=1

rifh(xi, yi) = −
m∑
i=1

ri +m− 2mR̂′(h).

Write ε̂ = infh∈H R̂′(h), which by our assumption means also
ε̂ = infh∈H R̂′(−h). We have

sup
h∈H

∣∣∣∣∣ 2

m

m∑
i=1

rifh(xi, yi)

∣∣∣∣∣ = 1− 2ε̂+
1

m

∣∣∣∣∣
m∑
i=1

ri

∣∣∣∣∣ .
Thus, we get an estimate for Radm(F) by computing ε̂ by empirical risk
minimisation and plugging the above to Theorem 3.18.

Unfortunately, empirical risk minimisation is computationally intractable for
most interesting classes H. Also in practice, the problem of evaluating
Radm(F) seriously restricts the applicability of Rademacher complexities.

180

Rademacher complexities can be crudely estimated in terms of the VC
dimension. This of course gives only an upper bound that is worst case with
respect to P .

Theorem 3.19: Let F be the 0-1 loss class for H where
VCdim(H) = d <∞, and let m ≥ d. Then

Radm(F) ≤ 5

√
d+ 1

m

(
ln
m

d
+ 1

)
.

Remark: A stronger result Radm(F) = O(
√
d/m) is also known. Plugging

that into Corollary 3.15 gives the sample complexity

m = O

(
1

ε2

(
d+ ln

1

δ

))
.

Here we only give the proof for the weaker bound of Theorem 3.19 which
still illustrates the connection between combinatorial and statistical
parameters.

181

Proof of Theorem 3.19: For 0 < δ ≤ 1, let

ρδ =

√
8

m

(
d
(

ln
m

d
+ 1

)
+ ln

2

δ

)
.

Write also S = ((x1, y1), . . . , (xm, ym)) and

Q(S, r) = sup
f∈F

∣∣∣∣∣ 2

m

m∑
i=1

rif(xi, yi)

∣∣∣∣∣ .
We show that with probability at least 1− δ over random choice of
(xi, yi) ∼ Pm and ri ∈ {−1,1 }, we have

Q(S, r) ≤ ρδ.
Since always Q(S, r) ≤ 2, choosing δ = d/m will then give the desired bound

E
S,r

[Q(S, r)] ≤ (1− δ)ρδ + δ · 2

≤
√

8

m

(
d
(

ln
m

d
+ 1

)
+ ln

m

d
+ ln 2

)
+

2d

m

≤ 5

√
d+ 1

m

(
ln
m

d
+ 1

)
.

182

Consider a fixed S = ((x1, y1), . . . , (xm, ym)).

We call any sequence ` ∈ {0,1 }m a label sequence, and say that a label
sequence ` is valid if for some h ∈ H we have `i = fh(xi, yi).

Fix ρ ≥ 0. Now Q(S, r) ≥ ρ holds iff for some valid label sequence ` we have∣∣∣∣∣ 2

m

m∑
i=1

ri`i

∣∣∣∣∣ ≥ ρ.
In this case we say that ` covers r.

Intutively, if ` covers r, then ` “explains” why the class F gets a good
correlation with that particular r. We show that most r remain uncovered,
so the expected correlation is low.

Clearly the number of different valid label sequences is the same as the
number ΠH({x1, . . . , xm }) of different partitionings of {x1, . . . , xm } that can
be realised by a classifier in H. By Sauer’s lemma, this is at most

ΠH(m) ≤
(em

d

)d
.

183

Consider first a fixed label sequence `, and let I = { i ∈ {1, . . . ,m } | `i = 1 }.
Then

Pr
r∈{−1,1 }m

(
2

m

m∑
i=1

ri`i ≥ ρ

)
= Pr

r∈{−1,1 }m

(∑
i∈I

1 + ri

2
≥
|I|
2

+
mρ

4

)
.

Similarly

Pr
r∈{−1,1 }m

(
2

m

m∑
i=1

ri`i ≤ −ρ

)
= Pr

r∈{−1,1 }m

(∑
i∈I

1 + ri

2
≤
|I|
2
−
mρ

4

)
.

If I = ∅, then
∑

i ri`i = 0 for all r. Otherwise the random variable∑
i∈I(1 + ri)/2 has binomial distribution with parameters |I| and 1/2. By

Hoeffding’s inequality, the probability of drawing r that is covered by ` is

Pr
r∈{−1,1 }m

(∣∣∣∣∣ 2

m

m∑
i=1

ri`i

∣∣∣∣∣ ≥ ρ
)

= Pr
r∈{−1,1 }m

(∣∣∣∣∣ 1

|I|

∑
i∈I

1 + ri

2
−

1

2

∣∣∣∣∣ ≥ mρ

4|I|

)
≤ 2 exp

(
−2|I|(mρ/(4|I|))2

)
≤ 2 exp

(
−mρ2/8

)
.

184

Therefore, a single label sequence ` covers at most a proportion
2 exp(−mρ2/8) of sequences r ∈ {−1,1 }m.

