
Overlay and P2P Networks

Structured Networks and DHTs

Prof. Sasu Tarkoma

6.10.2010

Contents

•  DHTs
–  Plaxton
–  CAN
–  Chord
–  Tapestry
–  Pastry
–  Kademlia
–  Viceroy

•  Discussion

Structured Overlays

Structured overlays are typically based on the notion of a
semantic free index and consistent hashing

They are based on different routing geometries
The decentralized DHTs balance hop count with the size of

the routing tables, network diameter, and the ability to
cope with changes

Geometries and DHTs
 Tree – Plaxton’s algorithm
 Ring – Chord
 Tori – CAN
 Hypercubes – Pastry and Tapestry
 XOR metric – Kademlia
 Butterfly – Viceroy

Deployed DHT Applications

Key examples of deployed DHT algorithms include
 Kademlia used in BitTorrent
 Amazon’s Dynamo
 The Coral Content Distribution Network
 PlanetLab

We will return to applications later on this course

Requirements

An ideal DHT algorithm would meet the following
requirements:
–  Easy deployment over the Internet.
–  Scalability to millions of nodes and billions of data

elements
–  Availability for the data items so that faults can be

tolerated
–  Adaptation to changes in the network, including

network partitions and churn
–  Awareness of the underlying network architecture so

that unnecessary communication is avoided
–  Secure so that data confidentiality, authenticity, and

integrity can be established and that malicious nodes
cannot overwhelm the overlay network

It is not easy to meet these requirements simultaneously!

DHT Algorithms

Plaxton’s algorithm

The Plaxton’s algorithm realizes an overlay network for
locating named objects and routing messages to these
objects

The algorithm was proposed in 1997 to improve web
caching performance by Plaxton, Rajaraman, and Richa

The algorithm guarantees a delivery time within a small
factor of the optimal delivery time

The algorithm requires global knowledge and does not
support additions and removals of nodes and it is
therefore a precursor to the DHT algorithms that tolerate
churn, such as Chord, Pastry, and Tapestry

The Plaxton overlay can be seen as a set of embedded
trees in the network, one rooted in every node, where the
destination is the root

Performance of the Plaxton’s algorithm

With consistent routing tables Plaxton’s algorithm
guarantees that any existing unique node in the system
will be found within at most logb N logical hops, where N
is the size of the identifier namespace and b is the base.

Suffix-routing: Since a node assumes that the preceding

digits all match, at each level only a small constant
entries are maintained resulting in a total routing table
size of b logb N

It has been proven that the total network distance traveled

by messages during both read and write operations
proportional to the underlying network distance

Plaxton routing table

The idea in the routing table is to keep track of the suffixes
 More detail about local neighbours
 Less information about far-away nodes
 Sufficient information to do global routing

 à Organize into levels and each level into the different
possible suffix lengths

 Base * address length elements are needed

 We already know the longest matching suffix
 Use this fact to structure the routing table

Similar table maintained by most DHT algorithms (the details

depend on the algorithm)

 Entries

Levels
1

Primary

neighbour

2 3 4

1 0642 X042 XX02 XXX0

2 1642 X142 XX12 XXX1

3 2642 X242 XX22 XXX2

4 3642 X342 XX32 XXX3

5 4642 X442 XX42 XXX4

6 5642 X542 XX52 XXX5

7 6642 X642 XX62 XXX6

8 7642 X742 XX72 XXX7

Table size: base * address length
In this example octal base (8)

and 4 digit addresses

Plaxton’s algorithm: routing table of node 3642

Wildcards are marked with X
Primary neighbour is one digit away

Example lookup

Node 3642 receives message for 2342
• The common string is XX42
• Two shared digits, consult second column
and choose the correct digit
• Send to node with one digit closer
• Fourth line with X342

Each routing table is organized in routing levels and
each entry points to a set of nodes closest in
network distance to a node which matches the
given suffix

Key limitations of Plaxton

Requirement for global knowledge

Static node set

Root nodes are possible points of failure

Lack of ability to adapt to dynamic query patterns

Plaxton

Plaxton

Foundation Plaxton-style mesh
(hyper-cube)

