
Overlay and P2P Networks

Applications

Prof. Sasu Tarkoma

27.9.2010

Contents

P2PSIP
Amazon’s Dynamo
CDNs
The Coral Content Distribution Network
PlanetLab
Novel applications

The Cloud

…
Google Microsoft

Amazon
Yahoo …

Session Initiation Protocol (SIP)

An Application-layer control (signaling) protocol for creating,
modifying and terminating sessions with one or more
participants

Sessions include Internet multimedia conferences, Internet
telephone calls and multimedia distribution

Members in a session can communicate via multicast or via
a mesh of unicast relations, or a combination of these

Text based, model similar to HTTP

DNS
Server

Location
Service

Proxy Server Proxy Server

User Agent
Bob

User Agent
Alice

Internet
DNS

SIP (SDP)

 SIP
(SDP)

 SIP
(SDP)

Media (RTP)

Location lookup

SIP Signalling

DNS DNS

SIP UA Outbound
proxy

Outbound
proxy SIP UA

Location
DB

SRV & A
queries

ENUM:
NAPTR, SRV
& A queries DB query

INVITE INVITE INVITE

Caller Called C/S SIP

P2P SIP

SIP is already ready for P2P
 Active standardization in IETF

Uses symmetric, direct client-to-client communication

Intelligence resides mostly on the network border in the user
agents

 The proxies and the registrar only perform lookup and routing
The lookup/routing functions of the proxies/registrar can be

replaced by a DHT overlay built in the user agents.
By adding join, leave and lookup capabilities, a SIP user agent can

be transformed into a peer capable of operating in a P2P
network

User Agent
Bob

User Agent
Alice

Internet

 SIP
(SDP)

 SIP
(SDP)

Media (RTP)

Proxy
(SIP/DHT)

Proxy
(SIP/DHT)

Proxy
(SIP/DHT) Proxy

(SIP/DHT)

Proxy
(SIP/DHT)

DHT

Amazon Dynamo Motivation

Aim is to store various kinds of data and have high
availability

Build a distributed storage system:
Scale
Simple: key-value
Highly available
Guarantee Service Level Agreements (SLA)

Based on the SOSP 2007 presentation and paper: Dynamo:
Amazon’s Highly Available Key-value Store

Client requests

Request routing

…
Page rendering
components

Aggregator
services

Request routing
Services

Amazon
S3 Other

datastores

Dynamo instances

System Assumptions and
Requirements

Query Model: simple read and write operations to a data
item that is uniquely identified by a key

ACID Properties: Atomicity, Consistency, Isolation,
Durability

Efficiency: latency requirements which are in general
measured at the 99.9th percentile of the distribution

Other Assumptions: operation environment is assumed to be
non-hostile and there are no security related
requirements such as authentication and authorization

Service Level Agreements (SLA)

Application can deliver its functionality in bounded time:
Every dependency in the platform needs to deliver its
functionality with even tighter bounds

Example: service guaranteeing that it will provide a response
within 300ms for 99.9% of its requests for a peak client load
of 500 requests per second

Service-oriented
architecture of

Amazon’s platform

Design Consideration

Sacrifice strong consistency for availability

Conflict resolution is executed during read instead of write
 Use quorums and other techniques

Other principles:
Incremental scalability
Symmetry
Decentralization
Heterogeneity

Summary of techniques used in
Dynamo and their advantages

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes Vector clocks with
reconciliation during reads

Version size is decoupled
from update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high availability
and durability guarantee

when some of the replicas
are not available.

Recovering from
permanent failures

Anti-entropy using Merkle
trees

Synchronizes divergent
replicas in the
background.

Membership and failure
detection

Gossip-based
membership protocol and

failure detection.

Preserves symmetry and
avoids having a

centralized registry for
storing membership and

node liveness information.

Dynamo Implementation

Data Stores
Nodes in the system are spread around a logical circle
Nodes are responsible for the region between it and its
predecessor
Virtual nodes are evenly dispersed and appear to be
regular nodes in the system, but in reality are just
handled by the nodes of the system

Object Data
Uses hashing of an object’s key to determine where to
store the object
Each object is replicated across N nodes (N-1
successor nodes to the coordinator node)

Partition Algorithm

Consistent hashing: the output
range of a hash function is treated
as a fixed circular space or “ring”.

”Virtual Nodes”: Each node can
be responsible for more than one
virtual node.