Since there are at most (em/d)d valid sequences, the proportion of all
covered sequences r is at most

2
(em
d

)d
exp(−mρ2/8).

By choosing ρ = ρδ this becomes δ.

We have shown

Pr
r∈{−1,1 }m

[Q(S, r) ≥ ρδ] ≤ δ

for any fixed S. This implies

Pr
S∼Pm

Pr
r∈{−1,1 }m

[Q(S, r) ≥ ρδ] ≤ δ.

(As usual, we ignore some measurability assumptions.) 2

185

We now use the Rademacher theory to develop a margin-based risk bound
for linear classifiers.

For B > 0, let FB be the function class

FB = { (x, y) 7→ yw · x | ‖w‖2 ≤ B } .

Theorem 3.20: For any S = ((x1, y1), . . . , (xm, ym)) we have

R̂adm(FB, S) ≤
2B

m

√√√√ m∑
i=1

‖xt‖2
2.

Notice that if ‖xt‖2 ≤ X, the bound becomes 2BX/
√
m. However, this does

not yet give a loss bound, since

• functions f ∈ FB are not bounded to [0,1], and

• F is not a loss class for any interesting L.

186

Proof: If f(x, y) = yw · x and ‖w‖2 ≤ B, we have∣∣∣∣∣
m∑
i=1

rif(xi, yi)

∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

riyiw · xi

∣∣∣∣∣ =

∣∣∣∣∣w ·
(

m∑
i=1

riyixi

)∣∣∣∣∣ ≤ B
∥∥∥∥∥
m∑
i=1

riyixi

∥∥∥∥∥
2

by Minkowski’s inequality |w · x| ≤ ‖w‖2 ‖x‖2. Therefore

R̂adm(F , S) = E
r∈{−1,1 }m

[
sup
f∈FB

∣∣∣∣∣ 2

m

m∑
i=1

rif(xi)

∣∣∣∣∣
]

≤
2B

m
E

r∈{−1,1 }m

[∥∥∥∥∥
m∑
i=1

riyixi

∥∥∥∥∥
2

]

=
2B

m
E

r∈{−1,1 }m

√√√√√(m∑

i=1

riyixi

)
·

 m∑
j=1

rjyjxj

 .

187

Since
√
· is concave, we can apply Jensen to get

E
r∈{−1,1 }m

√√√√√(m∑

i=1

riyixi

)
·

 m∑
j=1

rjyjxj

≤

√√√√√ E
r∈{−1,1 }m

(m∑
i=1

riyixi

)
·

 m∑
j=1

rjyjxj

=

√√√√ m∑
i,j=1

E
r∈{−1,1 }m

[rirjyiyjxi · xj].

Since E[rirj] = δij and yi ∈ {−1,1 }, the claim follows. 2

188

A function f : R→ R has Lipschitz constant c if it satisfies

|f(x)− f(y)| ≤ c |x− y|
for all x, y ∈ R.

The class we are ultimately interested here is the discrete loss class for
norm-bounded linear classifiers

T ◦ FB = { (x, y) 7→ T (f(x, y)) | f ∈ FB }
where T (p) = 0 if p > 0 and T (p) = 1 if p ≤ 0.

For technical reasons we introduce for µ ≥ 0 the function Aµ with

Aµ(p) =

 1 if p ≤ 0
1− p/µ if 0 < p < µ

0 if µ ≤ p.

Then Aµ has Lispschitz constant 1/µ, and Aµ(p) ≥ T (p) for all p.

189

Theorem 3.21: If function G has Lipschitz constant c and G(0) = 0, then

R̂adm(G ◦ F , S) ≤ 2cR̂adm(F , S)

for all S. 2

(The proof of this theorem is technical and we will not go into it.)

In particular, if we consider G = Aµ − 1 to get G(0) = 0, we see that

R̂adm((Aµ − 1) ◦ FB, S) ≤
2

µ
R̂adm(FB, S)

≤
4B

µm

√√√√ m∑
i=1

‖xi‖2
2.

190

Recall the hinge loss Lµ(w,x, y) = max {0, µ− yw · x }.

Theorem 3.22: Fix µ > 0 and B > 0 and a probability measure P over
Rd × {−1,1 }. With probability at least 1− δ over drawing
S = ((x1, y1), . . . , (xm, ym)) ∼ Pm, we have

Pr
(x,y)∼P

(sign(w · x) 6= y) = E
(x,y)∼P

[T (yw · x)]

≤
1

µm

m∑
i=1

Lµ(w,xi, yi)

+
4B

µm

√√√√ m∑
i=1

‖xi‖2
2 + 3

√
1

2m
ln

4

δ

for all w with ‖w‖2 ≤ B.

191

Remarks:

• If w has margin µ, we have Lµ(w,xi, yi) = 0 for all i, and the bound
becomes

4B

µm

√√√√ m∑
i=1

‖xi‖2
2 + 3

√
1

2m
ln

4

δ
.