Routing function Suffix matching

System parameters Number of peers N, base
of peer identifier B

Routing performance O(logB N)

Routing state BlogB N
Note: global ordering of
nodes

Joins/leaves Not supported

Content Addressable Network (CAN)

The Content Addressable Network (CAN) is a DHT
algorithm based on virtual multi-dimensional Cartesian
coordinate space

In a similar fashion to other DHT algorithms, can is designed

to be scalable, self-organizing, and fault tolerant

The algorithm is based on a d-dimensional torus that

realizes a virtual logical addressing space independent of
the physical network location

 The coordinate space is dynamically partitioned into zones

in such a way that each node is responsible for at least
one distinct zone

CAN performance

For a d dimensional coordinate space partitioned into n
zones, the average routing path length is O(d ∗N1/d) hops
and each node needs to maintain 2d neighbours

This means that for a d-dimensional space the number of

nodes can grow without increasing per node state

Another beneficial feature of CAN is that there are many

paths between two points in the space and thus the
system may be able to route around faults

Logarithmic CAN

 A logarithmic CAN is a system with d = log n

In this case, CAN exhibits similar properties as Chord and

Tapestry, for example O(log n) diameter and degree at
each node

Joining a CAN network

In order for a new node to join the CAN network, the new
node must first find a node that is already part of the
network, identify a zone that can be split, and then
update routing tables of neighbours to reflect the split
introduced by the new node

In the seminal CAN article the bootstrapping mechanism is
not defined

 One possible scheme is to use a DNS lookup to find the IP
address of a bootstrap node (essentially a rendezvous
point)

Bootstrapping nodes may be used to inform the new node of
IP addresses of nodes currently in the CAN network

Leaving a CAN network

Node departures are handled in a similar fashion than joins.
A node that is departing must give up its zone and the CAN

algorithm needs to merge this zone with an existing zone
routing tables need to be then updated to reflect this
change in zones

 A node’s departure can be detected using heartbeat
messages that are periodically broadcast between
neighbours

If a merging candidate cannot be found, the neighbouring
node with the smallest zone will take over the departing
node’s zone

After the process the neighbouring nodes’ routing tables are
updated to reflect the change in the zone responsibility

Virtual d-dimensional

Cartesian coordinate

system on a d-torus

Example: 2-d [0,1]x[1,0]

Dynamically partitioned

among all nodes

Pair (K,V) is stored by

mapping key K to a point P in the space using a uniform hash function and storing (K,V) at the

node in the zone containing P

Retrieve entry (K,V) by applying the same hash function to map K to P and retrieve entry from node in

zone containing P

If P is not contained in the zone of the requesting node or its neighboring zones,

route request to neighbor node in zone nearest P

CAN

Peer Xs coordinate neighbor set = {A B D Z}
New Peer Zs coordinate neighbor set = {A C D X}

Z joins the
system

Pythagorean based CAN algorithm

Content Addressable Network (CAN)

CAN

Foundation Multi-dimensional space (d-dimensional torus)

Routing function Maps (key,value) pairs to coordinate space

System parameters Number of peers N, number of dimensions d

Routing performance O(dN1/d)

Routing state 2d

Joins/leaves 2d

Chord

•  Chord is an overlay algorithm from MIT
–  Stoica et. al., SIGCOMM 2001

•  Chord is a lookup structure (a directory)
–  Resembles binary search

•  Uses consistent hashing to map keys to nodes
–  Keys are hashed to m-bit identifiers
–  Nodes have m-bit identifiers

•  IP-address is hashed
–  SHA-1 is used as the baseline algorithm

•  Support for rapid joins and leaves
–  Churn
–  Maintains routing tables

Chord routing I

Identifiers are ordered on an identifier circle modulo 2m

The Chord ring with m-bit identifiers

A node has a well determined place within the ring

A node has a predecessor and a successor

A node stores the keys between its predecessor and itself

The (key, value) is stored on the successor node of key

A routing table (finger table) keeps track of other nodes

Finger Table

Each node maintains a routing table with at most m entries

The i:th entry of the table at node n contains the identity of

the first node, s, that succeeds n by at least 2i-1 on the
identifier circle

s = successor(n + 2i-1)

