
Semantic Web

Juha Puustjärvi

Course books:
• M.C. Daconta, L.J. Obrst, and K.T. Smith. The Semantic Web: A

Guide to the Future of XML, Web Services, and Knowledge
Management. Wiley Publishing, 2003.

• G. Antoniou, and F. Harmelen. A semantic Web Primer. The MIT
Press, 2004.

2

• M. P. Singh, and M. H. Huhns. Service-Oriented Computing:
Semantics, Processes, Agents. John Wiley & Sons. 2005.

Contents

• Chapter 1: Today’s Web and the Semantic Web

• Chapter 2: The Business Case for the Semantic Web

• Chapter 3: Understanding XML and its Impact on the Enterprise

• Chapter 4: Understanding Web Services

• Chapter 5: Understanding Resource Description Framework

3

• Chapter 5: Understanding Resource Description Framework

• Chapter 6: Understanding XML Related Technologies

• Chapter 7: Understanding Taxonomies

• Chapter 8: Understanding Ontologies

• Chapter 9: Semantic Web Services

• Chapter 10: An Organization’s Roadmap to Semantic Web

Chapter 1: Today’s Web and the Semantic Web

Brief History of Information Technology

• First-generation information systems provide centralized
processing that is controlled and accessed from simple
terminals that have no data-processing capabilities of
their own.

4

their own.

• Second-generation information systems are organized
into servers that provide general-purpose processing,
data, files, and applications and clients that interact with
the servers and provide special-purpose processing,
inputs, and outputs.

Brief History of Information Technology

• Third-generation information systems, which include
those termed peer-to-peer, enable each node of a
distributed set of processors to behave as both a client
and a server; they may still use some servers.

5

• Emerging next-generation information systems are
cooperative, where autonomous, active, heterogeneous
components enable the components collectively to
provide solutions.

System Architectures: Centralized

Terminal3270

Terminal

Terminal

Terminal

6

Mainframe

Terminal

Terminal

Terminal

TerminalTerminal

Terminal

Terminal

Terminal

System Architectures: Client-Server

PC

Client

PC

Client PC

Client

Workstation

Client

7

E-Mail

Server
Web

Server
Database

Server

Master-Slave

System Architectures: Peer-to-Peer

Application

Application
Application

8

E-Mail

System
Web

System
Database

System

Application

System Architectures: Cooperative

Application

Application
Application

Agent

Agent

Agent

Agent

9

E-Mail

System

Web

System

Database

System

Application

(Mediators, Proxies, Aides, Wrappers)

Agent

Agent Agent

Agent

Agent

Agent

Open Environments

• The term open implies that the components involved are
autonomous and heterogeneous, and system
configurations can change dynamically.

• Often, we would want to constrain the design an
behavior of components, and thus limit the openness of

10

behavior of components, and thus limit the openness of
the system – however, the system would still have to
deal with the rest of the world, which would remain open.

– E.g., a company might develop an enterprise integration system
that is wholly within the enterprise – yet the system would have
to deal with external parties, e.g., to handle supply and
production chains.

Autonomy

• Autonomy means that the components in an
environment function solely under their own control.
– E.g., an e-commerce site may or may not remove some item

from its catalog.

• Software components are autonomous because they

11

• Software components are autonomous because they
reflect the autonomy of the human and corporate
interests that they represent on the Web,
– i.e., there are sociopolitical reasons for autonomy

• A consequence of autonomy is that updates can occur
only under local control.

Heterogeneity
• Heterogeneity means that the various components of

given system are different in their design and
construction.

– Often the reasons are historical: components fielded today may
have arisen out of legacy systems that were initially constructed
for different narrow uses, but eventually expanded in their
scopes to participate in the same system.

12

• Heterogeneity can arise at a variety of levels in a
system, such as networking protocols, encodings of
information, and data formats.

– Clearly, standardization at each level reduces heterogeneity and
can improve productivity through enhanced interoperability.

– This is the reason that standards such as the Internet Protocol
(IP), HTTP, UCS Transportation Format (UTF-8), and XML have
gained currency.

• Heterogeneity also arises at the level of semantics and
usage, where it may be hardest to resolve and
sometimes even to detect.

• However, there is a reason why heterogeneity emerges
and should be allowed to persist.
– To remove heterogeneity would involve redesigning and re-

implementing the various components.

13

Dynamism

• An open environment can exhibit dynamism in two main
respects.

– First, because of autonomy, its participants can behave arbitrary.

– Second, they may also join or leave an open environment on a
whim.

14

whim.

The Challenges of Open Environments

• Open environments pose significant technical
challenges.

• In particular, the developed approaches must
– cope with the scale of the number of participants,

– respect the autonomy, and

15

– respect the autonomy, and

– accommodate the heterogeneity of the various participants,

while maintaining coordination

Services
• Just like objects a generation ago, services is now the key

buzzword. However, services mean different things to
different people:

– A piece of business logic accessible via the Internet using open
standards (Microsoft).

– Encapsulated, loosely coupled, contracted software functions,

16

– Encapsulated, loosely coupled, contracted software functions,
offered via standard protocols over the Web (DestiCorp).

– Loosely coupled software components that interact with one another
dynamically via standard Internet technologies (Gartner).

– A software application identified by a URL, whose interfaces and
binding are capable of being defined, described, and discovered by
XML artifacts and supports direct interaction with other software
applications using XML-based messages via Internet-based
protocols (W3C).

A historical view of services over the Web

Generation Scope Technology Example

First All Browser Any HTML
page

Second Programmatic Screen Systematically

17

Second Programmatic Screen
scraper

Systematically
generated HTML
content

Third Standardized Web services Formally
described
service

Fourth Semantic Semantic
Web services

Semantically
described
service

Related Standards Bodies

• Since services involve serious work and interactions
among the implementations and systems of diverse
entities, it is only natural that several technologies
related to services would be standardized.

– As in much of computer science, standardization in services

18

– As in much of computer science, standardization in services
often proceeds in a de facto manner, where a standard is
established merely by fact of being adopted by a large number of
vendors and users.

– Standards bodies take the lead in coming up with de jure

standards, and clean up and formalize emerging de facto
standards.

• The following are the most important standards bodies
and initiatives for services.

– IETF. The Internet Engineering Task Force is charged with the
creation and dissemination of standards dealing with Internet
technologies. Besides the TCP/IP suite and URI´s it is
responsible for HTTP, Session Initiation Protocol SIP and SMTP.

– OMG. The Object Management Group has been developing
standards for modeling, interoperating, and enacting distributed
object systems. Its most popular standards include UML and

19

object systems. Its most popular standards include UML and
CORBA.

– W3C. The World-Wide Web Consortium is an organization that
promotes standards dealing with Web technologies. The W3C
has mostly emphasized the representational aspects of the Web,
deferring to other bodies for networking and other computational
standards, e.g., those involving transactions. W3C’s main
standards of interest for services include XML, XML Schema,
WSDL, SOAP, and WSCI.

– OASIS. The Organization for the Advancement of Structured
Information Standards standardizes a number of protocols and
methodologies relevant to Web services including the Universal
Business Language UBL, UDDI and Business Process
Specification Language for Web Services (BPEL4WS), and in
collaboration with UN/CEFACT, ebXML.

– UN/CEFACT. The Nations Center fort Trade Facilitation and
Electronic Business focuses on the facilitation of international
transactions, through the simplification and harmoninization of

20

transactions, through the simplification and harmoninization of
procedures and information flow. ebXML is one of its
development.

– WS-I. The Web Services Interoperability Organization is an
open, industry organization chartered to promote the
interoperability of Web services across platforms, operating
systems, and programming languages. Its primary contribution is
Basic Profile version 1.0 (BP 1.0).

– BPMI.org. The Business Process Management Initiative is
working to standardize the management of business processes
that span multiple applications, corporate departments, and
business partners. It integrated XLANG (Microsoft) and WSFL
(IBM) into BPEL4WS.

– WFMC. The Workflow Management Coalition develops
standardized models for workflows, and workflow engines, as
well as protocols for monitoring and controlling workflows.

21

– FIPA. The foundation for Intelligent Physical Agents promotes
technologies and specifications that facilitate the end-to-end
interoperation of intelligent agent systems for industrial
applications. Its standards include agent management
technologies and agent communication languages.

Standards for Web Services

• There have been several major efforts to standardize
services and service protocols, particularly for electronic
business.

• The relationship of the different proposed standards and

22

• The relationship of the different proposed standards and
methodologies for automating electronic business is
presented in the following figure.

23

• The efforts to standardize services and service
protocols, particularly for electronic business, have
resulted the rightmost stack.

• The leftmost stack is the result of development efforts by
the Semantic Web research community in conjunction
with the W3C.

24

• The central stack is primarily the result of standards
efforts led by IBM, Microsoft, BEA, HP, and Sun
Microsystems.

– In general, these have been separate from standards bodies, but
will be ratified eventually by one or more appropriate such
bodies.

• Each stack makes use of the following abstraction levels:

– The transport layer provides the fundamental protocols for
communicating information among the components in a
distributed system of services.

– The encoding layer (XML-layer) is the foundation for
interoperation among enterprises and for the envisioned
Semantic Web. The standards of this level describes the
grammars for syntactically well formed data and documents.

25

grammars for syntactically well formed data and documents.

– The messaging layer describes the formats using which
documents and services invocations are communicated.

– The service description and bindings layer describes the
functionality of Web services in terms of their implementations,
interfaces, and results.

– A conversation is an instance of a protocol of interactions
among services, describing the sequence of documents and
invocations exchanged by an individual service.

– Choreography protocols coordinate collections of Web services
into patterns that provide a desired outcome.

– Transaction protocols specify not only the behavioral
commitments of the autonomous components, but also the
means to rectify the problems that arise when exceptions and

26

means to rectify the problems that arise when exceptions and
commitment failures occur.

– The orchestration layer has protocols for workflows and
business processes, which are composed of more primitive
services and components. Orchestration implies a centralized
control mechanism, whereas choreography does not.

– Contracts and agreements formalize commitments among
autonomous components in order to automate electronic
business and provide outcomes that have legal force and
consequences.

– The discovery layer specifies the protocols and languages
needed for services to advertise their capabilities and for clients
that need such capabilities to locate and use the services.

27

Today’s Web and the Semantic Web

• Today’s Web

– WWW has changed the way people communicate with each
others and the way business is conducted

– WWW is currently transforming the world toward a knowledge
society

28

society

– Computers are focusing to the entry points to the information
highways

– Most of today’s Web content is suitable for human consumption

– Keyword-based search engines (e.g., Google) are the main tools
for using today’s Web

The problems of the keyword-based search

engines

• High recall, low precision

• Low or no recall

All documents

29

Figure. Relevant documents and retrieved documents.

All documents

Relevant documents Retrieved documents

The problems of the keyword-based

search engines

• Results are highly sensitive to vocabulary

– Often initial keywords do not get the results we want; in these cases the
relevant documents use different terminology from the original query

• Results are single web pages

– If we need information that is spread over various documents, we must

30

– If we need information that is spread over various documents, we must
initiate several queries to collect the relevant documents, and then we
must manually extract the partial information and put it together

Note: The term Information retrieval used with search engine is somehow
misleading; location finder is more appropriate term. Search engines are
also typically isolated applications, i.e., they are not accessible by other
software tools.

The problems of the keyword-based

search engines, continues.

• The meaning of Web content is not machine –

accessible, e.g.,

It is difficult to distinguish meaning of

31

It is difficult to distinguish meaning of

I am a professor of computer science

from

I am a professor of computer science, you may think.

From Today’s Web to the Semantic Web: Examples

• Knowledge management

– Knowledge management concerns itself with acquiring,
accessing and maintaining knowledge within an organization

– Has emerged as a key activity of large business because they
view internal knowledge as an intellectual asset from which they

32

view internal knowledge as an intellectual asset from which they
can draw greater productivity, create new value, and increase
their competitiveness

– Knowledge management is particularly important for
international organizations with geographically dispersed
departments

• From knowledge management point of view the current
technology suffers from limitations in the following areas:

– Searching information
• Companies usually dependent on search engines

– Extracting information
• Human time and effort are required to browse the retrieved

documents for relevant information

– Maintaining information
• Currently there are problems, such as inconsistencies in

33

• Currently there are problems, such as inconsistencies in
terminology and failure to remove outdated information

– Uncovering information
• New knowledge implicitly existing in corporate database is extracted

using data mining

– Viewing information
• Often it is desirable to restrict access to certain information to

certain groups of employees. “Views” are hard to realize over
Intranet or the Web

• The aim of the Semantic Web is to allow much more
advanced knowledge management system:

– Knowledge will be organized in conceptual spaces according to
its meaning

– Automated tools will support maintenance by checking for
inconsistencies and extracting new knowledge

– Keyword based search will be replaced by query answering:

34

– Keyword based search will be replaced by query answering:
requested knowledge will be retrieved, extracted, and presented
in a human-friendly way

– Query answering over several documents will be supported

– Defining who may view certain parts of information (even parts of
documents) will be possible.

Business-to-Consumer Electronic Commerce (B2C)

• B2C electronic commerce is the predominant commercial
experience of Web users

– A typical scenario involves a user’s visiting one or several shops,
browsing their offers and ordering products

– Ideally, a user would collect information about prices, terms, and
conditions (such as availability) of all, or at least all major, online shops
and then proceed to select the best offer. However, manual browsing is
too time-consuming.

35

too time-consuming.

– To alleviate this situation, tools for shopping around on the Web are
available in the form of shopboots, software agents that visit several
shops extract product and price information, and compile a market
overview.

– The function of shopboots are provided by wrappers, programs that
extract information from an online store. One wrapper per store must be
developed.

– The information is extracted from the online store site through keyword
search and other means of textual analysis

Business-to-Consumer Electronic Commerce (B2C)

• The Semantic Web will allow the development of software agents
that can interpret the product information and the terms of service

– Pricing and product information will be extracted correctly, and delivery
and privacy policies will be interpreted and compared to the user
requirements

36

requirements

– Additional information about the reputation of online shops will be
retrieved from other sources, for example. Independent rating agencies
or consumer bodies

– The low-level programming of wrappers will become obsolete

– More sophisticated shopping agents will be able to conduct automated
negotiations, on the buyer’s behalf, with shop agents

Business-to-Business Electronic Commerce (B2B)

• The greatest economic promise of all online technologies lies in the
area of B2B

• Traditionally business have exchanged their data using the
Electronic Data Interchange (EDI) approach

– EDI-technology is complicated and understood only by experts

37

– EDI-technology is complicated and understood only by experts

– Each B2B communication requires separate programming

– EDI is also an isolated technology in the sense that interchanged data
cannot be easily integrated with other business applications

• Business have increasingly been looking at Internet-based
solutions, and new business models such as B2B-portals have
emerged, still B2B commerce is hampered by the lack of standards

Business-to-Business Electronic Commerce (B2B)

• The new standard of XML is a big improvement but can still support
communications only in cases where there is a priori agreement on
the vocabulary to be used and on its meaning

• The realization of The Semantic Web will allow businesses to enter
partnerships without much overhead

38

• Differences in terminology will be resolved using standard abstract
domain models, and data will be interchanged using translation
services

• Auctioning, negotiations, and drafting contracts will be carried out
automatically or semi-automatically by software agents

Explicit metadata

• Currently, Web content is formatted for human readers rather than
programs.

• HTML is the predominant language in which Web pages are written
directly or using tools

39

• A portion of a typical HTML-based Web page of a physical therapist
might look like the following

“HTML” example
<h1>Agilitas Physiotherapy Centre</h1>

Welcome to the home page of the Agilitas Physiotherapy
CentreP.

<h2>Consultation hours</h2>

Mon 11 am -7 pm

Tue 11am – 7 pm

Wed 3 am – 7pm

40

Wed 3 am – 7pm

Thu 10 am – 8 pm

Fri 11am – 4 pm <p>

But note that we do not offer consultation during the weeks of the

State of origingames.

Note. For people the information is presented in a satisfactory
way, but machines will have their problems, e.g., finding the
exact consultation hours, i.e., when there are no games.

“XML” example

<company>

<treatmentOffered>Physiotherapy</treatmentOffered>

<companyName>Agilitas Physiotherapy Centre</companyName>

<staff>

<therapist>Lisa Davenport</therapist>

41

<therapist>Steve Matthews</therapist>

<secretary>Kelly Townsend</secretary>

</staff>

</company>

Note: This representation is far more processable by machines.

Ontologies
• The term Ontology originates from philosophy “the study of the

nature of existence”

• For our purpose we use the definition “An ontology is an explicit and

formal specification of a conceptualization”

• In general, an ontology describes formally a domain of discourse

– Typically an ontology consists of a finite list of terms and the relationship

42

– Typically an ontology consists of a finite list of terms and the relationship
between these terms

– The terms denote important concepts (classes or objects) of the
domain, e.g., in the university setting staff members, students, course
and disciplines are some important concepts

– The relationships typically include hierarchies of classes

– A hierarchy specifies a class C to be a subclass of an other class C’ if

every object in C is also included in C’

An example hierarchy

University people

Staff Students

Academic Administration Technical Undergraduate Postgraduate

43

Academic
staff

Administration
staff

Technical
support
staff

Undergraduate Postgraduate

Regular
faculty
staff

Research
staff

Visiting staff

Apart from subclass relationships, ontologies may
include information such as:

• properties,
– e.g., X teaches Y

• value restrictions,
– e.g., only faculty members can teach courses

44

– e.g., only faculty members can teach courses

• disjointness statements,
– e.g., faculty and general staff are disjoint

• specification of logical relationships between objects,
– e.g., every department must include at least ten faculty members

• In the context of Web, ontologies provide a shared understanding of

a domain

• A shared understanding is necessary to overcome differences in
terminology

– One application’s zip code may be the same as another application’s
area code

– Two applications may use the same term with different meanings, e.g.,
in university A, a course may refer to a degree (like computer science),

45

in university A, a course may refer to a degree (like computer science),
while in university B it may mean a single subject , e.g. CS 100

• Differences can be overcome by mapping the particular terminology
to a shared ontology or by defining direct mapping between the
ontologies;

– in either case ontologies support semantic interoperability

Ontologies are also useful for:

• the organization and navigation of Web sites
– Many Web sites expose on the left-hand side of the page the top levels

of concept hierarchy of terms. The user may click on one of them to
expand the subcategories

• improving the accuracy of Web searches
– The search engine can look for pages that refer to a precise concept in

an ontology instead of collecting all pages in which certain, generally

46

an ontology instead of collecting all pages in which certain, generally
ambiguous, keywords occur. In this way differences in terminology
between Web pages and the queries can be overcome

• exploiting generalization /specialization information in Web searches
– If a query fails to find any relevant documents, the search engine may

suggest to the user a more general query. Also if too many answers are
retrieved, the search engine may suggest to the user some specification

• In Artificial intelligence (AI) there is a long tradition of developing
ontology languages

– It is a foundation Semantic Web research can build on

• At present, the most important ontology languages for the Web are
the following

– XML provides a surface syntax for structured documents but impose no

47

– XML provides a surface syntax for structured documents but impose no
semantic constraints on the meaning of these documents

– XML Schema is a language for restricting the structure of XML
documents

– RDF is a data model for objects (“resources”)and relations between
them; it provides a simple semantics for this data model; and these data
models can be represented in an XML syntax

– RDF Schema is a vocabulary description language for describing
properties and classes of RDF resources, with a semantics for
generalization hierarchies of such properties and classes

48

– OWL is richer vocabulary language for describing properties and
classes, such as relations between classes (e.g., disjointness),
cardinality (e.g., exactly one), equality, richer typing properties,
characteristics of properties (e.g., symmetry), and enumerated classes

Logic

• Logic is the discipline that studies the principle of
reasoning; it goes back to Aristotle

– logic offers formal languages for expressing knowledge

– logic provides us with well-understood formal semantics

• In most logics, the meaning of sentences is defined without the
need to operationalize the knowledge

49

need to operationalize the knowledge

• Often we speak of declarative knowledge: we describe what holds
without caring about how it can be deduced

– automated reasoners can deduce (infer) conclusions from the
given knowledge, thus making implicit knowledge explicit (such
reasoners have been studied extensively in AI)

Example of inference in logic

Suppose we know that all professors are faculty members, that all faculty
members are staff members, and that Michael is a professor

In predicate logic this information is expressed as follows:

prof(X) � faculty (X)

facultu(X) � staff(X)

prof(Michael)

50

prof(Michael)

Then we can deduce the following

faculty(Michael)

staff(Michael)

prof(X) � staff(X)

Note. This example involves knowledge typically found in ontologies. Thus
logic can be used to uncover knowledge that is implicitly given.