• The bound depends only on empirical quantities, with no assumptions
about P . If we are “lucky” and get a sample that allows a large margin,
we also get a good bound.

• The bound can be kernelised. Suppose we use kernel k associated with
feature map ψ and w =

∑m
i=1 αiψ(xi) for some αi. The relevant

quantities in the bound become

m∑
i=1

‖ψ(xi)‖2
2 =

m∑
i=1

k(xi, xi) and ‖w‖2
2 =

m∑
i,j=1

αiαjk(xi, xj).

192

Proof: Since T − 1 ≤ Aµ − 1, we have

E
(x,y)∼P

[T (yw · x)− 1] ≤ E
(x,y)∼P

[Aµ(yw · x)− 1].

From Theorem 3.14, we have

E
(x,y)∼P

[Aµ(yw ·x)−1] ≤ E
(x,y)∼S

[Aµ(yw ·x)−1]+Radm((Aµ−1)◦FB)+

√
1

2m
ln

4

δ

for all w with probability 1− δ/2. From Theorem 3.18, we have

Radm((Aµ − 1) ◦ FB) ≤ R̂adm((Aµ − 1) ◦ FB, S) + 2

√
1

2m
ln

4

δ

with probability 1− δ/2.

193

Since E(x,y)∼P [−1] = E(x,y)∼S[−1] = −1, we get

E
(x,y)∼P

[T (yw · x)] ≤ E
(x,y)∼S

[Aµ(yw · x)]

+ R̂adm((Aµ − 1) ◦ FB, S) + 3

√
1

2m
ln

4

δ

with probability 1− δ. We notice that

µAµ(yw · x) ≤ Lµ(w,x, y)

and plug in the estimate for R̂adm((Aµ − 1) ◦ FB, S). 2

Again, one should not expect this bound to give numerical estimates that
are useful in practice. Getting practically useful bounds is still work in
progress. Currently the so-called “PAC-Bayesian” approach seem one
promising approach, but we will not go into it here.

However, margin bounds like this are currently the main explanation for why
kernel based methods, such as support vector machines, work so well.

194

4. Final remarks

The theme of the course has been linear binary classification algorithms,
both online and batch, and their analysis using margins.

Besides the personal preferences of the lecturer, this choice of theme from
among the huge body of literature on supervised learning does have some
additional motivation:

• linear methods have a sound theoretical foundation

• in particular combined with kernels they are quite useful in practice, too

• this approach provides some common ground for online learning, which
is currently a very active research topic, and statistical (batch) learning,
which is more common in applications.

• both the algorithms and their analysis are relatively simple (at least on
the online side).

195

Important topics that would have fitted the theme but did not quite fit in:

Linear algorithms that do not kernelise. These include multiplicative
online algorithms such as Winnow, and L1 regularisation in batch
algorithms. (SVM does a form of L2 regularisation.) Such algorithm favour
classifiers with a sparse weight vector.

Conversion of online algorithms into batch ones, in particular so that the
online loss bound becomes a bound on the true risk.

Boosting, which is a general batch-learning method that can be analysed in
terms of margins.

Some links will be provided on the course web page for those interested.

196

The emphasis on the course was on theory. In the programming exercises we
used toy data to make it easy to illustrate the behaviour of the algorithms.

However, unless we mentioned otherwise, the techniques are applicable also
in practical problems.

It should be noted that the literature on computational learning theory also
includes work that is purely theoretical (unrealistic assumptions about the
data, running times that are high-order polynomials etc.).

197

What we have learned

1. Basic tools and concepts

• the basics of online and statistical learning: how to interpret the
theoretical bounds, deriving them for a finite hypothesis class

• linear classifiers, margins, kernels and their application in linear
classification

• basic mathematical tools: Jensen, Hoeffding

198

2. Online learning

• proving relative loss bounds using potential functions

• the Aggregating Algorithm and its analysis

• the Perceptron Algorithm, its marginalised version and analysis

3. Batch learning

• convex optimisation, convex duality and its application to margins

• Vapnik-Chervonenkis dimension, Rademacher complexity and the
related main results

• proofs for (some of) the main results

• applying Rademacher complexity to large margin classifiers

199

About the exam

You are in principle expected to know all the material in lecture notes and in
the homework (but of course the exam will not have any programming
tasks). However the following are not included (since they were skipped in
class):

• the proof of Theorem 2.1, Example 2.2

• the proof of Theorem 3.19.

Possible types of questions include

• define/explain/describe some term/concept/algorithm

• basic mathematical problems: prove an inequality using Jensen; obtain
the dual of a convex optimisation problem; . . .

• prove something: either apply some basic proof technique from
lectures/homework, or reproduce a (perhaps more difficult) proof
directly from the lectures/homework

• design an algorithm.

200

There will be no trick questions. You don’t need to memorise numerical
constants in formulas, or irrelevant technical details.

However there are technical details that are (in the lecturer’s opinion)
relevant. This includes in particular the proofs of the main results.

Please provide feedback using the link on the course home page!

The end

201