B

C

D E

F

G
A

Key
K

Nodes B, C
and D store
keys in
range (A, B)
including K

Advantages of using virtual nodes

If a node becomes unavailable the
load handled by this node is evenly
dispersed across the remaining
available nodes
When a node becomes available
again, the newly available node
accepts a roughly equivalent amount
of load from each of the other available
nodes
The number of virtual nodes that a
node is responsible can decided based
on its capacity, accounting for
heterogeneity in the physical
infrastructure

B

C

D E

F

G
A

Key
K

Nodes B, C
and D store
keys in
range (A, B)
including K

Replication

Each data item is replicated
at N hosts

“preference list”: The list of
nodes that is responsible for
storing a particular key

B

C

D E

F

G
A

Key
K

Nodes B, C
and D store
keys in
range (A, B)
including K

Data Versioning

A put() call may return to its caller before the update has
been applied at all the replicas

A get() call may return many versions of the same object

Challenge: an object having distinct version sub-histories,
which the system will need to reconcile in the future

Solution: uses vector clocks in order to capture causality
between different versions of the same object

Vector Clock

A vector clock is a list of (node, counter) pairs

Every version of every object is associated with one vector
clock

If the counters on the first object’s clock are less-than-or-
equal to all of the nodes in the second clock, then the first
is an ancestor of the second and can be forgotten

Sloppy Quorum

The sloppy quorum technique is used to handle temporal
faults

R/W is the minimum number of nodes that must participate
in a successful read/write operation

Setting R + W > N yields a quorum-like system.

In this model, the latency of a get (or put) operation is
dictated by the slowest of the R (or W) replicas

R and W are usually configured to be less than N, to provide
better latency

Hinted handoff

The hinted handoff is also used to handle temporal
faults

Assume N = 3. When A is temporarily down or
unreachable during a write, send replica to D

D is hinted that the replica is belong to A and it will
deliver to A when A is recovered

As a result A is always writable

Dynamo Execution

Writes
Requires generation of a new vector clock by coordinator
Coordinator writes locally
Forwards to N nodes, if W-1 respond then the write was
successful

Reads
Forwards to N nodes, if R-1 respond then forwards to user
Only unique responses forwarded
User handles merging if multiple versions exist

Results

Their response requirement is 300ms for any request (read
or write)

Dynamo Summary

“Eventually” consistent data store
Always writable
Decentralized
All nodes have the same responsibilities

Amazon.com’s Resolution
Weakening consistency property in the system
Increase the availability

Content Delivery Networks (CDN)

Geographically distributed network of Web servers around
the globe (by an individual provider, E.g. Akamai).

Improve the performance and scalability of content retrieval.

Allow several content providers to replicate their content in a
network of servers.

Motivation

Network cost
 Huge cost involved in setting up clusters of servers
around the globe and corresponding increase in network
traffic

Economic cost
 Higher cost per service rate making them inaccessible to
lower and medium level customers

Social cost
 Monopolization of revenue

CDN Technology

Intelligent wide area traffic management
 Direct clients’ requests to optimal site based on
topological proximity

Two types of redirection: DNS redirection or URL rewriting

Cache
 Saves useful contents in cache nodes.

 Two cache policies: least frequently used standard and
least recently used standard.

CDN Types (Skeletal)

CDNs

Hosting CDN Relaying CDN

Partial Site
Content Delivery

Full Site Content
Delivery

URL
Rewriting

DNS based

Request Routing Techniques

30

CDN

Replicate content on many servers

Challenges
How to replicate content
Where to replicate content
How to find replicated content
How to choose among known replicas

How to direct clients towards replica
DNS, HTTP redirect, anycast, etc.

Akamai

31

Server Selection

Service and content is replicated in many places in network

How to direct clients to a particular server?
As part of routing anycast, cluster load balancing
As part of application HTTP redirect
As part of naming DNS

Which server to use?
Best performance to improve client performance

Based on Geography? RTT? Throughput? Load?
Lowest load to balance load on servers
Any active node to provide availability

CDN Architecture

Surrogate
Surrogate

Request
Routing

Infrastructure
Distribution

and
Accounting

Infrastructure

CDN

Origin
Server

Client Client

DNS

CDN DNS

CDN

Client ISP
Clients

1
6

2 3

5

4

redirection
Content
Provider

Client
DNS

(Local
DNS

server for
client)

CDN Type Coverage Solutions
Akamai Commercial

CDN service including
streaming data

Market leader Edge platform for
handling static and
dynamic content, DNS-
based request-routing

Limelight
Networks

Commercial
On-demand distribution, live
video, music, games, …

Surrogate servers in
over 70 locations in the
world

Edge-based solutions
for content delivery,
streaming support,
custom CDN for
custom delivery
solutions, DNS-based
request-routing

Coral Academic
Content replication based on
popularity (on demand),
addresses flash crowds