The i:th finger of node n

N1

N8

N14

N21

N32
N38

N42

N51

N56

2m-1 0

+1
+2

+4

+8

+16

+32

Finger Maps to Real node

1,2,3

4

5

6

x+1,x+2,x+4

x+8

x+16

x+32

N14

N21

 N32

 N42

m=6
for j=1,...,m the
fingers of p+2j-1

 Predecessor node

Chord routing II

Routing steps
check whether the key k is found between n and the

successor of n
if not, forward the request to the closest finger preceding

k

Each knows a lot about nearby nodes and less about nodes
farther away

The target node will be eventually found

Chord lookup

N1

N8

N14

N21

N32
N38

N42

N51

N56

2m-1 0
m=6

Invariants

Two invariants:
Each node's successor is correctly maintained.
For every key k, node successor(k) is responsible for k.

A node stores the keys between its predecessor and itself

The (key, value) is stored on the successor node of key

Join

A new node n joins
Needs to know an existing node n’
Three steps

1. Initialize the predecessor and fingers of node
2. Update the fingers and predecessors of existing

nodes to reflect the addition of n
3. Notify the higher layer software and transfer keys

Leave uses steps 2. (update removal) and 3. (relocate keys)

1. Initialize routing information

•  Initialize the predecessor and fingers of the new node n
•  n asks n’ to look predecessor and fingers

–  One predecessor and m fingers
•  Look up predecessor

–  Requires log (N) time, one lookup
•  Look up each finger (at most m fingers)

–  log (N), we have Log N * Log N
–  O(Log2 N) time

Steps 2. And 3.

2. Updating fingers of existing nodes
Existing nodes must be updated to reflect the new node
Performed counter clock-wise on the circle

Algorithm takes i:th finger of n and walks in the
counter-clock-wise direction until it encounters a
node whose i:th finger precedes n

Node n will become the i:th finger of this node
O(Log2 N) time

3. Transfer keys
Keys are transferred only from the node immediately

following n

Chord Properties

•  Each node is responsible for K/N keys (K is the
number of keys, N is the number of nodes). This is
the consistent hashing result.

•  When a node joins or leaves the network only O(K/N)
keys will be relocated (the relocation is local to the
node)

•  Lookups take O(log N) messages

•  To re-establish routing invariants after join/leave
O(log2 N) messages are needed

Chord

Chord

Foundation Circular space (hyper-cube)

Routing function Matching key and nodeID

System parameters Number of peers N

Routing performance O(log N)

Routing state log N

Joins/leaves (log N)2

Tapestry

•  DHT developed at UCB
–  Zhao et. al., UC Berkeley TR 2001

•  Used in OceanStore
–  Secure, wide-area storage service

•  Tree-like geometry
•  Suffix-based hypercube

–  160 bits identifiers
•  Suffix routing from A to B

–  hop(h) shares suffix with B of length digits
•  Tapestry Core API:

–  publishObject(ObjectID,[serverID])
–  routeMsgToObject(ObjectID)
–  routeMsgToNode(NodeID)

Tapestry Routing

In a similar fashion to Plaxton and Pastry, each routing table
is organized in routing levels and each entry points to a set
of nodes closest in network distance to a node which
matches the suffix

In addition, a node keeps also back-pointers to each node

referring to it (shortcut links, also useful for reverse path)

While Plaxton’s algorithm keeps a mapping (pointer) to the

closest copy of an object, Tapestry keeps pointers to all
copies
 This allows the definition of application specific selectors
what object should be chosen (or what path)

Tapestry Routing II

Each identifier (object) is mapped to an active node called
the root

A server S publishes that it has an object O by routing a

message to the root of O using the overlay system in
similar fashion to the Plaxton’s algorithm using
incremental suffix routing

The original Plaxton scheme used the greatest number of

trailing bit positions to map an object to a node

Surrogate Routing

In a distributed decentralized system there may be
potentially many candidate nodes for an object’s root