Example of inference in logic

• Logic is more general than ontologies; it can also be used by
intelligent agents for making decisions and selecting courses of
action.

• For example a shop agent may decide to grant a discount to a
customer based on the rule

51

customer based on the rule

loyal(Customer(X)) � discount(5%)

Where the loyalty of customers is determined from data stored in
the corporate database

Note. Generally there is trade-of between expressive power and
computational efficiency: the more expressive a logic is, the more
computationally expensive it becomes to draw conclusions. And
drawing certain conclusions may become impossible if

noncomputability barriers are encountered.

• Most knowledge relevant to the Semantic Web seems to be of a relatively
restricted form,

52

restricted form,

– e.g., the previous examples involved rules of the form

if condition then conclusion

and only finitely many objects needed to be considered. This subset
of logic is tractable and is supported by efficient reasoning tools.

Propositional logic

• Propositional logic is the simplest kind of logic

• Enables formally express simple semantic truths about the world called
propositions

• A proposition is an expression (statement) in logic about the world or some
part of it that is either true or false (in certain logics also unknown)

53

• A limitation of propositional logic is that one cannot speak about individuals
(instances like John, who is an instance of a management employee)
because the granularity is not fine enough

– The basic unit is the proposition, which is either true or false

– One cannot “get inside” the proposition and pull out instances or classes or
properties (for these one needs first-order predicate logic)

Propositional logic example

PROPOSITIONS IN ENGLISH

If John is a management employee,

then John manages an organization

John is a management employee

PROPOSITIOSN IN

PROPOSITIONAL LOGIC

p → q

p Assertions
Proof

54

John manages an organization

Modus ponens

q Modus ponens
Conclusion

Proof

The way to read a proof: if the assertions are held to be true, it follows logically
from them that the conclusion is true – and true by reason of a logical inference
rule, here the rule modus ponens

First –order predicate logic

• A predicate is a feature of language (and logic) that can be used to
make a statement or attribute a property to something, e.g.,
properties of being a management employee and managing an
organization

• An instantiated predicate is a proposition, e.g.,

55

• An instantiated predicate is a proposition, e.g.,
managrment_employee(john) = true

• An uninstantiated predicate, e.g., management_employee(x) is not a
proposition because the statement does not have a truth value

Predicate logic example

PROPOSITIONS AND

PREDICATES IN ENGLISH

If John is a management employee,

then John manages an organization

PROPOSITIONS AND

PREDICATES IN FIRST-ORDER

PREDICATE LOGIC

p(x) → q(x)

56

then John manages an organization

John is a management employee

John manages an organization

Modus ponens

P(John)

q(John) Modus ponens

Using quantifiers in predicate logic

• A quantifier is a logical symbol that enables one to
quantify over instances or individuals
– Universal quantifier means All

– Existential quantifier means Some

• Ordinary predicate logic is called first-order as it only

57

• Ordinary predicate logic is called first-order as it only
quantifies over instances

• Second order logics quantify over both instances and
predicates

Example of quantifiers in Predicate Logic

PROPOSITIONS AND

PREDICATES IN FIRST-ORDER

PREDICATE LOGIC

All x.[p(x) → some y.[q(y) Λ r(x,y)]]

PROPOSITIONS AND

PREDICATES IN ENGLISH

Everyone who is a management

employee manages some organization

58

All x.[p(x) → some y.[q(y) Λ r(x,y)]]

”for all x, if x is a p,

then there is some y such that

y is a q and x is in the r relation to y”

employee manages some organization

Or:

For everyone who is a management

employee, there is some organization

that that person manages

Logical theory behind DAML+OIL and OWL

• Ontologies that use logical theories are modeled in
semantic languages such as DAML+OIL and OWL

• The logic behind DAML+OIL and OWL is almost but not
quite as complicated as first-order predicate logic
(description logics explicitly try to achieve a good trade-

59

(description logics explicitly try to achieve a good trade-
off between semantic richness and machine tractability)

• The use of ontology development tools based on
DAML+OIL or OWL does not require the understanding
of formal logics

Agents in the Semantic Web

• Agents are pieces of software that work autonomously and
proactively

• Conceptually they evolved out of the concepts of object-oriented
programming and component-based software development

• A personal agent on the Semantic Web will receive some tasks and

60

• A personal agent on the Semantic Web will receive some tasks and
preferences from the person,

– seek information from Web sources,

– communicate with other agents,

– compare information about user requirements and preferences,

– select certain choices, and

– give answers to the user

Intelligent personal agents

Today

User

In the future

User

Personal agent

61

Present in
Web browser

WWW
docs

Search
engine Intelligent

Infrastructure
services

WWW
docs

• Agents will not replace human users on the Semantic Web, nor will
they necessary make decisions

– The role of agents will be to collect and organize information, and
present choices for the users to select from

• Semantic web agents will make use of many technologies including:

– Metadata will be used to identify and extract information from Web
sources

62

sources

– Ontologies will be used to assist in Web searches, to interpret retrieved
information, and to communicate with other agents

– Logic will be used for processing retrieved information and for drawing
conclusions

What is a Semantic Web

• Tim Berners-Lee has a two-part vision for the future of
the Web
– The first part is to make the Web a more collaborative medium

– The second part is to make the Web understandable, and thus
processable, by machines

63

processable, by machines

• A definition of the Semantic Web:

a machine processable web of smart data

– Smart data:

data that is application-independent, composeable, classified,

and part of a larger information ecosystem

Four stages of the smart data continuum:

XML taxonomies and docs
with mixed vocabularies

XML-ontology and
automated reasoning

The path to machine-processable data is to make the data smarter

(Data can be composed from multiple
domains and accurately classified in a
hierarchical taxonomy)

(New data can be inferred from existing
data by following logical rules)

64

Text documents and
database records

XML documents using
single vocabularies

with mixed vocabularies

(Most data is proprietary to an application -
”smarts” are in the application – not in the data)

(Data achieves application independence within a
specific domain. The data is smart enough to move
between applications in a single domain)

hierarchical taxonomy)

Stovepipe systems and the Semantic Web

• In a stovepipe system all the components are hardwired
to only work together

• Information only flows in the stovepipe and cannot be
shared by other systems or organizations

65

• E.g., the client can only communicate with specific
middleware that only understands a single database with
a fixed schema

• The semantic web technologies will be most effective in
breaking down stovepiped database systems

Web Services and the Semantic Web

Dynamic
Resources

Web Services Semantic Web Services

66

Static
Resources

Interoperable
syntax

Interoperable
semantics

WWW Semantic Web

Making data smarter

• Logical assertions:

Connecting a subject to an object with a verb (e.g., RDF-statements)

• Classification
Taxonomy models, e.g. XML Topic maps

67

Taxonomy models, e.g. XML Topic maps

• Formal class models
E.g., UML- presentations

• Rules
An inference rule allows to derive conclusions from a set of

premises, e.g. “modus ponens”

Chapter 2: The Business Cases for the Semantic Web

Knowledge
(“smart data”)

Sales support Strategic vision

Decision supportMarketing

68

(“smart data”)

Figure. Uses of the Semantic Web in an enterprise

Administration

Corporate information sharing

Business
development

Chapter 3: Understanding XML and its Impact on
Enterprise

• Currently the primary use of XML is for data exchange
between internal and external organizations

• XML creates application-independent documents and
data

69

data

• XML is a meta language; it is used for creating new
language

• Any language created via the rules of XML is called an
application of XML

Markup

• XML is a markup language

• A markup language is a set of words, or marks, that
surround, or “tag”, a portion of a document’s content in
order to attach additional meaning to the tagged content,

70

order to attach additional meaning to the tagged content,
e.g.,

<footnote>

<author> Michael C. Daconta </author> <title> Java Pitfalls </title>

</footnote>

XML - markup

• XML – document is a hierarchical structure (a tree) comprising of elements

• An element consists of an opening tag, its content and a closing tag, e.g.,
<lecturer>David Billington</lecturer>

– Tag names can be chosen almost freely; there are very few restrictions:

– The first character must be a letter, an underscore, or a colon; and no
name may begin with the string “XML”

71

name may begin with the string “XML”

– The content may be text, or other elements, or nothing, e.g.,

<lecturer>
<name>David Billington</name>
<phone>+61-7-3875 507</phone>

</lecturer>

• If there is no content, then the element is called empty.

– An empty element like

<lecturer></lecturer>

can be abbreviated as

<lecturer/>

72

• Each name / value pair attached to an element is called an attribute,

an element may have more than one attribute e.g., the following
element has three attributes:

<auto color=“red” make = “Dodge” model = “Viper” > My car </auto>

Attributes

• An empty element is not necessarily meaningless, because it may
have some properties in terms of attributes, e.g.,

<lecturer name =“David Billington” phone = ”61-7-3875 507”/>

73

• The combination of elements and attributes makes XML well suited
to model both relational and object-oriented data

An example of attributes for a nonempty element:

<order orderNo=“23456” customer=“John Smith” date=“October 15, 2004>

<item itemNo=“a528” quantity “1”/>

<item itemNo=“c817 ”quantity “3”/>

</order>

The same information could have been written by replacing attributes by nested elements:

<order>

<orderNo>2345</order>

74

<orderNo>2345</order>

<customer>John Smith</customer>

<date>October 15, 2004</date>

<item>

<itemNo>a528</itemNo>

<quantity>1</quantity>

</item>

<item>

<itemNo>c817</itemNo>

<quantity>3</quantity>

</item>

</order>

Prologs

• An XML-document consists of a prolog and a number of elements

• The prolog consists of an XML-declaration and an optional reference
to external structuring documents,

– An example of XML declaration

75

– An example of XML declaration

<?xml version=“1.0” encoding=“UTF-16?>

Specifies that the document is an XML document, and defines the
version and the character encoding used in the particular system (such
as UTF-8, UTF-16, and ISO 8859-1)

Prologs
– It is also possible to define whether the document is self-

contained, i.e., whether it does not refer external structuring
documents, e.g.,

<?xml version=“1.0” encoding=“UTF-16” standalone=“no” ? >

A reference to external structuring documents looks like this:

<!DOCTYPE book SYSTEM “book.dtd”>

76

<!DOCTYPE book SYSTEM “book.dtd”>

Here the structuring is found in a local file called book.dtd

– If only a locally recognized name or only a URL is used, then the label
SYSTEM is used.

– If one wishes to give both a local name and a URL, then the label
PUBLIC should be used instead

Well – Formed and Valid XML - Documents

• A well-formed XML document complies with all the key W3C syntax
rules of XML

– guarantees that XML processor can parse (break into identifiable
components) the document without errors

77

• An XML-document is well-formed if is syntactically correct. Some
syntactic rules are:

– There is only one outermost element in the document (called the root

element)

– Each element contains an opening and a corresponding closing tag

– Tags may not overlap, as in

<author><name>Lee Hong</author></name>

Well – Formed and Valid XML - Documents

• A valid XML document references and satisfies a
schema

– A schema is a separate document whose purpose is
to define the legal elements, attributes, and structure
of an XML instance document, i.e., a schema defines

78

of an XML instance document, i.e., a schema defines
a particular type or class of documents

The tree model of XML Documents

• It is possible to represent well-formed XML documents as trees; thus trees
provide a formal data model for XML, e.g., the following document can be
presented as a tree

<?xml version=“1.0” encoding=“UTF-16?>

<!DOCTYPE email SYSTEM “email.dtd”>

<email>

<head>

79

<head>

<from name=“Michael Maher” address =“michaelmaher@cs.gu.edu.au”/>

<to name=“Grigoris Antonicou” address =“grigoris@cs.unibremen.de”/>

<subject>Where is your draft?</subject>

</head>

<body>

Grigoris, where is the draft of the paper you promised me last week?

</body>

</email>

Tree representation of the document

Root

email

head body

80

from to subject

name address name address

Michael
Maher

michaelmaher
@cs.gu.edu.au

Grigoris
Antoniou

grigirrisantoniou
@cs.unibremen.de

Where is
your draft

Grigoris, where is

the draft of the

paper you promised

me last week?

DTDs

There are two ways for defining the structure of XML-documents:

– DTDs (Document Type Definition) the older and more restrictive way

– XML-Schema which offers extended possibilities, mainly for the definition
of data types

81

• External and internal DTDs

– The components of a DTD can be defined in a separate file (external DTD)
or within the XML document itself (internal DTD)

– Usually it is better to use external DTDs, because their definition can be
used across several documents

• Elements

– Consider the element

<lecturer>

<name>David Billington</name>

<phone>+61-7-3875 507</phone>

</lecturer>

– A DTD for this element type looks like this:

<!ELEMENT lecturer (name, phone)>

82

<!ELEMENT lecturer (name, phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

– In DTDs #PCDATA is the only atomic type of elements

– We can express that a lecturer element contains either a name
element or a phone element as follows:

<!ELEMENT lecturer (name | phone)>

• Attribute
– Consider the element

<order orderNo=“23456” customer=“John Smith” date=“October 15, 2004>

<item itemNo=“a528” quantity “1”/>

<item itemNo=“c817 ”quantity “3”/>

</order>

A DTD for it looks like this:

<!ELEMENT order (item+)>

<!ATTLIST order

83

<!ATTLIST order

orderNo ID #REQUIRED

customer CDATA #REQUIRED

date CDATA #REQUIRED>

<!ELEMENT item EMPTY>

<!ATTLIST item

itemNo ID #REQUIRED

quantity CDATA #REQUIRED

comments CDATA #IMPLIED>

NOTE. Compared to the previous example now the item element type is defined to be
empty

• Cardinality operators

?: appears zero times or once

*: appears zero or more times

+: appears one or more times

– No cardinality operator means exactly one

– CDATA, a string (a sequence of characters)

84

– CDATA, a string (a sequence of characters)

Example: DTD for the email document

<!ELEMENT email (head, body)>

<!ELEMENT head (from, to+, cc*, subject)>

<!ELEMENT from EMPTY>

<!ATTLIST from

name CDATA #IMPLIED

address CDATA #REQUIRED>

<!ELEMENT to EMPTY>

<!ATTLIST to

name CDATA #IMPLIED

address CDATA #REQUIRED>

85

address CDATA #REQUIRED>

<!ELEMENT cc EMPTY>

<!ATTLIST cc

name CDATA #IMPLIED

address CDATA #REQUIRED>

<!ELEMENT subject (#PCDATA)>

<!ELEMENT body (text, attachment*)>

<!ELEMENT text (#PCDATA)

<!ELEMENT attachment EMPTY>

<!ATTLIST attachment encoding (mime | binhex “mime” file CDATA
#REQUIRED>

Some comments for the email DTD

• A head element contains a from element, at least one to element,
zero or more cc elements, and a subject element, in the order

• In from, to and cc elements the name attribute is not required; the
address attribute on the other hand is always required.

• A body element contains a text element, possibly followed by a
number of attachment elements

86

• The encoding attribute of an attachment element must have either
the value “mime” or “binhex”, the former being the default value.

• #REQUIRED. The Attribute must appear in every occurrence of the
element type in the XML-document.

• #IMPLIED. The appearance of the attribute is optional

NOTE. A DTD can be interpreted as an Extended Backus-Naur Form
(EBNF).

For example, the declaration

<!ELEMENT email (head, body)>

is equivalent to the rule

87

email :: head body

which means that e-mail consists of head followed by a body.

