Speed Separation and Recognition Challenge: <u>PASCAL CHIME</u>

Juho Hirvonen University of Helsinki 8.2.2012

This Talk

- The Challenge: <u>PASCAL CHIME</u>
- Automated Speech Recognition (ASR)
 Why?
- What is sound?

– How does a computer process sound?

• Why is this challenge interesting?

- Details of the challenge

The Challenge

- Audio signal containing household sounds
- Task: recognise specific commands
 - Separate speech signal
 - Recognise speech
- Audio contains noise
 - People talking
 - Doors slamming

The Challenge: Audio

- Applications for speech recognition
 - Human-computer interaction
 - Speech to text
 - Translation
 - Mobile devices in general

- Speech is sound, what is sound?
 - Pressure waves in a medium
 - Displacement of air molecules
- Physics formalism: a wave

• Usually presented in waveform

• Sound waves are additive

Image by <u>Haade</u>; available under <u>Creative Commons Attribution-ShareAlike 3.0</u> <u>Unported license</u>

- Discrete representation
 - A set of (time, pressure) pairs
 - Sample frequency
- Problems if too few samples

- Alternative representation
 - Frequency vs. time

- Extracting signal information is a computational task
 - Basis in physics
 - Acoustics
 - Language
- For example: What is the frequency domain of the signal?

CHiME Challenge

- Speech recognition in an acoustically cluttered environment
- Recorded in an actual household
- Target voice commands mixed in

CHiME Challenge

- Why?
 - Realistic setting for speech recognition
 - Actual task: voice commands
 - Binaural hearing
- Different (possible) recognition subtasks
 - signal separation
 - feature extraction
 - speech recognition

Target

- Target voice commands of the following form <command:4><color:4><preposition:4><letter:25>
 <number:10><adverb:4>
 - For example: "place white at L 3 now"
 - In total 64 000 combinations
 - Phonetically similar vocabulary: C, D, E, G, P, T, ...

Target

- Voice commands from the *Grid corpus* Mixed into the background noise
- 34 speakers
- 600 different utterances
- Speaker location fixed
 - 2 meters from the microphone

Data Sets

- Test set, development test set and final test set
 - isolated utterances
 - background noise
 - utterances in noise
- Utterances in segmented form
- Utterances in continous audio with time infromation

Issues

- Signal-to-noise ratio
 - power of the signal : power of the noise
- Measure of how clear the signal is
- Varied in the data
 - Problem difficulty
 - Not done artificially, but by choosing the noise segment

Issues

- Different kinds of noise
 - Speech
 - Relatively high energy noise
 - Continous noise for a short time
 - Unpredictable

Available information

- Speaker identity in the development sets
 Can be used for speaker-dependent models
- Continous background audio for acoustic modeling
 - 6 hours
- Speaker location fixed

- If the speaker was moving, new problems

Concluding Remarks

- Quite realistic setting for speech recognition
 - Clear voice commands
 - Unpredictable, loud noise
- Multidisciplinary challenge
 - Signal processing
 - Machine learning
- Connections with research on human hearing