Plaxton solved this using global ordering of nodes. Tapestry

solves this by using a technique called surrogate routing

Surrogate routing tentatively assumes that an object’s

identifier is also the nodes identifier and routes a
message using a deterministic selection towards that
destination

The destination then becomes a surrogate root for the object
(in other words, a deterministic function is used to choose

among possible routes the best route towards the root)

Tapestry Node Joins and Leaves

Operations use acknowledged multicast that builds a tree
towards a given suffix

1.  Find surrogate by hashing the node id
2.  Route toward the node id and at each hop copy the

neighbour map of the node (shares a suffix with each
hop)

3.  Each entry should be a closest neighbour (iterate also
neighbour’s neighbours until these are found)

1.  Iterative nearest neighbour for routing table levels.
4.  New node might become the root for existing objects

(object refs need to be moved to the new node)
5.  Create routing tables & notify other nodes

 H = G;
 For (i=0; H != NULL; i++) {
 Grab ith level NeighborMap_i from H;
 For (j=0; j<baseofID; j++) {
 //Fill in jth level of neighbor map
 While (Dist(N, NM_i(j, neigh)) >
 min(eachDist(N, NM_i(j, sec.neigh)))) {
 neigh=sec.neighbor;
 sec.neighbors=neigh−>sec.neighbors(i,j);
 }

 }
 H = LookupNextHopinNM(i+1, new_id);
 } //terminate when null entry found
 Route to current surrogate via new_id;
 Move relevant pointers off current surrogate;
 Use surrogate(new_id) backptrs to notify nodes
 by flooding back levels to where
 surrogate routing first became necessary.

Pseudocode for dynamic node insertion
http://oceanstore.cs.berkeley.edu/publications/papers/pdf/
tapestry_sigcomm_tr.pdf

Planned Delete in Tapestry

Leaving node updates its neighbors (O(log2 n))
To out-neighbors: inform that pointers are gone
To in-neighbors: Exiting node says it is leaving and

proposes at least one replacement.
 Use backpointers to find in-neighbors.

Exiting node republishes all objects pointers it stores
Use republish-on-delete

Objects rooted at leaving node obtain new roots

Either proactive pointer copying, or
wait for republishes

Tapestry nextHop algorithm

 Entries

Levels
1

Primary

neighbour

2 3 4

1 0642 X042 XX02 XXX0

2 1642 X142 XX12 XXX1

3 2642 X242 XX22 XXX2

4 3642 X342 XX32 XXX3

5 4642 X442 XX42 XXX4

6 5642 X542 XX52 XXX5

7 6642 X642 XX62 XXX6

8 7642 X742 XX72 XXX7

Back Pointers

Tapestry Routing Table

Object Location Pointers
Hotspot Monitor
Object Store

Closest node matching the
suffix

Each entry can have multiple
pointers for the same object.
Objects can have multiple
roots using salt value in

hashing.

Suffix routing

0312 routes to 1643 via

0312 -> 2173 -> 3243 -> 2643 -> 1643

1 hop: shares 1
suffix with 1643

2 hop: shares 2
suffix with 1643

3 hop: shares 3
suffix with 1643

Rounting table with b*logb(N) entries

Entry(i,j) – pointer to the neighbour j+(i-1) suffix

67493

98747

64567

…

…

…

…

64267

45567

34567

XXXX7

XXX67
XX567

X4567

34567

Incremental suffix routing from 67493 to 34567

Pastry I

•  A DHT based on a circular flat identifier space

•  Prefix-routing
–  Message is sent towards a node which is numerically

closest to the target node
–  Procedure is repeated until the node is found
–  Prefix match: number of identical digits before the first

differing digit
–  Prefix match increases by every hop

•  Similar performance to Chord

Pastry Routing

Pastry builds on consistent hashing and the Plaxton’s
algorithm. It provides an object location and routing
scheme and routes messages to nodes

It is a prefix based routing system, in contrast to suffix based
routing systems such as Plaxton and Tapestry, that
supports proximity and network locality awareness

 At each routing hop, a message is forwarded to a
numerically closer node. As with many other similar
algorithms, Pastry uses an expected average of log(N)
hops until a message reaches its destination