Data Modeling Concepts

XML
Element
Attribute

Object-oriented
Class
Data member

Relational
Entity

88

Attribute Data member Relation

XML-Schema

• XML Schema offers a significantly richer language than DTD for
defining the structure of XML-documents

• One of its characteristics is that its syntax is based on XML itself

– This design decision allows significant reuse of technology

• XML-Schema allows one to define new types by extending or

89

• XML-Schema allows one to define new types by extending or
restricting already existing ones

• XML-Schema provides a sophisticated set of data types that can be
used in XML documents (DTDs were limited to strings only)

XML-Schema

• XML – Schema is analogous to a database schema, which defines
the column names and data types in database tables

• The roles of the XML-Schema:

– Template for a form generator to generate instances of a
document type

90

document type

– Validator to ensure the accuracy of documents

• XML-Schema defines element types, attribute types, and the
composition of both into composite types, called complex types

XML-Schema
• An XML Schema is an element with an opening tag like

<XSD:schema

xmlns:xsd=http://www.w3.org/2000/10/XMLSchema

version=“1.0”>

• The element uses the schema of XML Schema found at W3C Web site. It is

91

• The element uses the schema of XML Schema found at W3C Web site. It is
the “foundation” on which new schemas can be built

• The prefix xsd denotes the namespace of that schema. If the prefix is
omitted in the xmlns attribute, then we are using elements from this
namespace by default:

<schema

xmlns=http://www.org/2000/10/XMLSchema version=“1.0”>

XML-Schema

• An XML Schema uses XML syntax to declare a set of
simple and complex type declarations

– A type is a named template that can hold one or more values

– Simple types hold one value while complex types are composed
of multiple simple types

92

of multiple simple types

– An example of a simple type:

<xsd: element name = “author” type “xsd:string” />

(note: “xsd:string” is a built-in data type)

Enables instance elements like:

<author> Mike Daconta </author>

XML Schema

• A complex type is an element that either contains other elements or
has attached attributes, e.g., (attached attributes):

<xsd: element name = “ book”>

<xsd: complexType>

<xsd: attribute name = “title” type = “xsd: string” />

93

<xsd: attribute name = “title” type = “xsd: string” />

<xsd: attribute name = “pages” type = “xsd: string” />

</xsd: complexType>

</xsd: element>

An example of the book element would look like:

<book title = “More Java Pitfalls” pages = “453” />

XML Schema
• XML-Schema “product” has attributes and child elements:

<xsd: element name = “product”>
<xsd: complexType>

<xsd: sequence>
<xsd: element name=“description” type=“xsd:string”
minoccurs=“0” maxoccurs=“1” />
<xsd: element name=“category” type=“xsd:string”

94

<xsd: element name=“category” type=“xsd:string”
minoccurs=“1” maxOccurs=“unbounded” />

</xsd:sequence>
<xsd: atribute name= “id” type=“xsd:ID” />
<xsd: atribute name=“title” type=“xsd:string” />
<xsd: atribute name=“price” type=“xsd:decimal” />

</xsd: complexType>
</xsd: element>

XML Schema

• An XML-instance of the product element:

<product id =“PO1” title=“Wonder Teddy” price=“49.99”>

<description>

The best selling teddy bear of the year

95

The best selling teddy bear of the year

</description>

<category> toys </category>

<category> stuffed animals </category>

</product>

XML Schema

• An other XML-instance of the product element:

<product id=“P02” title=“RC Racer” price=“89.99”>

<category> toys </category>

<category> electronic </category>

96

<category> electronic </category>

<category> radio-controlled </category>

</product>

Data Types

• There is a variety of built-in datatypes including:

– Numerical data types, including integer, Short, Byte, Long, Float,

Decimal

– String data types, including, string, ID, IDREF, CDATA, Language

– Date and time data types, including, Time, Date, Month, Year

• Complex types are defined from already existing data types by

97

• Complex types are defined from already existing data types by

defining some attributes (if any) and using

– Sequence, a sequence of existing data type elements, the appearance
of which in a predefined order is important

– All, a collection of elements that must appear, but the order of which is
not important

– Choice, a collection of elements, of which one will be chosen

Data Types: example

<complexType name=“lecturerType”>

<sequence>

<element name=”firstname” type=“string”

minoccurs=“0” maxoccurs=“unbounded”/>

<element name=”lastname” type=“string”/>

</sequence>

98

</sequence>

<attribute name=“title” type=“string” use=“optional”/>

</complexType>

The meaning is that an element in an XML document that is declared to
be of type leturerType may have title attribute, any number of
firsname elements, and exactly one lastname element.

Data Type Extension

• Existing data type can be extended by new elements or attributes

• As an example, we extend the lecturer data type

<complexType name=“extendedLecturerType”>

<extension base=“lecturerType”>

<sequence>

99

<sequence>

<element name=“email” type=“string”

minoccurence=“0” maxoccurence=“1/>

</sequence>

<attribute name=“rank” type=“string use=“required”/>

</extension>

</complexType>

Data Type Extension

The resulting data type looks like this:

<complexType name=“extendedlecturerType”>

<sequence>

<element name=”firstname” type=“string”

minoccurs=“0” maxoccurs=“unbounded”/>

100

minoccurs=“0” maxoccurs=“unbounded”/>

<element name=”lastname” type=“string”/>

<element name=”email” type=“string”

minoccurs=“0” maxoccurs=“1”/>

</sequence>

<attribute name=“title” type=“string” use=“optional”/>

<attribute name=“rank” type=“string” use=“required”/>

</complexType>

Data Type Restriction

• An existing data type may also be restricted by adding constraints on
certain values

– E.g., new type and use attributes may be added or the numerical
constraints of minOccurs and maxOccurs tightened

– As an example, we restrict the lecturer data type as follows (tightened
constraints are shown in boldface):

<complexType name=“RestrictedLecturerType”>

<restriction base=“lecturerType”>

101

<restriction base=“lecturerType”>

<sequence>

<element name=”firstname” type=“string”

minoccurs=“1” maxoccurs=“2”/>

<element name=”lastname” type=“string”/>

</sequence>

<attribute name=“title” type=“string” use=“required”/>

</complexType>

XML-namespaces

• Namespaces is a mechanism for creating globally
unique names for the elements and attributes of the
markup language

• Namespaces are implemented by requiring every XML
name to consists of two parts: a prefix and a local part,

102

name to consists of two parts: a prefix and a local part,
e.g., <xsd: integer>

here the local part is “integer” and the prefix is an abbreviation
for the actual namespace in the namespace declaration. The
actual namespace is a unique Uniform Resource Identifier.

A sample namespace declaration:

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema>

XML-namespaces

• There are two ways to apply a namespace to a
document:

attach the prefix to each element and attribute in the document,
or declare a default namespace for the document, e.g.,

<html xmlns=http://www.w3.org/1999/xhtml>

103

<html xmlns=http://www.w3.org/1999/xhtml>

<head> <title> Default namespace test </title> </head>

<body> Go Semantic Web ! </body>

</html>

XML-namespaces: Example

• Consider an (imaginary) joint venture of an Australian university, say
Griffifth University, and an American University, say University of
Kentucky, to present a unified view for online students

• Each university uses its own terminology and there are differences;
e.g., lecturers in the United States are not considered regular
faculty, whereas in Australia they are (in fact, they correspond to

104

faculty, whereas in Australia they are (in fact, they correspond to
assistant professors in the United States)

• The following example shows how disambiguation can be achieved

<?xml version=“1.0” encoding=“UTF-16”?>

<vu : instructors

xmlns : vu=“http://www.vu.com/empDTD”

xmlns : gu=“http://www.gu.au/empDTD”

xmlns : uky=“http://www.uky.edu/empDTD” >

<uky : faculty

uky : title=“assistant professor”

uky : name=“John Smith”

uky : department=“Computer Science”/>

<gu : academicStaff

105

<gu : academicStaff

gu : title=“lecturer”

gu : name=“Mate Jones”

gu : school=“Information Technology”/>

</vu : instructors>

If a prefix is not defined, then the location is used by default. So, for example
the previous example is equivalent to the following document (differences
are shown in boldface)

<?xml version=“1.0” encoding=“UTF-16”?>

<vu : instructors

xmlns : vu=“http://www.vu.com/empDTD”

xmlns=“http://www.gu.au/empDTD”

xmlns : vu=“http://www.uky.edu/empDTD” >

<uky : faculty

uky : title=“assistant professor”

uky : name=“John Smith”

uky : department=“Computer Science”/>

106

uky : department=“Computer Science”/>

<academicStaff

title=“lecturer”

name=“Mate Jones”

school=“Information Technology”/>

</vu : instructors>

Example: XML-Schema for the email document

<schema xmlns=http://www.org/2000/10/XMLSchema version=“1.0”>

<element name=“email” type=”emailtype”/>

<complexType name=“emailType”>

<sequence>

<element name=“head” type=“headType”/>

<element name=“body” type=“bodyType”/>

</sequence>

</complexType>

<complexType name=“headType”>

107

<complexType name=“headType”>

<sequence>

<element name =“from” type=“nameAddress”/>

<element name =“to” type=“nameAddress”

minoccurs=“1” maxoccurs=“unbounded”/>

<element name =“cc” type=“nameAddress”

minoccurs=“0” maxoccurs=“unbounded”/>

<element name =“subject” type=“string”/>

</sequence>

</complexType>

<complexType name=“nameAddress”>

<attribute name=“name” type=“string” use=“optional”/>

<attribute name=“address” type=“string” use=“required”/>

</complexType>

108

<complexType name=“bodyType”>
<sequence>

<element name=“text” type=“string”/>
<element name=“attachment” minoccurs=“0”
maxOccurs=“unbounded”/>

<complexType>
<attribute name=“encoding” use=“default” value=“mine”>

<simpleType>
<restriction base=“string”>

<enumeration value=“mime”/>
<enumeration value=“binhex”/>

<restriction>

109

<restriction>
</simpleType>

</attribute>
</attribute name=“file” type=“string” use=“required”/>

</complexType>
</element>

</sequence>
</complexType>

Uniform Resource Identifier (URI)

• URI is a standard syntax for strings that identify a resource

• Informally, URI is a generic term for addresses and names of
objects (or resources) on the WWW.

• A resource is any physical or abstract thing that has an identity

110

• There are two types of URI:s:

– Uniform Resource Locator (URL) identifies a resource by how it
is accessed, e.g., http://www.example.com/stuff/index.html
identifies a HTML page on a server

– Uniform Resource Names (URNs) creates a unique and
persistent name for a resource either in the “urn” namespace or
another registered namespace.

Document Object Model (DOM)

• DOM is a data model, using objects, to represent and
manipulate an XML or HTML documents

• Unlike XML instances and XML schemas, which reside
in files on disks, the DOM is an in-memory

111

in files on disks, the DOM is an in-memory
representation of a document.

• In particular, DOM is an application interface (API) for
programmatic access and manipulation of XML and
HTML

Semantic Levels of Modeling

Level 2

Level 3
(Worlds)

Ontologies (rules and logic)

112

Level 1
(Things)

Level 2
(Knowledge
about things)

RDF, taxonomies

XML Schema, conceptual models

Chapter 4: Understanding Web Services

• Web services provide interoperability solutions, making
application integration and transacting business easier

• Web services are software applications that can be
discovered, described and accessed based on XML and

113

discovered, described and accessed based on XML and
standard Web protocols over intranets, extranets, and
the Internet

The basic layers of Web services

DESCRIBE
(WSDL)

DISCOVER
(UDDI, ebXML registers)

114

Communication
(HTTP, SMTP, other protocols)

XML

ACCESS
(SOAP)

A common scenario of Web service use

UDDI Registry

WSDL for
Web service A

115

Client
application

4. Receive SOAP message response

Web service A

SOAP

• SOAP (“Simple Object Access Protocol”) is the envelope
syntax for sending and receiving XML-messages with
Web services

• An application sends a SOAP request to a Web service,

116

• An application sends a SOAP request to a Web service,
and the Web service returns the response.

• SOAP can potentially be used in combination with a
variety of other protocols, but in practice, it is used with
HTTP

The structure of a SOAP message

Headers

SOAP Header

SOAP Envelope

HTTP Header

117

Application-Specific Message Data

SOAP Body

Headers

An example: SOAP message for getting the last trade price
of “DIS” ticker symbol

<SOAP-ENV: Envelope

xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”

SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encodig/ ”>

<SOAP-ENV:Body>

118

<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns: m =“Some-URI” >

<symbol> DIS </symbol>

</m:GetLastTradePrice>

</SOAP-ENV: Body>

</SOAP-ENV: Envelope>

The SOAP response for the example stock price request:

<SOAP-ENV: Envelope

xmlns:SOAP-ENV=“http://schemas.xmlsoap.org/soap/envelope/”

SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encodig/ ”>

<SOAP-ENV:Body>

<m:GetLastTradePriceResponse xmlns: m=“Some-URI” >

<Price> 34.5 </Price>

119

<Price> 34.5 </Price>

</m:GetLastTradePrice>

</SOAP-ENV: Body>

</SOAP-ENV: Envelope>

Web Service Definition Language (WSDL)

• WSDL is a language for describing the communication
details and the application-specific messages that can
be sent in SOAP.

120

• To know how to send messages to a particular Web
service, an application can look at the WSDL and
dynamically construct SOAP messages.

Universal Description, Discovery, and Integration
(UDDI)

• Organizations can register public information about their Web
services and types of services with UDDI, and applications can view
this information

• UDDI register consists of three components:

121

• UDDI register consists of three components:
– White pages of company contact information,
– Yellow pages that categorize business by standard taxonomies,

and
– Green pages that document the technical information about

services that are exposed

• UDDI can also be used as internal (private) registers

ebXML Registries

• ebXML standard is created by OASIS to link traditional data
exchanges to business applications to enable intelligent business
processes using XML

• ebXML provides a common way for business to quickly and
dynamically perform business transactions based on common
business practices

122

business practices

• Information that can be described and discovered in an ebXML
architectures include the following:

– Business processes and components described in XML

– Capabilities of a trading partner

– Trading partner agreements between companies

An ebXML architecture in use

ebXML

Company
A

1. Get standard business
Process details

123

ebXML
Registry

Company A
ebXML
Implementation

Company
B

4. Get Company A’s
business profile 5. Get Company A´s

Implementation details

Orchestrating Web Services

• Orchestration is the process of combining simple Web
services to create complex, sequence-driven tasks,
called Web service choreography, or Web workflow

• Web workflow involves creating business logic to

124

• Web workflow involves creating business logic to
maintain conversation between multiple Web services.

• Orchestration can occur between
– an application and multiple Web services, or

– multiple Web services can be chained in to a workflow, so that
they can communicate with one another

Web workflow example

• Hotel finder Web service
– provides the ability to search for a hotel in a given city, list room rates,

check room availability, list hotel amenities, and make room
reservations

• Driving directions finder
– Gives driving directions and distance information between two

addresses

• Airline ticket booker

125

• Airline ticket booker
– Searches for flights between two cities in a certain timeframe, list all

available flights and their prices, and provides the capability to make
flight reservations

• Car rental Web service
– Provides the capability to search for available cars on a certain date,

lists rental rates, and allows an application to make a reservation

• Expense report creator
– Creates automatically expense reports, based on the sent expense

information

Example continues: Orchestration between an application
and the Web services

Client

Hotel

Finder

Driving

Directions

Finder

1

3
2

126

Client

application

Airline

Ticket Finder

Car Rental

Service

Expense

Report

Creator

6

5

4

The steps of the example

1. The client application send a message to the hotel finder Web service in
order to look for the name, address, and the rates of hotels (e.g., with
nonsmoking rooms, local gyms, and rates below 150 a night) available
in the Wailea, Maui, area during the duration of the trip

2. The client application send a message to the driving directions finder
Web service. For the addresses returned in Step 1, the client application
requests the distance to Big Makena Beach. Based on the distance
returned for the requests to this Web service, the client application finds

127

returned for the requests to this Web service, the client application finds
the four closest hotels.

3. The client application requests the user to make a choice, and then the
client application sends an other message to the hotel finder to make the
reservation

4. Based on the user’s frequent flyer information, e.g., on Party Airlines, and
the date of the trip to Maui, the client application send a message to the
airline ticket booker Web service, requesting the cheapest ticket

The steps of the example, continues P

5 The client application send a message to the car rental Web service and
requests the cheapest rentals. In the case of multiple choices the client
application prompts the user to make a choice.

6 Sending all necessary receipt information found in Step 1 to 5, the client
application requested an expense report generated from the expense
report creator Web service. The client application then emails the
resulting expense report, in the corporate format, to the end user.

128

resulting expense report, in the corporate format, to the end user.

• Note: the above example may be processes either in

Intranet, meaning that the Web services are implemented in Intranet and
so the client application knows all the Web service calls in advance, or in

Internet, meaning that the client application may discover the available
services via UDDI and download the WSDL for creating the SOAP for
querying the services, and dynamically create those messages on the fly.
This approach requires the utilization of ontologies.

Security of Web services

• One of the biggest concerns in the deployment of Web
services is security

• Today, most internal Web service architectures (Intranet
and to some extent extranets), security issues can be
minimized

129

minimized

• Internal EAI (Enterprise Application Integration) projects
are the first areas of major Web service rollouts

Security at different points

Security ? Portal
Web service

Security ?

Web service

130

User

Security ? Portal
Web service

Legacy

application

Web service

Security related aspects
• Authentication

– Mutual authentication means proving the identity of both parties
involved in communication

– Message origin authentication is used to make certain that the
message was sent by the expected sender

• Authorization

131

• Authorization
– Once a user’s identity is validated, it is important to know what

the user has permission to do

– Authorization means determining a user’s permissions

• Single sign-on (SSO)
– Mechanism that allows user to authenticate only once to her

client, so that no new authentication for other web services and
server applications is not needed

Security related aspects, continues P

• Confidentiality
– Keeping confidential information secret in transmission

– Usually satisfied by encryption

• Integrity
– Validating message’s integrity means using techniques that

132

– Validating message’s integrity means using techniques that
prove that data has not been altered in transit

– Techniques such as hash codes are used for ensuring integrity

• Nonrepudiation
– The process of proving legally that a user has performed a

transaction is called nonrepudiation

Chapter 5: Understanding Resource
Description Framework (RDF)

Motivation

• XML is a universal meta language for defining markup; it does not
provide any means of talking about the semantics (meaning) of data

133

– E.g., there is no intended meaning associated with the nesting of tags

– To illustrate this, assume that we want to express the following fact

David Billington is a lecturer of Discrete Mathematics

There are various ways of representing this sentence in XML:

<course name=“Discrete Mathematics”>

<lecturer>David Billington</lecturer>

</course>

<lecturer name=“David Billington”>

<teaches>Discrete Mathematics</teaches>

</lecturer>

<teachingOffering>

134

<teachingOffering>

<lecturer>David Billington</lecturer>

<course>Discrete Mathematics</course>

</teachingOffering>

Note. The first two formalizations include essentially an opposite
nesting although they represent the same information. So there is no
standard way of assigning meaning to tag nesting.