Experimental,
hosted on PlanetLab

Uses a DHT algorithm
(Kademlia), support for
static content, DNS-
based request-routing

CoDeeN Academic testbed
Caching of content and
redirection of HTTP requests

Experimental,
hosted on PlanetLab,
collaborative CDN

Support for static
content, HTTP direction
Consistent hashing for
mapping data to
servers

Globule Academic
Replication of content, server
monitoring, redirection to
available replicas

Apache extension,
Open Source
collaborative CDN

Support for static
content, monitoring
services, DNS-based
request-routing

Akamai

Clients fetch html document from primary server
URLs for replicated content are replaced in html

Client resolves aXYZ.g.akamaitech.net hostname

Akamai.net name server returns NS record for
g.akamaitech.net
G.akamaitech.net nameserver choses server

in region

Should try to chose server that has file in
cache - How to choose?

Uses aXYZ name and consistent hash

36

Consistent Hash Revisited

Smoothness addition of bucket does not cause much
movement between existing buckets

Spread & Load small set of buckets that lie near object
Balance no bucket is responsible for large number of

objects

•  Construction
•  Assign each of C hash buckets to

random points on mod 2n circle,
where, hash key size = n.

•  Map object to random position on
circle

•  Hash of object = closest
clockwise bucket

0

8

4 12
Bucket

14

37

How Akamai Works

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 3

4

Akamai high-level DNS server

Akamai low-level DNS server

Akamai server

10

6
7

8

9

12

Get
index.
html

Get /cnn.com/foo.jpg

11

Get foo.jpg

5

Source: www.cs.cmu.edu/~srini/15-744/S08/lectures/17-DNS.ppt

Coral: An Open CDN

Implement an open CDN
Allow anybody to contribute
Works with unmodified clients
CDN only fetches once from origin server

Based on NSDI 2004 presentation and paper

Origin
Server

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv Coral

httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Browser

Browser

Browser

Pool resources to dissipate flash crowds

38

Using CoralCDN

Rewrite URLs into “Coralized” URLs

www.x.com → www.x.com.nyud.net:8090

Coral distributes the load

Who might “Coralize” URLs?
Web server operators Coralize URLs
Coralized URLs posted to portals, mailing lists
Users explicitly Coralize URLs

39

Resolver Browser

Coral
dns srv
http prx Coral

dns srv
http prx

Coral
dns srv
http prx

Coral
dns srv
http prx

Coral
dns srv
http prx

4 4

2
5

3

9

8,11

1 6

7
10 www.x.com

.nyud.net

www.x.com
.nyud.net/

Coral
dns srv
http prx Coral

dns srv
http prx

DNS Redirection
Return proxy,
preferably one
near client

Cooperative
Web Caching

Return servers within appropriate cluster
e.g., for resolver RTT = 19 ms, return from cluster < 20 ms

Use network hints to find nearby servers
i.e., client and server on same subnet

Otherwise, take random walk within cluster

DNS measurement mechanism

Resolver

Browser
Coral
httpprx
dnssrv

Server probes client (2 RTTs)

Coral
httpprx
dnssrv

Key-based XOR routing
000… 111… Distance to key

None

< 60 ms

< 20 ms

Thresholds

Minimizes lookup latency
Prefer values stored by nodes within faster clusters

Prevent insertion hotspots

NYU

Halt put routing at full and loaded node
Full → M vals/key with TTL > ½ insertion TTL
Loaded → β puts traverse node in past minute

Store at furthest, non-full node seen

  Store value once in each level cluster
  Always storing at closest node causes hotspot

…

(log n) β reqs / min

Coral lacks…
Central management
A priori knowledge of network topology

Anybody can join system
Any special tools (e.g., BGP feeds)

Coral has…
Large number of vantage points to probe topology
Distributed index in which to store network hints
Each Coral node maps nearby networks to self

Challenges for DNS Redirection

Coral DNS server probes resolver

Once local, stay local
 When serving requests from nearby DNS resolver

Respond with nearby Coral proxies
Respond with nearby Coral DNS servers

 → Ensures future requests remain local

Else, help resolver find local Coral DNS server

Coral’s DNS Redirection

Applications for DHTs

•  DHTs are used as a basic building block for an
application-level infrastructure
–  Internet Indirection Infrastructure (i3)

•  New forwarding infrastructure based on Chord
–  DOA (Delegation Oriented Architecture)

•  New naming and addressing infrastructure based
on overlays

•  OpenDHT: A publicly accessible distributed hash
table (DHT) service

Internet Indirection Infrastructure (i3)