RDF continues ..
• RDF (Resource Description Framework) is essentially a data-model

• Its basic block is object-attribute-value triple (subject- predicate-
object triple according to RDF-terminology), called a statement,

– E.g., “David Billington is a lecturer of Discrete Mathematics”

is such a statement

135

• An abstract data needs a concrete syntax in order to be represented
and transmitted, and RDF has been given a syntax in XML

– As a result RDF inherits the benefits associated with XML

– However, other syntactic representations, not based on XML, are also
possible

• RDF is domain-independent in that no assumptions about a
particular domain of use are made

– It is up to users to define their own terminology in a schema language
RDFS (RDF Schema)

• NOTE. The name RDF Schema is not logical in the sense that it
suggests that RDF Schema has a similar relation to RDF as XML
Schema has to XML, but in fact this is not the case:

136

– XML Schema constraints the structure of XML-documents, whereas
RDF Schema defines the vocabulary used in RDF data models

• In RDFS we can define

– the vocabulary,

– specify which properties apply to which kinds of objects and

– what values they can take, and

– describe the relationships between the objects

– For example using RDF we can write:

Lecturer is a subclass of academic staff member

• An important point here is that there is an intended meaning associated
with “is a subclass of”

• It is not up to the application to interpret this term; its intended meaning
must be respected by all RDF processing software

• Through fixing the semantics of certain ingredients, RDF/RDFS enables
us to model particular domains

137

us to model particular domains

– For example, consider the following XML elements:

<academicStaffMember>Grigoris Antoniou</academicStaffMember>

<professor>Michael Maher</professor>

<course name=“Discrete Mathematics”>

<isTaughBy>David Billington</isTaughBy

</course>

• Suppose now that we want to collect all academic staff members

– A path expression in XPath might be

//academicStaffMember

– Its result is only Grigoris Antoniou. While it is correct from the XML
viewpoint, the result is semantically unsatisfactory; human reader would
have also included Michael Maher and David Billington in the result
because

– All professors are academic staff members, i.,e., professor is a
subclass of academicStaffMember

138

subclass of academicStaffMember

– Courses are only taught by academic staff members

– This kind of information makes use of the semantic model of the
particular domain, and cannot be represented in XML or in RDF but is
typical of knowledge written in RDF Schema

– Thus RDFS makes semantic information machine-accessible, in
accordance with the Semantic Web vision

RDF continues P

• RDF is an XML-based language to describe resources

• A resource is an electronic file available via the Uniform
Resource Locator (URL)

• While XML documents attach meta data to parts of a
document, one use of RDF is to create meta data about

139

document, one use of RDF is to create meta data about
the document as a standalone entity, i.e., instead of
marking up the internals of a document, RDF captures
meta data about the “externals” of a document, like the
author, creation date and type

• A particularly good use of RDF is to describe resources,
which are “opaque” like images or audio files

RDF continues P

• An RDF documents contains one ore more “descriptions”
of resources

• A description is a set of statements about a source

• An rdf:about attribute refers to the resource being

140

• An rdf:about attribute refers to the resource being
described

• The RDF model is called a “triple” as it has three parts:
subject, predicate and object

The RDF triple

Subject

Predicate

Predicate
Literal

Object

141

Predicate

= URL

= Literal

= Property or Association

The elements of an RDF triple:

• Subject:

– In grammar, the noun or noun phrase that is the doer of the
action

– E.g., in the sentence “ The company sells batteries” the subject
is “the company”

142

is “the company”

– In RDF the subject is the resource that is being described, and
so we want “the company” to be an unique concept which have
an URI (e.g., “http:///www.business.org/ontology/#company)

The elements of an RDF triple:

• Predicate:

– In grammar the part of a sentence that modifies the subject and
includes the verb phrase

– E.g., in the sentence “ The company sells batteries” the
predicate is the phrase “sells batteries”, so the predicate tells
something about the subject

143

something about the subject

– In logic, a predicate is a function from individuals (a particular
type of subject) to truth-values

– In RDF, a predicate is a relation between the subject and the
object, so in RDF we would define a unique URI for the concept
”sells” like http:///www.business.org/ontology/#sells

The elements of an RDF triple:

• Object:

– In grammar, a noun that is acted upon by the verb

– E.g., in the sentence “ The company sells batteries” the object is
the noun “batteries”

144

– In logic, an object is acted upon by the predicate

– In RDF, an object is either a resource referred to by the
predicate or a literal value, so in RDF we would define a unique
URI for the concept ”batteries” like
http:///www.business.org/ontology/#batteries

Capturing knowledge with RDF

• The expression of contents can be done at many ways,
e.g., :
– As natural language sentences,

– In a simple triple notation called N3

– In RDF/XML serialization format

145

– In RDF/XML serialization format

– As a graph of the triples

Expressing contents as natural language sentences

• Following the linguistic model of subject, predicate and
object, we express three English statements:

Buddy Belden owns a business

The business has a Web site accessible at http://www.c2i2.com/-budstv.

Buddy is the father of Lynne

146

Buddy is the father of Lynne

Expressing contents by N3 notation

• By extracting the relevant subject, predicate, and object we get the
N3 notation:
<#Buddy> <#owns> <#business>

<#business> <#has-website> <http: //www.c2i2.com/budstv>

<#Buddy> <#father-of> <#Lynne>

where # sign means the URI of the concept (a more accurate
expression is one where # sign is replaced by an absolute URI
like “http://www.c2i2com/buddy/ontology” as a formal
namespace)

147

like “http://www.c2i2com/buddy/ontology” as a formal
namespace)

In N3 this can be done with a prefix tag like

@prefix bt: < http://www.c2i2com/buddy/ontology >

Using this prefix the first sentence would be:

<bt: Buddy> <bt:owns> <bt:business>

Tools are available to automatically convert the N3 notation into
RDF/XML format

Example: RDF/XML generated from N3

<rdf:RDF
xmlns: RDFNsId1=‘#’
xmlns:rdf=‘http://www.w3org/1999/02/22-rdf-syntax-ns#’>

<rdf:Description rdf:about=‘#Buddy’>
<RDFNsId1:owns>

<rdf:Description rdf:about=‘#business’>

148

<rdf:Description rdf:about=‘#business’>
<RDFNsId1:has-website

rdf:resource=‘http://www.c2i2.com/-budstv’ />
</rdf: Description>

</RDFNsId1:owns>
<RDFNsID1:father-of rdf:resourcs=‘#Lynne’/>

</rdf:Description>
</rdf:RDF>

Expressing the domain of university courses and lectures at Griffith
University by RDF/XML

<!DOCTYPE owl [<!ENTITY xsd ”http://www.org/2001/XMLSchema#>]>

<rdf:RDF

xmlns : rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns : xsd=”http://www.w3.org/2001/XMLSchema#”

xmlns : uni=“http://www.mydomain.org/uni-ns#”

<rdf:Description rdf:about=”949352”>

149

<rdf:Description rdf:about=”949352”>

<uni : name>Grigoris Antoniou</uni : name>

<uni : title>Professor </uni : title>

</rdf : Description>

<rdf:Description rdf:about=”949318”>

<uni : name>David Billington</uni : name>

<uni : title>Associate Professor </uni : title>

<uni : age rdf:datatype=”&xsd;integer”>27</uni : age>

</rdf : Description>

<rdf:Description rdf:about=”949111”>

<uni : name>Michael Maher</uni : name>

<uni : title>Professor </uni : title>

</rdf : Description>

<rdf:Description rdf:about=”CIT1111”>

<uni : CourseName>Discrete Mathematics</uni : courseName>

<uni : isTaughBy>David Billington</uni : isTaughBy>

</rdf : Description>

<rdf:Description rdf:about=”CIT1112”>

150

<rdf:Description rdf:about=”CIT1112”>

<uni : CourseName>Concrete Mathematics</uni : courseName>

<uni : isTaughBy>Grigoris Antonio</uni : isTaughBy>

</rdf : Description>

<rdf:Description rdf:about=”CIT2112”>

<uni : CourseName>Programming III</uni : courseName>

<uni : isTaughBy>Michael Macher</uni : isTaughBy>

</rdf : Description>

<rdf:Description rdf:about=”CIT3112”>

<uni : CourseName>Theory of Computation</uni : courseName>

<uni : isTaughBy>David Billington</uni : isTaughBy>

</rdf : Description>

<rdf:Description rdf:about=”CIT3116”>

<uni : CourseName>Knowledge representation</uni : courseName>

<uni : isTaughBy>Grigorius Antoniou</uni : isTaughBy>

</rdf : Description>

</rdf : RDF>

151

</rdf : RDF>

Note. This example is slightly misleading (for illustrative purposes) because we should
replace all occurences of course and stafID’s such as 94952 and CIT3112 by
references to the external namespaces, for example

<rdf : Description

rdf : about=http://www.mydomain.org/uni-ns/#CIT31112>

The rdf:resource Attribute

• The preceding example was not satisfactory in one respect:

– The relationship between courses and lecturers were not formally
defined but existed implicitly through the use of the same name

– To a machine, the use of the same name may just be a coincidence:
• e.g., the David Billington who teaches CIT3112 may not be the same person

as the person with ID 94318 who happens to be called David Billington

– This problem can be avoided by using rdf : resource attribute as follows:

152

<rdf:Description rdf:about=”CIT1111”>

<uni : CourseName>Discrete Mathematics</uni : courseName>

<uni : isTaughBy rdf:resource=”949318”/>

</rdf : Description>

<rdf:Description rdf:about=”949318”>

<uni : name>David Billington</uni : name>

<uni : title>Associate Professor </uni : title>

</rdf : Description>

The rdf:type Element

• In our university example the descriptions fall into two categories:
courses and lecturers. This fact is clear to human readers, but has
not been formally declared anywhere, so it is not accessible to
machines.

• In RDF it is possible to make such statements (connections to RDF
Schema) using RDF : type element, e.g., as follows

<rdf:Description rdf:about=”CIT1111”>

<rdf:type rdf: rdf:resource=”&uni;course”/>

153

<rdf:type rdf: rdf:resource=”&uni;course”/>

<uni : CourseName>Discrete Mathematics</uni : courseName>

<uni : isTaughBy>David Billington</uni : isTaughBy>

</rdf : Description>

<rdf:Description rdf:about=”949318”>

<rdf:type rdf: rdf:resource=”&uni;lecturer”/>

<uni : name>David Billington</uni : name>

<uni : title>Associate Professor </uni : title>

</rdf : Description>

Expressing contents by a graph of N3 notation

#Buddy

#father-of #Lynne

154

#Buddy

#owns #has-website

http:// www.c2i2.com/-budstv#business

Other RDF features

• The container model (Bag, Sequence, Alternate)
allows groups of resources or values

– Required to model sentences like “ The people at

155

– Required to model sentences like “ The people at
meeting were Joe, Bob, Susan, and Ralph

– To model the objects in the sentence, a container,
called bag is created (see next slide)

An RDF bag container example

<rdf:RDF
xmlns:ex =‘http://www.example.org/sample#’
xmlns:rdf=‘http://www.w3.org/1999/02/22-rdf-sybtax-ns#’>

<rdf:Description rdf:about=‘ex:meeting*>
<ex:attendees>
<rdf:Bag rdf:ID = “people”>

156

<rdf:Bag rdf:ID = “people”>
<rdf:li rdf: resource=‘ex:Joe’/>
<rdf:li rdf: resource=‘ex:Bob’/>
<rdf:li rdf: resource=‘ex:Susan’/>
<rdf:li rdf: resource=‘ex:Ralph’/>

</rdf: Bag>
</ex: attendees>

</rdf: Description>
</rdf: RDF>

Graph of an RDF bag

Ex:meeting
Ex: attendees

Ex: people

rdf:type
Rdf: Bag

Ex: Bob

Ex: Susan

rdf: 3

rdf: 4

157

Ex:meeting
Ex: attendees

Ex: people
Ex: Bob

Ex: Ralph

Ex: Joe

rdf: 1

rdf: 2

RDF containers

• Three types of RDF containers are available to group
resources or literals:

• Bag
– An rdf: bag element is used to denote an unordered collection,

(duplicates are allowed)

• Sequence

158

• Sequence
– An rdf: seq element is used to denote an ordered collection (a

sequence of elements)

• Alternate
– An rdf: alt element is used to denote a choice of multiple values

or resources (e.g., a choice of image formats (JPEG, GIF, BMP)

Reification

• Reification allows higher-level statements to capture knowledge
about other statements
– Reification mechanism turns a statement into a resource

– Requires that we must be able to refer to a statement using an identifier,
e.g., the description

<rdf : Description rdf : about = “949352”>

<uni : name>Grigoris Antoniou</uni : name>

</rdf : Description>

159

</rdf : Description>

reifies as

<rdf : Statement rdf : about=“StatementAbout949352”>

<rdf : subject rdf : resource==949352”/>

<rdf : predicate rdf : resource=“&uni;name”/>

<rdf : object>Grigoris Antoniou</rdf:object>

</rdf:Statement>

The Semantic Web Stack

Rules

Logic Framework

Proof.

Trust

S
ig

n
a
tu

re

E
n

c
ry

p
ti

o
n

160

URL Unicode

XML Namespace

RDF

RDF Schema

Ontology

Rules

S
ig

n
a
tu

re

E
n

c
ry

p
ti

o
n

RDF-Schema

• RDF is a universal language that lets user describe resources using
their own vocabularies

• RDF does not make assumptions about any particular application
domain, nor does it define the semantics of any domain. It is up to
the user to do so in RDF Schema (RDFS)

• The data model expressed by RDF Schema is the same data model
used by object-oriented programming languages like Java

161

used by object-oriented programming languages like Java

– A class is a group of things with common characteristics (properties)

– In object oriented programming, a class is defined as a template or
blueprint for an object composed of characteristics (also called data
members) and behaviors (also called methods)

– An object is an instance of a class

– OO languages also allow classes to inherit characteristics (properties)
and behaviors from a parent class (also called a super class)

Classes and Properties

• How do we describe a particular domain; e.g., courses and
lecturers in a university ?

– First we have to specify “things” we want to talk about

– We have already done so in RDF statements, but we restricted our talk
on individual objects (resources)

162

– Now, in the context of RDFS we talk about classes that define types of
individual objects

• An important use of classes is to impose restrictions on what can be
stated in an RDF document using the schema; e.g., we would like to
disallow statements such as:

– Discrete Mathematics is taught by Concrete Mathematics

– Room MZH5760 is taught by David Billington

Class Hierarchies and Inheritance

• Once we have classes we would like to establish relationships
between them

– For example, assume that we have classes for

• staff members

• academic staff members

• professors

• associate professors

• assistant professors

163

• assistant professors

• administrative staff members

• technical support staff members

– These classes are related to each other; e.g., every professor is an
academic staff member, i.e.,

“professor” is subclass of “academic staff member”,

or equivalently,

“academic staff member” is a superclass of a “professor”

The subclass relationship defines a hierarchy of classes:

staff
member

administration
staff member

academic
staff member

technical
support staff

164

staff member staff member

professor associate
professor

assistant
professor

support staff
member

• In general, A is a subclass of B if every instance of A is also an
instance of B.

– However, there is no requirement in RDF Schema that the
classes together form a strict hierarchy

165

– So, a class may have multiple superclasses meaning that if a
class A is a subclass of both B1 and B2, then every instance of
A is both an instance of B1 and an instance of B2

• A hierarchical organization of classes has a very important practical
significance. To illustrate this consider the range restriction:

Courses must be taught by academic staff members only

Assuming that Michael Maher were defined as a professor, then according to this
restriction he is not allowed to teach courses. The reason is that there is no statement
specifying that Michael Maher is also an academic staff member

166

We would like Michael Maher to inherit the ability to teach from the class of
academic staff members. This is done in RDF Schema.

By doing so RDF Schema fixes the semantics of “is subclass of”, So, it is
not up to an application to interpret “is a subclass of”; instead its intended
meaning must be used by all RDF processing software.

• Classes, inheritance, and properties are, of course, known in other
fields of computing, e.g., in object oriented programming

– The differences are that in object oriented programming an object class
defines the properties that apply to it. Also to add new properties to a
class means to modify the class.

– In RDFS, properties are defined globally, i.e., they are not encapsulated
as attributes in class definitions. It is possible to define new properties
that apply to an existing class without changing that class.

167

• This is a powerful mechanism with far-reaching consequences: we
may use classes defined by others and adapt them to our
requirements through new properties

Property Hierarchies

• Hierarchical relationship can be defined not only for classes but also
for properties:

– Example, “is taught by “ is a subproperty of “involves”

So, if a course c is taught by an academic staff member a, then c also
involves a

168

– The converse is not necessary true, e.g., a may be the convener of the
course, or a tutor who marks student home work but does not teach c

– In general, P is a subproperty of Q if Q(x,y) whenever P(x,y)

RDF versus RDFS Layers

• We illustrate the different layers involved in RDF and RDFS using a simple
example:

– Consider the RDF statement

Discrete Mathematics is taught by David Billington

– The schema for this statement may contain classes, such as lecturers,
academic staff members, staff members, and properties such as is
taught by, involves, phone, employee id

169

– Next figure illustrates the layers of RDF and RDF Schema
(blocks are properties, ellipses above the dashed line are classes, and
ellipses below the dashed line are instances)

• The schema of the figure is itself written in a formal language, RDF
Schema, that can express its ingredients: subClass, Property,
subProperty, Resource, and so on.

Literal

id phone

Staff
Member

Academic
Staff
Member

isTaughBy

involves

course

rangerange

range

range

subClassOf

subClassOf

domain

domain

domain

domain

isSubpropertyOf

170

Professor
Associate
professor

Assistant
professor

course

Discrete Mathematics David Billington

RDFS

RDF

isTaughtBy

subClassOf
subClassOf

subClassOf

type
type

RDF Schema: The language

• RDF Schema provides modeling primitives for expressing the
information of the previous figure

• One decision that must be made is what formal language to use?

– RDF itself will be used: the modeling primitives of RDF Schema are
defined using resources and properties

• Note. RDF allows one to express any statement about any
resource, and that anything that has a URI can be a resource.

171

– So, if we wish to say that the class “lecturer” is a subclass of
“academic staff member”, we may

1. Define resources lecturer, academicStaffMember, and subClassOf

2. Define subClasssOf to be a property

3. Write the triple (subClassOf, lecturer, academicStaffMember)

– All these steps are within the capabilities of RDF. So an RDFS
document (that is an RDF schema) is just an RDF document, and we
use the XML-based syntax of RDF.

RDF Schema: Core Classes

• The core classes are

rdfs : Resource, the class of resources

rdfs : Class, the class of classes

rdfs : Literal, the class of all literals (strings). At present, literals form
the only “data type” of RDF/RDFS

rdf : Property. The class of all properties

172

rdf : Property. The class of all properties

rdf : Statement, the class of all reified statements

For example, a class lecturer can be defined as follows:

<rdfs : Class rdf : ID=“lecturer”>

P

</rdfs : Class>

RDF Schema: Core Properties for Defining Relationships

• The core properties for defining relationships are:

rdf : type, which relates a resource to its class. The resource is
declared to be an instance of that class

rdfs : subClassOf, which relates a class to one of its superclasses,
all instance of a class are instances of its superclass

173

Note. A class may be a subclass of more than one class, e.g.,
the class femaleProfessors may be a subclass of both female

and professor

rdfs : subpropertyOf, which relates a property to one of its
superproperties

• Example: stating that all lecturers are staff members

<rdfs : Class rdf : about=“lecturer”>

<rdfs : subClassOf rdf : resource=“staffMember”/>

</rdfs : Class>

Note that rdfs:subClassOf and rdfs:subPropertyOf are transitive by
definition

174

Also rdfs:Class is a subclass of rdfs:Resource (every class is a resource),
and rdfs:Resource is an instance of rdfs:Class (rdfs:Resource is the
class of all resources, and so it is a class). For the same reason, every
class is an instance of rdfs:Class

RDF Schema: Core Properties for Restricting Properties

• The core properties for restricting properties are:

rdfs:domain, which specifies the domain of a property P, i.e., the
class of those resources that may appear as subject in triple
with predicate P. If the domain is not specified, then any resource
can be the subject

rdfs:range, which specifies the range of a property P, i.e., the class of
those resources that may appear as values in a triple with predicate P

175

those resources that may appear as values in a triple with predicate P

Example: stating that phone applies to staff members only and that its value is
always a literal

<rdfs:Property rdf:ID=“phone”>

<rdfs:domain rdf:resource=“#staffMember”/>

<rdfs:range rdf:resource=“&rdf;Literal”/>

</rdf:Property>

• In RDF Schema there are also

rdfs:ConstraintResource, the class of all constraints

rdfs:ConstraintProperty, which contains all properties that define
constraints. It has only two instances, rdfs:domain and
rdfs:range. It is defined to be a subclass of
rdfs:ConstraintResource and rdf:Property

176

Subclass hierarchy of some modeling primitives of RDFS

rdfs:Resource

rdf:Property
rdfs;:Class rdfs:ConstarintResource

177

rdfs:ConstraintProperty

Instance relationships of some modeling primitives of RDFS

rdf:Property

rdfs:Resource rdfs:Class

rdfs:ConstraintPropert

178

rdfs:ConstraintResource rdfs:Literal rdfs:domain rdfs:range

RDFS example: A University

• We refer to the courses and lecturers example, and provide a
conceptual model of the domain, that is, an ontology

<rdf:RDF

xmlns:rdf=“http.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:rdfs=“http.w3.org/2000/01/rdf-schema#”>

<rdfs:Class rdf:ID=”lecturer”>

179

<rdfs:Class rdf:ID=”lecturer”>

<rdfs:comment>

The class of lecturers

All lecturers are academic staff members.

</rdfs:comment>

<rdfs:subClassOf rdf:resource=“academicStaffMember”/>

</rdfs:Class>

<rdfs:Class rdf:ID=”academicStaffMember”>

<rdfs:comment>

The class of academic staff members

</rdfs:comment>

<rdfs:subClassOf rdf:resource=“staffMember”/>

</rdfs:Class>

<rdfs:Class rdf:ID=”staffMember”>

<rdfs:comment>The class of staff members</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:ID=”course”>

180

<rdfs:Class rdf:ID=”course”>

<rdfs:comment>The class of courses</rdfs:comment>

</rdfs:Class>

<rdfs:Property rdf:ID=”involves”>

<rdfs:comment>

It relates only courses to lecturers

</rdfs:comment>

<rdfs:domain rdf:resource=“#course”/>

<rdfs:range rdf:resource=“#lecturer”/>

</rdfs:Property>

<rdfs:Property rdf:ID=”isTaughtBy”>

<rdfs:comment>

Inherits the domain (“course”) and range (“lecturer”) from its superproperty
“involves”

</rdfs:comment>

<rdfs:subpropertyOf rdf:resource=“#involves”/>

</rdfs:Property>

<rdfs:Property rdf:ID=”phone”>

<rdfs:comment>

181

It is a property of staff members and takes literals as values.

</rdfs:comment>

<rdfs:domain rdf:resource=“#staffMember”/>

<rdfs:range rdf:resource=“&rdf;Literal”/>

</rdfs:Propert>

</rdf:RDF>

Example: Motor Vehicles
The class relationships are the following:

motorVehicle

van

passengerVehicle

truck

182

passengerVehicle

miniVan

<rdf:RDF
xmlns:rdf=“http.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:rdfs=“http.w3.org/2000/01/rdf-schema#”>

<rdfs:Class rdf:ID=“motorVehicle”/>

<rdfs:Class rdf:ID=“van”>
<rdfs:subClassOf rdf:resource=“#motorVehicle”/>

</rdfs:Class>

<rdfs:Class rdf:ID=“truck”>
<rdfs:subClassOf rdf:resource=“#motorVehicle”/>

183

<rdfs:subClassOf rdf:resource=“#motorVehicle”/>
</rdfs:Class>

<rdfs:Class rdf:ID=“passengerVehicle”>
<rdfs:subClassOf rdf:resource=“#motorVehicle”/>

</rdfs:Class>

<rdfs:Class rdf:ID=“miniVan”>
<rdfs:subClassOf rdf:resource=“#passengerVehicle”/>
<rdfs:subClassOf rdf:resource=“#van”/>

</rdfs:Class>
</rdf:RDF>

RDFS versus UML (Unified Modeling
Language)

• Standardized notation to model class hierarchies

• UML symbols denote the concepts of class, inheritance, and
association

– The rectangle, with three sections is the symbol for a class

– The sections are: class name, the class attributes (middle section), and

184

– The sections are: class name, the class attributes (middle section), and
class behaviors or methods (bottom section)

– The RDF Schema only uses the first two parts of a class, since it is
used for data modeling and not programming behaviors

• An arrow from the subclass to the superclass denotes inheritance (a
subclass inherits the characteristics of a superclass), also called
“isa” (is a) in software engineering

UML class diagram of employee expertise

• Two types of employees and their associations to the artifacts they
write and the topics they know

Employee

-Topics knows

-Artifacts writes

Topic

185

System analyst Software Engineer

DesignDocument SourceCode

Artifact

Topic

Technology
knows

writes writes

Chapter 6: Understanding XML – Related
Technologies

Addressing and querying XML Documents

• In relational databases, parts of database can selected and retrieved
using query languages such as SQL.

186

using query languages such as SQL.

• The same is true for XML documents, for which there exist a number
of proposals :

• XPath
standard addressing mechanism for XML nodes

• XSL
– transforming and translating XML -documents

• XSLT
– transforming and translating XML -documents

• XSLFO

187

• XSLFO
– transforming and translating XML -documents

• XQuery
– Querying mechanism for XML data stores (“The SQL for XML”)

• XLink
– general, all-purpose linking specification

XML –Related Technologies, continues P

• XPointer
– addressing nodes, ranges, and points in local and remote XML

documents

• XInclude
– used to include several external documents into a large document

• XML Base
– Mechanism for easily resolving relative URIs

188

– Mechanism for easily resolving relative URIs

• XHTML
– A valid and well formed version of HTML

• XForms
– An XML-based form processing mechanism

• SVG
– XML-based rich-content graphic rendering

• RQL
– Query language for RDF

XPath
• The central concept of XML query languages is path expression that

specifies how a node, or a set of nodes, in the tree representation of the
XML document can be reached

• We consider path expressions in the form of XPath because they can be
used for purposes other than querying, namely transaforming XML
documents

189

• XML Path Language - an expression language for specifically addressing
pats of an XML document

• Provides key semantics, syntax, and functionality for a variety of standards,
such as XSLT, XPointer, and XQuery

• By using XPath expressions with certain software frameworks and APIs, it is
possible to reference and find the values of individual components of an
XML document

XPath

• XPath operates on the tree data model of XML
and has a non-XML syntax

• Path expression can be

– Absolute (starting at the root of the tree); syntactically they begin

190

– Absolute (starting at the root of the tree); syntactically they begin
with the symbol /, which refers to the root of the document,
situated one level above the root element of the document

– Relative to context node

• Consider the following XML-document

<?xml version=“1.0” encoding=“UTF-16”?>

<!DOCTYPE library PUBLIC “library.dtd”>

<library location=“Bremen”>

<author name=“Henry Wise”>

<book title=“Artificial Intelligence”/>

<book title=“Modern Web Services”/>

<book title=“Theory of Computation”/>

</author>

<author name=“William Smart”>

191

<author name=“William Smart”>

<book title=“Artificial Intelligence”/>

</author>

<author name=“Cynthia Singleton”>

<book title=“The Semantic Web”/>

<book title=“Browser Technology Revised”/>

</author>

</library>

Tree representation of the library document

Root

library

location author

name namenamebookbook bookbook book book

author author

192

name namenamebookbook bookbook book book

title title title title title title

Bremen

Henry
Wise

Artificial
Intelligence

Theory
Of
computation

Artificial
Intelligence The

Semantic
Web

Browser
Technology
Revised

Modern
Web
Services

William
Smart

Cynthia
Singleton

Examples of XPath expressions on the library document

• Address all author elements

/library/author

An alternative solution for the previous example:

//author

193

//author

Here // says that we should consider all elements in the document
and check whether they are type author

Note, because of the specific structure of the library document these
expressions lead to the same result, however they may lead to
different result in general

More examples of XPath expressions on the library document

• Address the location attribute nodes within library element nodes

/library/@location

The symbol @ is used to denote attribute nodes

• Address all title attribute within book elements anywhere in the
document, which have the value “Artificial Intelligence”

//book/@title=“Artificial Intelligence”

• Address all books with title “Artificial Intelligence”

194

• Address all books with title “Artificial Intelligence”

//book [@title=“Artificial Intelligence”]

The test within square brackets is a filter expression. It restricts the set of
addressed nodes

Note the difference between this and the one in previous query. Here we
address book elements the title of which satisfies a certain condition. In
previous query we collect title attribute nodes of book elements. The
comparison of these queries is illustrated in the following two figures.

Query: //book/@title=“Artificial Intelligence”

Root

library

location author author author

195

name namenamebookbook bookbook book book

title title title title title title

Bremen

Henry
Wise

Artificial
Intelligence

Theory
of
computation

Artificial
Intelligence The

Semantic
Web

Browser
Technology
Revised

Modern
Web
Services

William
Smart

Cynthia
Singleton

Query: //book [@title=“Artificial Intelligence”]

Root

library

location author author author

196

name namenamebookbook bookbook book book

title title title title title title

Bremen

Henry
Wise

Artificial
Intelligence

Theory
Of
computation

Artificial
Intelligence The

Semantic
Web

Browser
Technology
Revised

Modern
Web
Services

William
Smart

Cynthia
Singleton

Examples of XPath expressions on the library document

• Address the last book element within the first author element node in
the document

//author[1] / book [last ()]

• Address all book element nodes without a title attribute

197

//book [not @title]

More examples of XPath expressions and return values

<Task>

<TaskItem id = “123”

value = “ Status Report”/>

<TaskItem id = “124”

value = “ Writing Code”/>

<TaskItem value =“IdleChat”/>

<Meeting id = “125”

value= “Daily Briefings”/>

<Task>

198

<Task>

//TaskItem[@id]
“Give me all TaskItem

elements that have ID

attributes”

<TaskItem id = “123”

value = “ Status Report”/>

<TaskItem id = “124”

value = “ Writing Code”/>

XPath expression Return valuesMeaning

Examples of XPath expressions and return values

<Task>

<TaskItem id = “123”

value = “ Status Report”/>

<TaskItem id = “124”

value = “ Writing Code”/>

<TaskItem value =“IdleChat”/>

<Meeting id = “125”

value= “Daily Briefings”/>

<Task>

199

<Task>

//[@id]
“Give me all ID

attributes”

Id = “123”

Id = “124”

Id = “125”

XPath expression Return valuesMeaning

Examples of XPath expressions and return values

<Task>

<TaskItem id = “123”

value = “ Status Report”/>

<TaskItem id = “124”

value = “ Writing Code”/>

<TaskItem value =“IdleChat”/>

<Meeting id = “125”

value= “Daily Briefings”/>

<Task>

200

<Task>

/Task/Meeting
“Select all elements

named ‘Meeting’ that

are children of the

root element ‘Task’ ”

XPath expression Return valuesMeaning

<Meeting id = “125”

value= “Daily Briefings”/>

The structure of XPath expression

• A path expression consists of a series of steps, represented by
slashes

• A step consists of an axis specifier, a node test, and an optional
predicate

– An axis specifier determines the tree relationship between the nodes to
be addressed and the context node. Examples are parent, ancestor,

201

be addressed and the context node. Examples are parent, ancestor,
child (the default), sibling, attribute node. // is such an axis specifier; it
denotes descendant or self.

– A node test specifies which nodes to be addressed. The most common
node tests are element names

– Predicates (or filter expressions) are optional and are used to refine the
set of addressed nodes.

The role of XPath in other standards

• With XSLT one can define a template in advance using XPath
expressions that allow to specify how to style a document

• XQuery is a superset of XPath and uses XPath expressions to query
XML native databases and multiple XML files

• XPointer uses XPath expressions to “point” specific nodes in XML

202

• XPointer uses XPath expressions to “point” specific nodes in XML
documents

• XML Signature, XML Encryption, and many other standards can use
XPath expressions to reference certain areas of an XML document

• In a Semantic Web ontology, groups of XPath expressions can be

used to specify how to find data and the relationship between data.

RQL
• A query language for RDF

• RQL is needed because XML query languages locate at a lower level of
abstraction than RDF

• Querying RDF documents with an XML-based language would lead to
complications.

– To illustrate this let us consider different syntactical variations of writing an
RDF description:

<rdf:Description rdf:about=“949318”>

203

<rdf:Description rdf:about=“949318”>
<rdf:type rdf:resource=“&uni;lecturer”/>
<uni:name>David Billington</uni:name>
<uni:title>Associate Professor</uni:title>

</rdf:Description>

Now assume that we wish to retrieve the titles of all lecturers. An appropriate
XPath query is

/rdf:Description [rdf:type=http://www.mydomain.org/uni-ns#lecturer]/uni:title>

We could have written the same description as follows:

<uni:lecturer rdf:about=“949318”>

<uni:name>David Billington</uni:name>

<uni:title>Associate Professor</uni:title>

</rdf:Lecturer>

Now the previous XPath query does not work; instead we have to write

//uni:lecturer/uni:title

204

The third possible representation of the same description is:

<uni:lecturer rdf:about=“949318”

uni:name=“David Billington”

uni:title=Associate Professor”/>

For this variation XPath query is

//uni:lecturer/@uni:title

• Since each description of an individual lecturer may have any of
these equivalent forms, we have to write different XPath queries

• A better way is to write queries at the level of RDF

• An appropriate query language must understand RDF, i.e., it must
understand:

– The syntax of RDF

– The data model of RDF,

205

– The semantics of RDF vocabulary, and

– The semantics of RDF Schema

– To illustrate this consider the information:

<uni:lecturer rdf:about=“94352”>

<uni:name>Grigiris Antoniou</uni:name>

</rdf:Lecturer>

<uni:professor rdf:about=“94318”>

<uni:name>David Billington</uni:name>

</rdf:professor>

206

<rdfs:Class rdf:about=“&uni;professor”>

<rdfs:subClassOf rdf:resource=“&uni;lecturer”/>

</rdfs:Class>

Now, the query for the names of all lecturers should return both
Grigiris Antoniou and David Billington

RQL: Basic Queries
• The query Class retrieves all classes, and the query Property retrieves all

properties

• To retrieve the instances of a class, e.g., course, we write:

course

– This query will return all instances of the subclass of course

– If we do not wish to retrieve inherited instances then we have to write:

^course

207

• The resources and values of triples with a specific property, e.g., involves, are
retrieved using simply the query

involves

– The result includes all subproperties of involves, e.g., it retrieves also
inherited triples from property isTaughtBy

– If we do not want these additional results then we have to write

^involves

RQL: Using select-from-where

• As in SQL:

select specifies the number and order of retrieved data

from is used to navigate through the data model

where imposes constraints on possible solutions

For example, to retrieve all phone numbers of staff members, we can write

208

For example, to retrieve all phone numbers of staff members, we can write

select X,Y

from {X}phone{Y}

Here X and Y are variables, and {X}phone{Y} represents a resource-
property-value triple.

• To retrieve all lecturers and their phone numbers, we can write

select X,Y

from lecturer{X} .phone{Y}

– Here lecturer{X} collects all instances of the class lecturer and binds the
result to the variable X.

– The second part collects all triples with predicate phone. But there is an
implicit join here, in that we restrict the second query only to those

209

implicit join here, in that we restrict the second query only to those
triples, the resource of which is in the variable X; in this example we
restrict the domain of phone to lecturers.

– A dot . denotes the implicit join.

• We demonstrate an explicit join by a query that retrieves the name
of all courses taught by the lecturer with ID 949352

select N

from course{X} .isTaughtBy{y}, {C}name{N}

where Y=“949352” and X=C

• Apart from = there exist other comparison operators

210

• Apart from = there exist other comparison operators

For example, X<Y means “X is lower than Y”

– In case X and Y are strings, X comes before Y in the
lexicographic order

– If X and Y are classes, then X is a subclass of Y

RQL: Querying the schema

• RQL allows to retrieve schema information

• Schema variables have a name with prefix $ (for classes) or @ (for
properties)

– For example

select X, $X, Y, $Y

from {X:$X}phone{Y:$Y}

211

retrieves all resources and values of triples with property phone,
or any of its subproperties, and their classes.

Note that these classes may not coincide with the defined
domain and a range of phone, because they may be subclasses
of the domain or range

For example, given

phone(949352”,“5041”)

type(“949352”,lecturer”)

subclass(lecturer, staffMember)

domain(phone,staffMember)

range(phone,literal)

We get

(“949352”,lecturer,”5041”,”literal)

212

although lecturer is not the domain of phone

• The domain and range of a property can be retrieved as follows:

select domain (@P), range (@P)

from @P

where @P=phone

The Style Sheet Family: XSL, XSLT and XSLFO

• Style sheets allow to specify how an XML document can be
transformed into new document, and how that XML document could
be presented in different media formats

• A style sheet processor takes an XML document and a style sheet
and produces a result

• XSL consists of two parts:

213

• XSL consists of two parts:

– It provides a mechanism for transforming XML documents into new XML
documents (XSLT), and

– It provides a vocabulary for formatting objects (XSLFO)

• XSLT is a markup language that uses template rules to specify how
a style sheet processor transforms a document

• XSLFO is a pagination markup language

Model – View - Controller (MVC) paradigm

• Idea of MVC: separating content (the XML data) from the
presentation (the style sheet)

• The act of separating the data (the model), how the data is
displayed (the view), and the framework used between them (the
controller) provides maximum reuse of resources

214

• Eliminates the maintenance of keeping track of multiple presentation
format for the same data

• Because browsers such as Microsoft Internet Explorer have style
sheet processors embedded in them, presentation can dynamically
be added to XML data at download time

Styling a document

Stylesheet Engine

(XSLT engine)

215

XML

Document

Stylesheet

Source tree Result tree

Transformation
Resulting

Document
Formatting

Styling a document, continues P

1. A style sheet engine takes an original XML document, loads it into
DOM source tree, and transforms that document with the
instructions given in the style sheet

2. The result is formatted, and the resulting document is returned

216

• Although the original document must be well-formed document
the resulting document may be any format

• Many times the resulting document may be postprocessed

• With XSLFO styling, a post processor is usually used to transform
the result document into a different format, e.g., PDF or RTF

Example: using style sheets to add presentation to content

• Consider the XML-element

<author>

<name>Grigoris Antoniou</name>

<affiliation>University of Bremen</affiliation>

<email>ga@tzi.de</email>

</author>

The output might look like the following, if a style sheet is used:

217

The output might look like the following, if a style sheet is used:

Grigoris Antoniou

University of Bremen

ga@tzi.de

Or it might appear as follows, if different style sheet is used:

Grigoris Antoniou

University of Bremen

ga@tzi.de

XSLT document that will be applied to the author element

<?xml version=“1.0” encoding=“UTF-16”?>

<xsl:stylesheet version=“1.0”
xmlns:xsl=“http///www.w3.org/1999/XSLT/Transform”>

<xsl : template match=“author”>

<html>

<head><title>An author</title></head>

<body bgcolor=“white”>

<xsl:value-of select=“name”/>

218

<xsl:value-of select=“name”/>

<xsl : value-of select=“affilation”/>

<i><xsl : value-of select=“email”/></i>

</body>

</html>

</xsl : template>

</xsl : stylesheet>

The output (HTML document) of the style sheet when applied to the
author element

<html>

<head><title>An author></title></head>

<body bgcolor=“white”>

Grigoris Antoniou

University of Bremen

219

University of Bremen

<i>ga@zi.de</i>

</body>

</html>

Some observations concerning the previous example

• The XSLT document defines a template; in this case an HTML
document, with some placeholders for content to be inserted

<html>

<head>>title>An author</title></head>

<body bgcolor=“white”>

 . . .