•  A DHT - based overlay network
–  Based on Chord

•  Aims to provide more flexible communication model than
current IP addressing

•  Also a forwarding infrastructure
–  i3 packets are sent to identifiers
–  each identifier is routed to the i3 node responsible for

that identifier
–  the node maintains triggers that are installed by

receivers
–  when a matching trigger is found the packet is

forwarded to the receiver

i3 II

•  An i3 identifier may be bound to a host, object, or a
session

•  i3 has been extended with ROAM
–  Robust Overlay Architecture for Mobility
–  Allows end hosts to control the placement of

rendezvous-points (indirection points) for efficient
routing and handovers

–  Legacy application support
•  user level proxy for encapsulating IP packets to i3

packets

Source: http://i3.cs.berkeley.edu/

R inserts a trigger (id, R) and receives
all packets with identifier id.

the host changes its address from R1 to R2,
it updates its trigger from (id, R1) to (id, R2).

Mobility is transparent for the sender

Source: http://i3.cs.berkeley.edu/

A multicast tree using a hierarchy of triggers

Source: http://i3.cs.berkeley.edu/

Anycast using the longest matching prefix rule.

Source: http://i3.cs.berkeley.edu/

Sender-driven service composition using
a stack of identifiers

Receiver-driven service composition using
a stack of identifiers

OpenDHT

•  A publicly accessible distributed hash table (DHT) service.
•  OpenDHT runs on a collection of 200 - 300 nodes on

PlanetLab.
•  Clients do not need to participate as DHT nodes.
•  A test bed infrastructure

–  Open infrastructure for puts and gets
–  Organizing clients that handle application upcalls

•  OpenDHT: A Public DHT Service and Its Uses. Sean
Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz,
Sylvia Ratnasamy, Scott Shenker, Ion Stoica, and Harlan
Yu. Proceedings of ACM SIGCOMM 2005, August 2005.

Summary

Key applications
 Akamai (consistent hashing)

 Amazon (Dynamo, consistent hashing, ring geometry)
 Kademlia (XOR geometry)
 Coral (XOR geometry)
 BitTorrent, Gnutella, Freenet

Key concepts
 Small worlds, hierarchy, consistent hashing, DHTs

Grading

Course grading will be based on the final exam and the
assignments

 Up to 20% bonus based on exercises

 Possible to get extension to the deadline of the last
assignment (please ask if you have questions about the
simulator, will be discussed on Thursday)

The exam will be held on 20.10. 16-19 in A111

Main theme Prerequisites Approaches learning goals Meets learning goals Deepens learning
goals

Overlay and peer-
to-peer networks:
definitions and
systems

Basics of data
communications and
distributed systems
(Introduction to Data
Communications, Distributed
Systems)

Knowledge of how to define the
concepts of overlay and peer-to-
peer networks, and state their
central features

Ability to describe at least one
system in detail

Ability of being able to
compare different overlay and
p2p networks in a qualitative
manner

Ability to assess the suitability
of different systems to
different use cases

Ability to give one’s own
definition of the central
concepts and discuss
the key design and
deployment issues

Distributed hash
tables

Basics of data
communications and
distributed systems
(Introduction to Data
Communications, Distributed
Systems)
Big-O-notation and basics of
algorithmic complexity

Knowledge of the concepts of
structured and unstructured
networks and the ability to
classify solutions into these two
categories
Knowledge of the basics of
distributed hash tables
Ability to describe at least one
distributed hash table algorithm
in detail

Ability of being able to
compare different distributed
hash table algorithms
Ability of designing distributed
hash table-based applications
Knowledge of key
performance issues of
distributed hash table systems
and the ability to analyze
these systems

The knowledge of
choosing a suitable
distributed hash table
design for a problem
Familiarity with the state
of the art

Reliability and
performance
modelling

Basics of probability theory
Basics of reliability in
distributed systems

Ability to model and assess the
reliability of overlay and peer-to-
peer networks by using
probability theory
Knowledge of the most important
factors pertaining to reliability

Ability of analytically analyzing
the reliability and performance
of overlay and peer-to-peer
networks
Understanding of the design
issues that are pertinent for
reliable systems

Familiarity with the state
of the art

Content distribution Introduction to Data
Communications

Knowledge of the basic content
distribution solutions
Ability to describe at least one
overlay and p2p network based
content distribution solution

Knowledge of different
content distribution systes and
the ability to compare them in
detail
Knowledge of several content
distribution techniques

Familiarity with the state
of the art

Security Basics of computer security Knowledge of the basic security
issues with overlay and p2p
networks
Knowledge of the sybil attack
concept

Ability to discuss how security
problems and limitations can
be solved
Knowledge of how to prevent
sybil attacks

Knowledge of how to
prevent sybil attacks
Familiarity with the state
of the art