220

 . . .

. . .

<i> . . . </i>

</body>

</html>

• In the XSLT document, xsl : value-of retrieves the value of an
element and copies it into the output document, i.e., it places some
content into the template

• Now suppose we had the following XML document with details of
several authors

<authors>

<author>

<name>Grigoris Antoniou</name>

<affiliation>University of Bremen</affiliation>

<email>ga@tzi.de</email>

</author>

<author>

221

<author>

<name>David Billington</name>

<affiliation>Griffith University</affiliation>

<email>david@gu.edu.net</email>

</author>

</authors>

We define the following XSLT document for it:

<?xml version=“1.0” encoding=“UTF-16”?>
<xsl:stylesheet version=“1.0” xmlns:xsl=“http///www.w3.org/1999/XSLT/Transform”>

<xsl : template match=“/”>
<html>

<head><title>Authors</title></head>
<body bgcolor=“white”>

<xsl : apply-template select “authors”/>
<!-- Apply templates for AUTHORS children -->

</body>
</html>

</xsl : template>
<xsl : template match=“authors”>

222

<xsl : template match=“authors”>
<xsl : apply-templates select=“author”/>

</xsl : template>

<xsl : template match=“author”>
<h2><xsl : value-of select=“name”/</h2>
Affiliation: <xsl : value-of select=“affiliation”/>

Email: <xsl : value-of select=“email”/>
<p>

</xsl : template>
</xsl : stylesheet>

• The output produced is

<html>

<head><title>Authors></title></head>

<body bgcolor=“white”>

<h2>Grigoris Antoniou</h2>

Affilation: University of Bremen

Email: ga@zi.de

<p>

<h2>David Billington</h2>

223

<h2>David Billington</h2>

Affilation: Griffith University

Email: david@gu.edu.net

<p>

</body>

</html>

Some observations concerning the previous example

• The xsl : apply-templates element causes all children of the context
node to be matched against the selected path expression

– For example, if the current template applies to / (i.e., the current context
node is the root) then the element xsl : apply-templates applies to the
root element, in this case, the authors element (/ is located above the

root element

224

root element

– If the current context node is the author element, then the element xsl :
apply-templates select=“author” causes the template for the author

elements to be applied to all author children of the authors element

– It is good practice to define a template for each element type in the
document. Even if no specific processing is applied to certain elements

An other example: using style sheets to add presentation to content

A simple xml file:

<?xml version=“1.0” encoding=“UTF-8”?>

<?xml-stylesheet href=“simple.xsl” type=“text/XSL”?>

<project name=Trumantruck.com”>

<description>Rebuilding a 1967 Chevy Pickup Truck</description>

<schedule>

<workday>

<date>20000205></date>

<description>Taking Truck Body Apart</description>

225

<description>Taking Truck Body Apart</description>

</workday>

<workday>

<date>20000225></date>

<description>Sandblasting, Dismantling Cab</description>

</workday>

<workday>

<date>200003111></date>

<description>Sanding, Priming Hood and Fender</description>

</workday>

</schedule>

</project>

Example: using style sheets to add presentation to content, continuesP

• To create an HTML page with the information from the previous
XML file, a style sheet must be written (next slide)

• The style sheet creates an HTML file with the workdays listed in an
HTML table

226

• All pattern matching is done with XPath expressions

• The <xsl:value-of> element returns the value of items selected from
an XPath expression, and each template is called by the XSLT
processor if the current node matches the XPath expression in the
match attribute

XSLT document of the example

<xsl:stylesheet xmln:xsl=http://www.w3.org/TR/WD-xsl>

<xsl:template match=“/”>

<html>

<TITLE> Schedule For

<xsl:value-of select=“/project/@name”/>

- <xsl: value-of select=“/project/description”/>

</TITLE>

<CENTER>

<TABLE border=“1”>

<TR>

227

<TR>

<TD>Date</TD>

<TD>Description</TD>

</TR>

<xsl:apply-templates/>

</TABLE>

</CENTRE>

</html>

</xsl:template>

<xsl: template match=“project”>
<H1> Project :
<xsl: value-of select=@name”/>
</H1>
<HR/>
<xsl : apply-template/>

<xsl : template match = “schedule”>
<H2> Work Schedule</H2>

<xsl:apply-templates/>
</xsl : template>
<xsl : template match = “workday”>

<TR>

228

<TR>
<TD>

<xsl : value –of select =“date”/>
</TD>
<TD>

<xsl : value-of select=“ description”/>
</TD>

</TR>
</xsl : template>

</xsl : stylesheet>

The final layout of the document (shown by a
browser)

Project:

Trumantruck.com

229

Work Schedule

Date Description

2000025 Taking Truck Body Apart
2000225 Sandblasting Dismantling Cab
2000311 Sanding, Priming Hood and Fender

The needs of style sheets

• In an environment where interoperability is crucial, and
where data is stored in different formats for different
enterprises, styling is used to translate one enterprise
format to another enterprise format

• In a scenario where we must support different user

230

• In a scenario where we must support different user
interfaces for many devices, style sheets are used to add
presentation to content

• A wireless client, a Web client, a Java application client,
a .Net application client, or any application can have
different style sheets to present a customized view

XQuery

• Designed for processing XML data

• Intended to make querying XML-based data sources as
easy as querying databases

• Human-readable query syntax

231

• Extensions of XPath (with few exceptions, every XPath
expression is also an XQuery expression)

– However XQuery provides human readable language that makes
it easy to query XML-sources and combine that with
programming language logic

Example: XQuery expression

Let $project := document(“trumanproject.xml”)/project
Let $day := $project/schedule/workday
Return $day sortby (description)

Example XML file
<?xml version=“1.0” encoding=“UTF-8”?>
<?xml-stylesheet href=“simple.xsl” type=“text/XSL”?>
<project name=Trumantruck.com”>

<description>Rebuilding a 1967 Chevy Pickup Truck</description>
<schedule>

<workday>

232

<workday>
<date>20000205></date>
<description>Taking truck Body Apart</description>

</workday>
<workday>

<date>20000225></date>
<description>Sandblasting, Dismantling Cab</description>

</workday>
<workday>

<date>200003111></date>
<description>Sanding, Priming Hood and Fender</description>

</workday>
</schedule>

</project>

The result of the XQuery expression:

<workday>

<date>20000225></date>

<description>Sandblasting, Dismantling Cab</description>

</workday>

<workday>

<date>200003111></date>

233

<date>200003111></date>

<description>Sanding, Priming Hood and Fender</description>

</workday>

<workday>

<date>20000205></date>

<description>Taking truck Body Apart</description>

</workday>

XHTML

• XHTML- Extensible Hypertext Markup Language is the
reformulation of HTML into XML

• Was created for the purpose of enhancing current Web
to provide more structure for machine processing

234

• Documents formatted by HTML are not intended for
machine processing

• Because XHTML is XML, it provides structure and
extensibility by allowing the inclusion of other XML-
based languages with namespaces

Example: making the transition from HTML into XHTML

<HTML>

<HEAD>

<TITLE>Morning to-do list>/TITLE>

</HEAD>

<BODY>

235

<BODY>

Wake up

Make bed

Drink coffee

Go to work

</BODY>

</HTML>

<?xml version=“1.0”?>

<!DOCTYPE html

PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

http://www.w3.org/TR//xhtml/DTD/xhtml1-strict.dtd>

<html xmlns=http://www.w3.org/1999/xhtml xml:lang==“en” lang=“en”>

<head>

<title>Morning to-do list</title>

</head>

236

</head>

<body>

Wake up

Make bed

Drink coffee

Go to work

</body>

</html>

Chapter 7: Understanding Taxonomies

• A taxonomy is a way of classifying or categorizing a set
of things – specifically, a classification in the form of a
hierarchy (a tree structure)

• An other definition of taxonomy:
– The study of the general principles of scientific classification:

237

– The study of the general principles of scientific classification:
orderly classification of plants and animals according to their
presumed natural relationships

• The information technology definition for a taxonomy:
– The classification of information entities in the form of a

hierarchy, according to the presumed relationships of the real-
world entities that they present

Taxonomies

• A taxonomy is usually depicted with the root of the
taxonomy on top, as follows

animate object

238

agent

organization
person

manager employee

Taxonomies

• Each node of the taxonomy (including root) is an
information entity that stands for a real-world entity

• Each link between nodes represents a special relation

– called the is subclassification of relation if the link’s arrow is
pointing up toward the parent node, or

239

pointing up toward the parent node, or

– called the is superclassification of if the link’s arrow is pointing
down at the child node

• When the information entities are classes these relations
are defined more strictly as is subclass of and is

superclass of

Taxonomies

• When one goes up the taxonomy towards the root, the
entities become more general, and hence this kind of
taxonomy is also called generalization/specilization

taxonomy

• A taxonomy is a semantic hierarchy in which information

240

• A taxonomy is a semantic hierarchy in which information
entities are related by either the subclassification of

relation or the subclass of relation

– subclassification of is semantically weaker than subclass of

relation, and so the difference between semantically stronger
and weaker taxonomies can be done

The use of taxonomies

• A taxonomy is a way of structuring information entities
and giving them a simple semantics

• On the web, taxonomies can be used to find products
and services

241

– E.g., UDDI has proposed the tModel as the placeholder for
taxonomies such as UNSPSC and North American Industry
Classification System that can used to classify Web products
and services

– In addition the yellow pages of UDDI is a taxonomy, which is
ordered alphabetically to be of additional assistance to a person
looking for products and services

The ontology spectrum
Strong semantics

Is disjoint subclass

of with transitivity

property

Is subclass of
Conceptual model

Local domain theory

XTM

RDF/S

UML

DAML+OIL, OWL

Description Logic

First Order Logic

Modal logic

242
Weak semantics

Has narrower meaning than

Is subclassification of
Taxonomy

Thesaurus

Relatoional

model

Schema

ER

Extended ER

XTM

Thesarus

• Definition (ANSI/NISO Monolingual Thesarus
Standard):
– “a controlled vocabulary arranged in a known order and

structured so that equivalence, homographic, hierarchical,
and associative relationships among terms are displayed
clearly and identified by standardized relationship indicators”

243

clearly and identified by standardized relationship indicators”

• The primary purposes of a thesarus are to facilitate
retrieval of documents and to achieve consistency in
the indexing of written or otherwise recorded
documents and other items

Semantic Relations of a Thesarus

SEMANTIC

RELATION
DEFINITION EXAMPLE

Synonym

Similar to

Equivalent

Used for

A term X has nearly

the same meaning

as a term Y

“Report” is synonym

for “document.

Homonym

Spelled the same

Homographic

A term X is spelled

the same way as a

term Y, which has a

different meaning

The “tank”, which is a military

vehicle, is a homonym for the

“tank”, which is a receptacle for

holding liquids

244

Broader Than

(Hierarchic

parent of)

A term X is broader in

meaning than a term Y

“Organization” has a broader

meaning than “financial institution”

Narrower Than

(Hierarchic

Child of)

A term X is narrower in

meaning than a term Y

“Financial institution” has

a narrower meaning than

“organization”

Associated

Associative

Related

A term X is associated

with a term Y, i.e., there

is some unspecified

relationship between

the two

A “nail” is associated

with a “hammer”

An example of a thesarus

Imagery

Infrared imagery

Combat support

equipment

Aerial imagery

Radar imagery

245

Intelligence and

electronic warfare

equipment

Imaging system

Imaging radar
Infrared imaging

system

Radar

photography
Moving target

indicators

Narrower than

Related to

Conceptual model

• A model of a subject area or area of knowledge, that
represents entities, the relationships among entities, the
attributes and, and sometimes rules

• Rules are typically of the following forms:
– If X is true, then Y must also be true

246

– If X is true, then Y must also be true

– I (W and X) or (Y and not Z) are true, then (U and V) must also
be true

where U, V, W, X,Y and Z are simple or complex assertions about
the entities, relations or attributes

• If part of the rule is called antecedent while the then part
is called consequent

Chapter 8: Understanding Ontologies

• Philosophial definitions

– A particular theory about the nature of being or the kinds of existent

– A branch of metaphysics concerned with the nature and relations of
being

• Definitions from information engineering discipline point of view

– Ontologies are about vocabularies and their meanings, with explicit,

247

– Ontologies are about vocabularies and their meanings, with explicit,
expressive and well-defined semantics, which is machine –interpretable

• Ontologies can be represented equally in a graphical and textual
form

• Ontology languages are typically based on a particular logic, and so
they are logic-based languages

Web Ontology language: OWL

• The expressivity of RDF and RDF Schema is deliberately very
limited:

– RDF is (roughly) limited to binary ground predicates

– RDF Schema is (roughly) limited to a subclass hierarchy and a
property hierarchy, with domain and range definitions of these

248

property hierarchy, with domain and range definitions of these
properties

• However there are number of use cases that would require much
more expressiveness than RDF and RDF Schema offer

Requirements for Ontology Languages

• Ontology languages allow users to write explicit, formal
conceptualization of domain models. The requirements are:

– A well defined syntax

– A formal semantics

– Convenience of expression

249

– Efficient reasoning support

– Sufficient expressive power

• OWL and DAML+OIL are build upon RDF and RDF Schema and
have the same kind of syntax

– Their syntax is not very user friendly, but on the other hand, users will
develop their ontologies using ontology development tools

• Formal semantics describes the meaning of knowledge precisely,
i.e., is not open to different interpretations by different people or
machines

– One use of a formal semantics is to allow people to reason about the
knowledge. For ontological knowledge we may reason about:

• Class membership. If x is an instance of class C, and C is a
subclass of D, then we can infer that x is an instance of D

250

• Equivalence of classes. If class A is equivalent to class B, and
class B equivalent to class C, then A is equivalent to C, too.

• Consistency. Suppose we have declared x to be an instance of the
class A and A is a subclass of (A intersection B), A is a subclass of
D, and B and D are disjoint. Then we have an inconsistency
because A should be empty, but has the instance x. This is an
indication of an error in the ontology.

• Classification. If we have declared that certain property-value pairs
are a sufficient condition for membership in a class A, then if an
individual x satisfies such conditions, we can conclude that x must
be an instance of A

– Semantics is a prerequisite for reasoning support. Reasoning

support allows one to:

• Check the consistency of the ontology and the knowledge

• Check for unintended relationships between classes

251

• Check for unintended relationships between classes

• Automatically classify instances in classes

– Automated reasoning support allows one to check many more cases
than could be checked manually. Checks like the preceding ones are
valuable for designing large ontologies, where multiple authors are
involved, and for integrating and sharing ontologies from various
sources.

– A formal semantics and reasoning support are usually provided
by mapping an ontology language to a known logical formalism,
and by using automated reasoners that already exist for those
formalisms

– OWL is (partially) mapped on a description logic, and makes use
of existing reasoners, such as FACT and RACER

252

• Description logics are a subset of predicate logic for which efficient
reasoning support is possible

Limitations of the Expressive power of RDF Schema

• The main modeling primitives of RDF/RDFS concern the
organization of vocabularies in typed hierarchies:

– subclass and subproperty relationships,

– domain and range restrictions,

– instances and classes

253

• A number of features are missing including:

– Local scope of properties. rdfs:range defines the range of a property,
say eats, for all classes. Thus in RDF we cannot declare range
restrictions that apply to some classes only.

• For example, we cannot say that cows eat only plants, while other
animals may eat meat, too

– Disjointness of classes. Sometimes it is useful to say that
some classes are disjoint

• For example, male and female are disjoint. In RDFS we can only
state e.g., that male is a subclass of person

– Boolean combination of classes. Sometimes it is useful to
build new classes by combining other classes using union,
intersection, and complement

• For example, we may define the class person to be the disjoint

254

• For example, we may define the class person to be the disjoint
union of the classes male and female

– Cardinality restrictions. Sometimes it is useful to place
restrictions on how many distinct values a property may or must
take

• For example, a person has exactly two parents, or that a course is
lectured by at least one lecturer

– Special characteristics of properties. Sometimes it is useful to
say that a property is

• transitive (like “greater than),

• unique (like “is mother of”), or

• the inverse of another property (like “eats” and “is eaten by”)

• Note. The richer the ontology language is, the more inefficient the

255

• Note. The richer the ontology language is, the more inefficient the
reasoning support becomes, often crossing the border of non-
computability

Compatibility of OWL with RDF/RDFS

• Ideally, OWL would be an extension of RDF Schema, in the sense
that OWL would use the RDF meaning of classes and properties
(rdfs:Class, rdfs:subclassOf, etc.) and would add language
primitives to support the richer expressiveness required

• Unfortunately, simply extending RDF Schema would work against

256

• Unfortunately, simply extending RDF Schema would work against
obtaining expressive power and efficient reasoning because RDF
Schema has some very powerful modeling primitives,

• For example, constructions such as rdfs:Class (the class of all
classes) and rdf:Property (the class of all properties) are very
expressive and would lead to uncontrollable computational
properties if the logic were extended with such expressive primitives

Three Species of OWL

• OWL Full

– The entire language is called OWL Full and uses all the OWL languages
primitives

– The advantages of OWL full is that it is fully upward-compatible with
RDF both syntactically and semantically:

257

RDF both syntactically and semantically:

– any legal RDF document is also legal OWL Full document

– any valid RDF/RDF Schema conclusion is also a valid OWL
Full conclusion

– The disadvantage of OWL Full is that the language has become so
powerful as to be undecidable, dashing any hope of complete (or
efficient) reasoning support

• OWL DL

– In order to regain computational efficiency OWL DL (short for Description
Logic) is a sublanguage of OWL Full that restricts how the constructors
from OWL and RDF may be used

– The disadvantage is that we lose full compatibility with RDF:

• an RDF document will in general have to be extended in some ways
and restricted in others before it is a legal OWL DL document

258

and restricted in others before it is a legal OWL DL document

– Every legal OWL DL document is a legal RDF document

• OWL Lite

– An even further restriction limits OWL DL to a subset of the
language constructors

• For example, OWL Lite excludes enumerated classes, disjointness
statements, and arbitrary cardinality

– The advantages is that it is both easier to grasp (for users) and
easier to implement (for tool builders)

259

easier to implement (for tool builders)

– The disadvantage is of course a restricted expressivity

• Ontology developers adopting OWL should consider which
sublanguage best suits their needs

– The choice between Lite and DL depends on the extent to which users
require the more expressive constructs

– The choice between OWL DL and OWL Full mainly depends on the
extent to which users require the metamodeling facilities of RDF
Schema (e.g., defining classes of classes, or attaching properties to
classes

260

– When using OWL Full reasoning support is less predictable because
complete OWL Full implementations will be impossible

• There are strict notions of upward compatibility between these three
sublanguages:

– Every legal OWL Lite ontology is a legal OWL DL ontology

– Every legal OWL DL ontology is a legal OWL Full ontology

– Every valid OWL Lite conclusion is a valid OWL DL conclusion

– Every valid OWL DL conclusion is a valid OWL Full conclusion

261

• OWL still uses RDF and RDF Schema to a large extent:

– All varieties of OWL use RDF for their syntax

– Instances are declared as in RDF, using RDF descriptions and typing
information

– OWL constructors like owl:Class and owl:DatatypeProperty, and
owl:ObjectProperty are specialisations of their RDF counterparts

• One of the main motivations behind the layered architecture of the
Semantic Web is a hope of downward compatibility with
corresponding reuse of software across various layers

• The advantage of full downward compatibility for OWL (that any
OWL-aware processor will also provide correct interpretations of any
RDF Schema document) is only achieved for OWL Full, at the cost

262

RDF Schema document) is only achieved for OWL Full, at the cost
of computational intractability

The OWL Language

• Syntax

– OWL builds on RDF and RDF Schema and uses RDF’s XML-based syntax

– RDF/XML does not provide a very readable syntax and therefore also
other syntactic forms for OWL have also been defined:

• An xml-based syntax (http://www.w3.org/TR/owl-xmlsyntax/) that does
not follow the RDF conventions and is thus more easily read by human

263

not follow the RDF conventions and is thus more easily read by human
users

• An abstract syntax, used in the language specification document, that
is much more compact and readable than XML syntax or the RDF/XML
syntax

• A graphic syntax based on the conventions of UML (Unified Modeling
Language), which is widely used, and is thus an easy way for people
to become familiar with OWL

Header

• OWL documents are usually called OWL ontologies and are RDF
documents

• The root element of an OWL ontology is an rdf:RDF element, which
also specifies a number of namespaces:

<rdf:RDF

264

<rdf:RDF

xmlns:owl=http://www.w3.org/2002/07/owl#

xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-nsl#

xmlns:rdfs=http://www.w3.org/2000/01/rdf-schema#

xmlns:xsd=http://www.w3.org/2001/XMLSchema#>

• An OWL ontology may start with a collection of assertions for
housekeeping.

• These assertions are grouped under an owl:Ontology element,
which contains comments, version control, and inclusion of other
ontologies. For example:

<owl:Ontology rdf:about=“ “>

<rdfs:comment>An example of OWL ontology</rdfs:comment>

<owl:priorVersion

265

<owl:priorVersion

rdf:resource=http://www.mydomain.org/uni-ns-old/>

<owl:imports

rdf:resource=http://www.mydomain.org/persons”/>

<rdfs:label>University Ontology</rdfs:label>

</owl:ontology>

Note. owl:imports is a transitive property

Class Elements

• Classes are defined using an owl:Class element, e.g.,

<owl:Class rdf:ID=“associateProfessor”>

<rdfs:subClassOf rdf:resource=“#academicStaffMember”/>

</owl:Class>

– We can also say that this class is disjoint from other classes:

<owl:Class rdf:about=“#associateProfessor”>

<owl:disjointWith rdf:resource=“#professor”/>

266

<owl:disjointWith rdf:resource=“#professor”/>

<owl:disjointWith rdf:resource=“#assistantProfessor”/>

</owl:Class>

– Equivalence of classes can be defined using an owl:equivalentClass
element, e.g.,:

<owl:Class rdf:ID=“faculty”>

<owl:equivalentClass rdf:resource=“#academicStaffMember”/>

</owl:Class>

Property Elements

• In OWL there are two kind of properties:

– Object properties, which relate objects to other objects, e.g., isTaughtBy

and supervises

– Data type properties, which relate objects to datatype values, e.g.,
phone, title and age.

• OWL does not have any predefined data types, nor does it provide special
definition facilities. Instead it allows one to use XML Schema data types, thus

267

definition facilities. Instead it allows one to use XML Schema data types, thus
making use of the layered architecture of the Semantic Web

• Example of datatype property:

<owl:DataTypeProperty rdf:ID=“age”>

<rdfs:range
rdf:resource=http://www.w3.org/2001/XMLSchema#nonnegativeInteger/>

</owl:DatatypeProperty>

• User-defined data types will usually be collected in an XML schema and then
used in an OWL ontology

• Example of an object property:

<owl:Object Property rdf:ID=“isTaughtBy”>

<rdfs:domain rdf:resource=“#course”/>

<rdfs:range rdf:resource=“#academicStaffMember”>

<rdfs:subPropertyOf rdf:resource=#involves”/>

</owl:ObjectProperty>

• OWL allows to specify “inverse properties”, e.g., isTaughtBy and Teaches

<owl:Object Property rdf:ID=“teaches”>

268

<owl:Object Property rdf:ID=“teaches”>

<rdfs:range rdf:resource=“#course”/>

<rdfs:domain rdf:resource=“#academicStaffMember”>

<owl:inverseOf rdf:resource=#isTaughtBy”/>

</owl:ObjectProperty>

I C

Teaches

isTaughtBy

Figure. Relationship between a property and its inverse.

269

• Equivalence of properties can be defined through the use of the
element owl:equivalentProperty

<owl:ObjectProperty rdf:ID=“lecturesIn”>

<owl:equivalentProperty rdf:resource=“#teaches”/>

</owl:ObjectProperty>

• There are also two predefined classes:

– Owl:Thing is the most general class, which contains everything
(everything is a thing)

– Owl:Nothing is the empty class

• Thus every class is a subclass of owl:Thing and a superclass of
owl:Nothing

270

Property Restriction

• Example: requiring first-year courses to be taught by professors only:

<owl:Class rdf:about=“firstYearCourse”>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=#isTaughtBy”/>

271

<owl:allValuesFrom rdf:resource=#Professor”/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Note. This example requires every person who teaches an instance of the
class, a first year course, to be professor. In terms of logic, we have a
universal quantification.

• We can declare that mathematics courses are taught by David
Billington:

<owl:Class rdf:about=“mathCourse”>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=#isTaughtBy”/>

<owl:hasValue rdf:resource=#949352”/>

272

<owl:hasValue rdf:resource=#949352”/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

• We can declare that all academic staff members must teach at least one
undergraduate course:

<owl:Class rdf:about=“academicStaffMember”>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=#teaches”/>

<owl:someValueFrom rdf:resource=“#undergraduateCourse”/>

</owl:Restriction>

273

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Note. This example requires that there exists an undergraduate course taught by
an instance of the class, an academic staff member. It is still possible that the
same academic teaches postgraduate courses in addition. In terms of logic, we
have an existential quantification.

• In addition to restrictions owl:allValuesFrom, owl:someValuesFrom

and owl: someValuesFrom we can set cardinality restrictions, e.g.,

<owl:Class rdf:about=“#course”>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=#isTaughtBy”/>

<owl:minCardinality

274

rdf:datatype=&xsd;nonNegativeInteger”>

1

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

• We might specify that a department must have at least ten and at most thirty
members:

<owl:Class rdf:about=“#department”>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=#hasMember”/>

<owl:minCardinality

rdf:datatype=&xsd;nonNegativeInteger”>

10

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

275

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource=#hasMember”/>

<owl:maxCardinality

rdf:datatype=&xsd;nonNegativeInteger”>

30

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Special Properties

• Some properties of property elements can be defined directly:

– Owl:TransitiveProperty defines a transitive property, such as “has better
grade than”, “istaller than” or “is ancestorof”

– Owl:SymmetricProperty defines symmetric property, such as “has same

276

– Owl:SymmetricProperty defines symmetric property, such as “has same
grade as” or “is sibling of”

– Owl:FunctionalProperty defines property that has at most one value for

each object, such as “age”, “height”, or “directSupervisor”

– Owl:InverseFunctionalProperty defines a property for which two different
objects cannot have the same value, e.g., the property
“isTheSocialSecurityNumber”

• An example of the syntactic forms for these is:

<owl:ObjectProperty rdf:ID=“hasSameGradeAs”>

<rdf:type rdf:resource=“&owl;TransitiveProperty” />

<rdf:type rdf:resource=“&owl;SymmetricProperty” />

<rdfs:domain rdf:resource=“#student” />

<rdfs:range rdf:resource=“#student” />

</owl:ObjectPropert>

277

</owl:ObjectPropert>

Boolean Combinations of classes

• We can specify union, intersection, and complement of classes

• For example, we can specify that courses and staff members are
disjoint as follows:

<owl:Class rdf:about=“course”>

<rdfs:subClassOf>

<owl:Class>

278

<owl:complementOf rdf:resource=#staffMember”/>

<owl:someValueFrom rdf:resource=“#undergraduateCourse”/>

</owl:Class>

</rdfs:subClassOf>

</owl:Class>

This says that every course is an instance of the complement of staff
members, that is, no course is a staff member

• The union of classes is built using owl:unionOf:

<owl:Class rdf:about=“peopleAt Uni”>

<owl:unionOf rdf:parseType=“Collection”>

<owl:Class rd:about=“#staffMember”/>

<owl:Class rd:about=“#student”/>

</owl:unionOf>

</owl:Class>

279

Note. This does not say that the new class is a subclass of the union, but
rather that the new class is equal to the union, i.e., an equivalnce of classes

is defined

• The intersection of classes is built using owl:intersectionOf:

<owl:Class rdf:id=“facultyInCS”>

<owl:intersectionOf rdf:parseType=“Collection”>

<owl:Class rd:about=“#faculty”/>

<owl:Restriction>

<owl:onProperty rdf:resource=“#belongsTo”/>

<owl:hasValue rdf:resource=“#CSDepartment”/>

</owl:Restriction>

280

</owl:Restriction>

<owl:intersectionOf>

</owl:Class>

Enumerations

• An enumeration is an owl:oneOf element, used to define class by
listing al its elements:

<owl:Class rdf:ID=“weekdays”>

<owl:one of rdf:parseType=“Collection”>

<owl:Thing rdf:about=“#Monday”/>

<owl:Thing rdf:about=“#Tuesday”/>

281

<owl:Thing rdf:about=“#Tuesday”/>

<owl:Thing rdf:about=“#Wednesday”/>

<owl:Thing rdf:about=“#Thursday”/>

<owl:Thing rdf:about=“#Friday”/>

<owl:Thing rdf:about=“#Saturday”/>

<owl:Thing rdf:about=“#Sunday”/>

</owl:one of>

</owl:Class>

Instances

• Instances of classes are declared as in RDF:

<rdf:Description rdf:ID=“949352”>

<rdf:type rdf:resource=“#academicStaffMember”/>

</rdf:Description>

or equivalently

282

<academicStaffMember rdf:ID=“949352>

further details can also be provided, e.g.,

<academicStaffMember rdf:ID=“949352>

<uni:age rdf:datatype=“&xsd;integer”>39</uni:age>

</academicStaffMember>

• Unlike typical database systems, OWL does not adopt the
unique-names assumption

– For example, if we state that each course is taught by at most one staff
member

<owl:ObjectProperty rdf:ID=“isTaughtBy”>

<rdf:type rdf:resource=“&owl;FunctionalProperty” />

</owl:ObjectProperty>

and subsequently we can state that a given course is taught by two staff

283

and subsequently we can state that a given course is taught by two staff
members

<course rdf:ID=“CIT1111”>

<isTaughtBy rdf:resource=“#949318”/>

<isTaughtBy rdf:resource=“#949352”/>

</course>

This does not cause an OWL reasoner to flag an error

• To ensure that different individuals are different we have to state it, e.g.,

<lecturer rdf:ID=“949318>

<owl:differentFrom rdf:resource=“#949352”/>

</lecturer>

– OWL also provides a shorthand notation to assert the pairwise
inequality of all individuals in a given list

<owl:AllDifferent>

284

<owl:AllDifferent>

<owl:distinctMembers rdf:parseType=“Collection”>

<lecturer rdf:about=“#94318”/>

.

.

</owl:distinctMembers>

<owl:AllDifferent>

Data Types

• Although XML Schema provides a mechanism to construct user-
defined data types (e.g., adultAge as integer greater than 18), such
derives data types cannot be used in OWL.

• Not even all of the many built-in XML Schema data types can be
used in OWL

285

• The OWL reference document lists all the XML Schema data types
that can be used

– These include the most frequently used types such as integer
Boolean, time and date

Layering OWL

• Now after the specification of the OWL we can specify which
features can be used in its sublanguages OWL Full, OWL DL and
OWL Lite

• OWL Full

286

• OWL Full

– All the language constructions may be used in any combination as long
as the result is legal RDF

• OWL DL

– Vocabulary partitioning

• Any resource is allowed to be only a class, a data type, a datatype
property, an object property, an individual, a data value, or part of
the built-in vocabulary, and not more than one of these

– Explicit typing

• Not only must all resources be partitioned (as described in the
previous constraint) but this partitioning must be stated explicitly

287

For example, if an ontology contains the following:

<owl:Class rdf:ID=“CI”>

<rdfs:subclassOf rdf:about=“#C2” />

</owl:Class>

Though this already entails that C2 is a class, this must be
explicitly stated:

<owl:Class rdf:ID=“C2”/>

– Property separation

• By virtue of the first constraint, the set of object properties and data
type properties are disjoint. This implies that the following can never
be specified for data type properties:

owl:InverseOf

owl:FunctionalProperty

Owl:InverseFunctionalProperty, and

Owl:SymmetricProperty

– No transitive cardinality restrictions

288

– No transitive cardinality restrictions
• No cardinality restrictions may be placed on transitive properties, or

their subproperties, which are of course also transitive, by
implication

– Restricted anonymous classes
• Anonymous classes are only allowed to occur as the domain and

range of either owl:equivalentClass or owl:disjointWith, and as the
range (but not the domain) of rdfs:subClassOf

• OWL Lite

– An OWL Lite ontology must be an OWL DL ontology and must further
satisfy the following constraints:

• The constructors owl:one of, owl:disjointWit, owl:unionOf,

owl:complementOf and owlHasValue are not allowed

• Cardinality restrictions can only be made on the values 0 or 1

289

• Cardinality restrictions can only be made on the values 0 or 1

• Owl:equivalent Class statements can no longer be made between
anonymous classes but only between class identifiers

Example: An African Wildlife Ontology

• The ontology describes African wildlife. The above figure shows the
basic classes and their subclass relationships. Note that the
subclass information is only part of the information included in the
ontology.

Animal plant

290

Animal

herbivore carnivore

giraffe
lion

plant

tree

<rdf:RDF

xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-nsl#

xmlns:rdfs=http://www.w3.org/2000/01/rdf-schema#

xmlns:owl=http://www.w3.org/2002/07/owl#

<owl:Ontology rdf:about=“xml:base”/>

<owl:Class rdf:ID=“animal”>

<rdfs:comment>Animals form a class.</rdfs:comment>

</owl:Class>

291

</owl:Class>

<owl:Class rdf:ID=“plant”>

<rdfs:comment>

Plants form a class disjoint from animals.

</dfs:comment>

<owl:disjointWith rdf:resource=“animal”/>

</owl:Class>

<owl:Class rdf:ID=“tree”>

<rdfs:comment>Trees are a type of plant.</rdfs:comment>

<rdfs:subClassOf rdf:resource=“#plant”/>

</owl:Class>

<owl:Class rdf:ID=“branch”>

<rdfs:comment>Branches are part of trees.</rdfs:comment>

<rdfs:subClassOf>

<owl:Restriction>

292

<owl:Restriction>

<owl:onProperty rdf:resoyrce=“#is_part_of”/>

<owl:allValuesFrom rdf:resource=“#tree”/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID=“leaf”>

<rdfs:comment>Leaves are part of branches.</rdfs:comment>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resoyrce=“#is_part_of”/>

<owl:allValuesFrom rdf:resource=“#branch”/>

</owl:Restriction>

</rdfs:subClassOf>

293

</owl:Class>

<owl:Class rdf:ID=“herbivore”>

<rdfs:comment>Herbivores are exactly those animals that eat only plants or part of
plants.</rdfs:comment>

<owl:intersectionOf rdf:parseType=“Collection”>

<owl:Class rdf:about=“#animal”/>

<owl:Restriction>

<owl:onProperty rdf:resource=“#eats”/>

<owl:allValuesFrom>

<owl:Class>

<owl:unionOf rdf:parseType=“Collection”>

<owl:Class rdf:about=“#plant”/>

294

<owl:Class rdf:about=“#plant”/>

<owl:Restriction>

<owl:onProperty rdf:resource=“#is_part_of”/>

<owl:allValuesFrom rdf:tresource=“plant

</owl:Restriction>

</owl:unionOf >

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf >

</owl:Class>

<owl:Class rdf:ID=“carnivore”>

<rdfs:comment>Carnivores are exactly those animals that ear
animals.</rdfs:comment>

<owl:intersectionOf rdf:parseType=“Collection”>

<owl:Class rdf:about=“#animal”/>

<owl:Restriction>

<owl:onProperty rdf:resoyrce=“#eats”/>

<owl:someValuesFrom rdf:resorce=“#animal”/>

</owl:Restriction>

295

</owl:Restriction>

</owl:intersectionOf >

</owl:Class>

<owl:Class rdf:ID=“giraffe”>

<rdfs:comment>Giraffes are herbivores, and they eat only
leaves.</rdfs:comment>

<rdfs:subclassOf rdf:resource=“#herbivore”/>

<rdfs:subClass>

<owl:Restriction>

<owl:onProperty rdf:resoyrce=“#eats”/>

296

<owl:onProperty rdf:resoyrce=“#eats”/>

<owl:allValuesFrom rdf:resorce=“#leaf”/>

</owl:Restriction>

</rdfs:subClassOf >

</owl:Class>

<owl:Class rdf:ID=“lion”>

<rdfs:comment>Lions are aimals that eat only
herbivores.</rdfs:comment>

<rdfs:subclassOf rdf:resource=“#carnivore”/>

<rdfs:subClass>

<owl:Restriction>

<owl:onProperty rdf:resoyrce=“#eats”/>

<owl:allValuesFrom rdf:resorce=“#herbivore/>

</owl:Restriction>

297

</owl:Restriction>

</rdfs:subClassOf >

</owl:Class>

<owl:Class rdf:ID=“tasty_plant”>

<rdfs:comment>Tasty plants are plants that are eaten both by herbivores and
carnivores.</rdfs:comment>

<rdfs:subclassOf rdf:resource=“#plant”/>

<rdfs:subClass>

<owl:Restriction>

<owl:onProperty rdf:resoyrce=“#eaten_by”/>

<owl:someValuesFrom>

<owl:Class rdf:about=“#herbivores”/>

</owl:someValuesFrom>

</owl:Restriction>

298

</owl:Restriction>

</rdfs:subClassOf >

<rdfs:subClass>

<owl:Restriction>

<owl:onProperty rdf:resoyrce=“#eaten_by”/>

<owl:someValuesFrom>

<owl:Class rdf:about=“#carnivores”/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf >

</owl:Class>

<owl:TransitivityProperty rdf:ID=“is_part_of”/>

<owl:ObjectProperty rdf:ID=“eats”>

<rdfs:domain rdf:resource=“#animal”/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=“eaten:by”>

<owl:inverseOf rdf:resource=“#eats”/>

</owl:ObjectProperty>

299

</rdf:RDF>

Chapter 9: Semantic Web Services

• Web service

– Web site that do not merely provide static information, but involve
interaction with users and often allow users to effect some action.

– Simple web service

• A single Web-accessible program, sensor or device that does not
rely upon other Web services nor require further interaction with
the user, beyond a simple request.

300

the user, beyond a simple request.

– Complex Web service

• Composed of simpler services, and often require ongoing
interaction with the user, whereby the user can make choices or
provide information conditionally,

– e.g., searching CDs from online music store by various criteria,
reading reviews and listening samples, adding CDs to shopping
chart., providing credit card details, shipping details, and delivery
address.

• At present the use of Web services requires human
involvement, e.g., information has to be browsed and
forms need to be filled in.

• The Semantic Web vision, as applied to Web services,
aims at automating the discovery, invocation,
composition and monitoring of Web services by
providing machine-interpretable descriptions of the

301

providing machine-interpretable descriptions of the
service.

– Web sites should be able to employ a set of basic classes and
properties by declaring and describing services, i.e., an ontology
of services should be employed.

– DAML-S is an initiative that is developing an ontology language
for Web services. (Currently DAML-S is migrating to OWL-S).

• According to DAML-S there are three kinds of knowledge associated with
a service: service profile, service model and service groundings.

• A service profile is a description of the offerings and requirements of a
service.

– This information is essential for a service discovery: service-seeking
agent can determine whether a service is appropriate for its purpose,
based on the service profile.

– A service profile may also be a specification of a needed service
provided by a service requester.

• A service model describes how a service works, i.e., what happens

302

• A service model describes how a service works, i.e., what happens
when the service is executed.

– This information may be important for a service-seeking agent for
composing services to perform a complex task, and monitoring the
execution of a service.

• A service grounding specifies details of how an agent can access a
service.

– Typically a grounding will specify communication protocol and port
numbers to be used in contacting a service.

Service Profiles (in DAML-S)

• Provide a way to describe services offered by a Web
site but also services needed by requesters.

• Provide the following information:

– A human-readable description of the service and its provider.

303

– A human-readable description of the service and its provider.

– A specification of the functionalities provided by the service.

– Additional information such as expected response time and
geographic constraints.

• All this information is encoded in the modeling primitives
of DAML-S (classes and properties, which are defined
using the DAML-OIL language)

• For example, an offering of a service is an instance of
the class OfferedService, which is defined as follows:

• <rdfs: Class rdf: ID=“OfferedService”>

<rdfs : label><OfferedService</rdfs :label>

<rdfs:subClassOf rdf : resource= “http: //www.daml.org/services/daml-
s/2001/10/Service.daml#(/>

</rdfs: class>

304

A number of properties are defined on this class:

– intendedPurpose

– serviceName

– providedBy

• The range of this property is a new class ServiceProvider which has
various properties. An instance of the class is the following:

<profile : ServiceProvider rdf : ID=“SportNews”>

<profile :phone>12345678</profile :phone>

<profile :fax>123456789</profile :fax>

<profile :email>abc@defgh.com</profile :email>

<profile :webURL>www.dfg.com</profile :webURL>

<profile :PhysicalAddress>150 Nowwhere St,

305

<profile :PhysicalAddress>150 Nowwhere St,
111Somewhere, Australia</profile :PhysicalAddress>

</profile : ServiceProvider>

• The functional description of a service profile defines
properties describing the functionality provided by the
service. The main properties are:
– Input, which describes the parameters necessary for providing

the service.

• E.g., sports news service might require the following input: date,
sports category, customer credit cards details.

– Output, which specifies the outputs of the service.

• E.g., in the sport news example, the output would be the news

306

• E.g., in the sport news example, the output would be the news
articles in the specified category at the given date.

– Precondition, which specifies the conditions that need to hold
for the service to be provided effectively.

• E.g., credit card details are an input, and preconditions are that the
credit card is valid and not overcharged.

– Effect, a property that specifies the effects of the service.

• E.g., credit card is charged $1 per news article.

• At present the modeling primitives of DAML-S and OWL-S are very
limited regarding the functional descriptions of the service because
of limitations of the DAML+OIL (as well as OWL) language.

– E.g., its is not possible to define logical relationships between inputs
and outputs as the languages do not yet provide logical capabilities,
e.g., rules.

307

Service Models (in DAML-S)

• Service models are based on the concept of a process,
which describes a service in terms of inputs, outputs,
preconditions, effects and where appropriate, its
composition of component subprocesses.

• Class process has three subclasses:

308

• Class process has three subclasses:

– Atomic processes, can be directly invoked by passing them
appropriate messages; they execute in one step.

– Simple processes are elements of abstraction; they can be
though of as having single-step executions but are not invocable.

– Composite processes consist of other, simpler processes.

Process Profile

Atomic
Process

Single
Process

Composite
Process

hasProfile

hasProcess

realizes

realizedBy

expands

collaps

309

Controll
Construct

Sequence RepeatUntil
P

collaps
composedBy

Figure. Top level of the process ontology

• In the figure,

– hasProfile and hasProfile are two properties that state the relationship
between a process and its profile.

– A simple process may be realized by an atomic process.

– Alternatively, it is used for abstraction purposes and expands to a
composite process.

• A composite process is composed of a number of control constructs:

<rdf : Property rdf : ID=“composedBy”>

<rdfs:domain rdf: resource=“#CompositeProcess”/>

310

<rdfs:domain rdf: resource=“#CompositeProcess”/>

<rdfs:range rdf : resource=”#ControlConstruct”/>

</rdf : Property>

The control construct offered by DAML-S include, sequence, choice, if-
then-else and repeat-until.

OWL-S: Semantic Markup for

Web Services

The goal of OWL-S
• The Semantic Web should enable greater access not only to

content but also to services on the Web:
– Users and software agents should be able to discover, invoke,

compose, and monitor Web resources offering particular
services and having particular properties, and should be able to
do so with a high degree of automation if desired.

• OWL-S (formerly DAML-S) is an ontology of services that
makes these functionalities possible. It is comprised of three
main parts:main parts:
– the service profile for advertising and discovering services;
– the process model, which gives a detailed description of a

service's operation; and
– the grounding, which provides details on how to interoperate with

a service, via messages.

• Following the layered approach to markup language
development, the current version of OWL-S builds on the
OWL.

312

Services on the Semantic Web

• Among the most important Web resources are those that provide services.
– By ``service'' we mean Web sites that do not merely provide static information

but allow one to effect some action or change in the world, such as the sale of a
product or the control of a physical device.

• The Semantic Web should enable users to locate, select, employ, compose, and
monitor Web-based services automatically.

• To make use of a Web service, a software agent needs a computer-
interpretable description of the service, and the means by which it is accessed.

– An important goal for Semantic Web markup languages, then, is to establish a – An important goal for Semantic Web markup languages, then, is to establish a
framework within which these descriptions are made and shared.

– Web sites should be able to employ a standard ontology, consisting of a set of
basic classes and properties, for declaring and describing services, and the
ontology structuring mechanisms of OWL provide an appropriate, Web-
compatible representation language framework within which to do this.

313

• The OWL-S ontology is also referred as a language for
describing services, reflecting the fact that it provides a
standard vocabulary that can be used together with the
other aspects of the OWL description language to create
service descriptions.

314

Motivating Tasks for OWL-S

• We will be considering both simple, or ``atomic''
services, and complex or "composite" services.

• Atomic services are ones where a single Web-accessible
computer program, sensor, or device is invoked by a
request message, performs its task and perhaps request message, performs its task and perhaps
produces a single response to the requester.

• With atomic services there is no ongoing interaction
between the user and the service.

– For example, a service that returns a postal code or the
longitude and latitude when given an address would be in this
category.

315

• Complex or 'composite' services are composed of
multiple more primitive services, and may require an
extended interaction or conversation between the
requester and the set of services that are being utilized.

– For example, one's interaction with www.amazon.com to buy a
book is like this; the user searches for books by various criteria,
perhaps reads reviews, may or may not decide to buy, and gives
credit card and mailing information. credit card and mailing information.

• OWL-S is meant to support both categories of services,
but complex services have motivated many of the
ontology's elements.

• The following three task types will give an idea of the
kinds of tasks OWL-S is expected to enable

316

Automatic Web service discovery
• Is an automated process for location of Web services that

can provide a particular class of service capabilities, while
adhering to some client-specified constraints.
– For example, the user may want to find a service that sells airline

tickets between two given cities and accepts a particular credit card.

• With OWL-S, the information necessary for Web service
discovery could be specified as computer-interpretable discovery could be specified as computer-interpretable
semantic markup at the service Web sites, and a service
registry or ontology-enhanced search engine could be used
to locate the services automatically.

• Alternatively, a server could proactively advertise itself in
OWL-S with a service registry, also called middle agent, so
that requesters can find it when they query the registry.
– Thus, OWL-S enables declarative advertisements of service

properties and capabilities that can be used for automatic service
discovery

317

Automatic Web service invocation

• Automatic Web service invocation is the automatic
invocation of an Web service by a computer program or
agent, given only a declarative description of that
service, as opposed to when the agent has been pre-
programmed to be able to call that particular service.

• This is required, for example, so that a user can request • This is required, for example, so that a user can request
the purchase, from a site found by searching and then
selected by that user, of an airline ticket on a particular
flight.

• Execution of a Web service can be thought of as a
collection of remote procedure calls.

318

• OWL-S provides a declarative, computer-interpretable
API that includes the semantics of the arguments to be
specified when executing these calls, and the semantics
of that is returned in messages when the services
succeed or fail.

• A software agent should be able to interpret this markup
to understand what input is necessary to invoke the
service, and what information will be returned. service, and what information will be returned.

• OWL-S, in conjunction with domain ontologies specified
in OWL, provides standard means of specifying
declaratively APIs for Web services that enable this kind
of automated Web service execution.

319

Automatic Web service
composition and interoperation

• Involves the automatic selection, composition, and
interoperation of Web services to perform some complex
task, given a high-level description of an objective.

– For example, the user may want to make all the travel – For example, the user may want to make all the travel
arrangements for a trip to a conference.

• Currently, the user must select the Web services, specify
the composition manually, and make sure that any
software needed for the interoperation of services that
must share information is custom-created.

320

• With OWL-S markup of Web services, the information
necessary to select and compose services will be
encoded at the service Web sites.

• Software can be written to manipulate these
representations, together with a specification of the
objectives of the task, to achieve the task automatically.

• To support this, OWL-S provides declarative
specifications of the prerequisites and consequences of specifications of the prerequisites and consequences of
application of individual services , and a language for
describing service compositions and data flow
interactions.

321

An Upper Ontology for Services
The ontology of services is motivated by the need to provide

three essential types of knowledge about a service :

• What does the service provide for prospective clients?
The answer to this question is given in the "profile," which
is used to advertise the service.
– To capture this perspective, each instance of the class Service

presents a ServiceProfile.

• How is it used? The answer to this question is given in the • How is it used? The answer to this question is given in the
"process model." This perspective is captured by the
ServiceModel class.
– Instances of the class Service use the property describedBy to

refer to the service's ServiceModel.

• How does one interact with it? The answer to this
question is given in the "grounding." A grounding provides
the needed details about transport protocols.
– Instances of the class Service have a supports property

referring to a ServiceGrounding.
322

ServiceProfile

presents
(what it does)

Top level of the service ontology

Service
ServiceGrounding

ServiceModel

supports
(how to access it)

desscribedby
(how it works)

323

• The class Service provides an organizational point of
reference for a declared Web service; one instance of
Service will exist for each distinct published service.

• The properties presents, describedBy, and supports are
properties of Service.

• The classes ServiceProfile, ServiceModel, and
ServiceGrounding are the respective ranges of those
properties. properties.

• Each instance of Service will present a ServiceProfile
description, be describedBy a ServiceModel description,
and support a ServiceGrounding description.

– The details of profiles, models, and groundings may vary widely
from one type of service to another--that is, from one instance of
Service to another.

324

ServiceProfile

• Provides the information needed for an agent to discover a
service, while the ServiceModel and ServiceGrounding, taken
together, provide enough information for an agent to make
use of a service, once found.

• Tells "what the service does", in a way that is suitable for a
service-seeking agent (or matchmaking agent acting on
behalf of a service-seeking agent) to determine whether the behalf of a service-seeking agent) to determine whether the
service meets its needs.

– This form of representation includes a description of what is
accomplished by the service, limitations on service applicability
and quality of service, and requirements that the service
requester must satisfy to use the service successfully.

325

ServiceModel
• Tells a client how to use the service, by detailing the semantic

content of requests, the conditions under which particular
outcomes will occur, and, where necessary, the step by step
processes leading to those outcomes.
– i.e., , it describes how to ask for the service and what happens

when the service is carried out.

• For nontrivial services (those composed of several steps over
time), this description may be used by a service-seeking
agent in at least four different ways:
time), this description may be used by a service-seeking
agent in at least four different ways:
– (1) to perform a more in-depth analysis of whether the service

meets its needs;
– (2) to compose service descriptions from multiple services to

perform a specific task;
– (3) during the course of the service enactment, to coordinate the

activities of the different participants; and
– (4) to monitor the execution of the service.

326

ServiceGrounding

• A serviceGrounding ("grounding" for short)
specifies the details of how an agent can access a
service.

• Typically a grounding will specify a communication
protocol, message formats, and other service-protocol, message formats, and other service-
specific details such as port numbers used in
contacting the service. In addition, the grounding
must specify, for each semantic type of input or
output specified in the ServiceModel, an
unambiguous way of exchanging data elements of
that type with the service (that is, the serialization
techniques employed).

327

• The upper ontology for services specifies only two cardinality
constraints: a service can be described by at most one
service model, and a grounding must be associated with
exactly one service.

• The upper ontology deliberately does not specify any
minimum cardinality for the properties presents or
describedBy.

– (Although, in principle, a service needs all three properties to be
fully characterized, it is easy to imagine situations in which a fully characterized, it is easy to imagine situations in which a
partial characterization could be useful.)

– Nor does the upper ontology specify any maximum cardinality for
presents or supports. (It will be extremely useful for some
services to offer multiple profiles and/or multiple groundings.)

328

• Note that while we define one particular upper, one for
service models, and one for grounontology for
profilesdings, nevertheless OWL-S allows for the
construction of alternative approaches in each case.

• The intent here is not to prescribe a single approach in • The intent here is not to prescribe a single approach in
each of the three areas, but rather to provide default
approaches that will be useful for the majority of cases.

329

Chapter 10: Organizations Roadmap to the Semantic Web

• Knowledge centric organization

– A knowledge centric organization will incorporate Semantic Web
technologies into every part of the work life cycle, including

• Production

• Presentation

330

• Presentation

• Analysis

• Dissemination

• Archiving

• Reuse

• Annotation

• Searches, and

• Versioning

The discovery and production process

DISCOVERY
VALIDATION
(proof of trust)

XML
MARKUP

TRUST
ASSERTION
OF NEW INFO
(digital sign)

ANNOTATION

TRUST
ASSERTION OF
ANNOTATION
(Digital sign)

SEMANTIC
TRANSLATION

331

(Digital sign)

WEB
SERVICE
STORAGE

REGISTRATION
OF WEB SERVICES

Web Service with corporate ontology

and Web service registry

The search and retrieval process

Web Service with corporate ontology

and Web service registry

General data searches

Search by association

Agent-

based

searches

332

Data searches Search by association Taxonomy / Classification
searches

Rule based orchestration Pattern based searches

Automated inferences On demand mining

Search by association

Taxonomy searches

Pattern/event searches

Rule-based orchestration

Automated inference

Manual

searches

The functionality of the search and retrieval process

• Discovery of knowledge through taxonomy

– Because each web service can be classified in various taxonomies,
taxonomic searches can be done across the Web services of an
organization, e.g., “I´m looking for all Web services classified in the
corporate taxonomy as related to Coal mining’

• Web service-based data searches

– Using standard SOAP interfaces, any application can query Web

333

– Using standard SOAP interfaces, any application can query Web
services in the enterprise

• Search by association

– Because data is mapped into an ontology, semantic searches can be
made across the entire knowledge base, e.g., “I would like to perform a
query on all relatives of the terrorist Mohammed Atta, their closest
friends, and their closest friends’ friends

The functionality of the search and retrieval process,
continues P

• Pattern-based searches

– Because all data can be semantically linked by relationships in the
ontology, patterns that would only be seen in the past – by old data
mining techniques that did not directly utilize meaning – can now be
dynamically found with semantic searches, e.g., “Of all grocery stores
listed in hour corporate ontology, which stores have had revenue growth
combined with an increased demand for orange juice”

334

combined with an increased demand for orange juice”

• Manual and agent-based searches

– Although all the searches can be manual, software agents can be
equipped with rules to continually search the knowledge base and
provide you with up-to-the-second result and alerts, e.g., Alert me via
email whenever a new document is registered discussing a new
computer virus”

The functionality of the search and retrieval process,
continues P

• Rule-based orchestration queries
– Because Web services can be combined to provide modular

functionality, rules can be used in order to combine various searches
from different Web services to perform complicated tasks, e.g., Find me
the lead engineer of the top-performing project in the company. Based
on his favorite vacation spot from his response in his Human Resource
survey, book him two tickets to that location next week, grant him
vacation time, and cancel all of his work-related appointments”

335

vacation time, and cancel all of his work-related appointments”

• Automated inference support
– Because the corporate ontology explicitly represents concepts and their

relationships in a logical and machine-interpretable form, automated
inference over the ontology and its knowledge becomes possible. Given
a specific query, an ontology-based inference engine can perform
deduction and other forms of automated reasoning to generate the
possible implications of the query, thus returning much more meaningful
results

A strategy to take advantage of semantic Web
technologies

• Set detailed technical goals
• Markup documents in XML

• Expose your applications as Web services

• Build Web service orchestration tools

• Establish a corporate registers

336

• Establish a corporate registers

• Build ontologies

• Use tools that will help in production processes

• Integrate search tools

• Use an enterprise portal as a catalyst for knowledge
engineering

A strategy to take advantage of semantic Web
technologies, continues P

• Develop a plan with a workflow change strategy

• Set appropriate staff in place

• Set a schedule for implementing changes

337