Similarly to the Plaxton’s algorithm, Pastry routes a
message to the node with the nodeId that is numerically
closest to the given key

Pastry Routing

Each Pastry node maintains a set of neighboring nodes in
the nodeId space (called the leaf set), both to ensure
reliable message delivery, and to store replicas of objects
for fault tolerance

The Pastry overlay construction observes proximity in the
underlying Internet. Each routing table entry is chosen to
refer to a node with low network delay, among all nodes
with an appropriate nodeId prefix

As a result, one can show that Pastry routes have a low
delay penalty: the average delay of Pastry messages is
less than twice the IP delay between source and
destination

Pastry Scalar Distance Metric

The Pastry proximity metric is a scalar value that reflects the
distance between any pair of nodes, such as the round
trip time

 It is assumed that a function exists that allows each Pastry

node to determine the distance between itself and a node
with a given IP address

Pastry Message Routing

–  If leaf set has the prefix à send to local

–  else send to the identifier in the routing table

with the longest common prefix (longer than the
current node)

–  else query leaf set for a numerically closer node
with the same prefix match as the current node

Pastry Routing Algorithm in Detail

Routing table of a Pastry node with nodeId
65a1x, b = 4. Digits are in base 16,
x represents an arbitrary suffix.

The IP address associated with each entry
is not shown.

Pastry routing table

Each level adds
detail

Each node knows
something
about the global
reachability and
then more about
local nodes

Prefix-based

Route to node with shared prefix

(with the key) of ID at least one

digit more than this node.

Neighbor set, leaf set and routing

table.

65a1fc

d13da3

d4213f

d462ba
d467c4

d471f1

d46a1c

Route(d46a1c)

Pastry Routing Example

Pastry and Tapestry

Pastry Tapestry

Foundation Plaxton-style mesh
(hyper-cube)

Plaxton-style mesh
(hyper-cube)

Routing function Matching key and prefix in
nodeID

Suffix matching

System parameters Number of peers N, base
of peer identifier B

Number of peers N,
base of peer identifier B

Routing performance O(logB N)
Note proximity metric

O(logB N)
Note surrogate routing

Routing state 2BlogB N logB N

Joins/leaves logB N

logB N

Kademlia

Kademlia is a scalable decentralized P2P system based on
the XOR geometry

The algorithm is used by the BitTorrent DHT MainLine
implementation, and therefore it is widely deployed

Kademlia is also used in kad, which is part of the eDonkey
P2P file sharing system that hosts several million
simultaneous users

Relying on the XOR geometry makes Kademlia unique
compared to other proposals

Kademlia’s routing table results in the same routing entries
as for tree geometries when failures do not occur, such
as Plaxton’s algorithm

When failures occur, Kademlia can route around failures due
to its geometry

Kademlia Overview

The initiating node maintains a shortlist of k closest nodes
These are probed to determine if they are active

 The replies of the probes are used to improve the shortlist

 Closer nodes replace more distant nodes in the shortlist.

This iteration continues until k nodes have been successfully

probed and there subsequent probes do not reveal
improvements

This process is called a node lookup and it is used in most

operations offered by Kademlia

Kademlia

The lookup procedure can be implemented either using
recursively or iteratively

The current Kademlia implementation uses the iterative

process where the control of the lookup is with the
initiating node

Leaving the network is straightforward and consistency is

achieved by using leases

Kademlia performance

The routing tables of all Kademlia nodes can be seen to
collectively maintain one large binary tree

Each peer maintains a fraction O(log(n)/n) of this tree

During a lookup, each routing step takes the message closer

to the destination requiring at most O(log n) steps

Kademlia Routing

In Kademlia, a node’s neighbours are called contacts. They
are stored in buckets, each of which holds a maximum of
k contacts. These k contacts are used to improve
redundancy

The routing table can be viewed as a binary tree, in which
each node in the tree is a k-bucket

The buckets are organized by the distance between the
current node and the contacts in the bucket

Every k-bucket corresponds to a specific distance from the
node. Nodes that are in the nth bucket must have a
differing nth bit from the node’s identifier. With an
identifier of 128 bits, every node in the network will
classify other nodes in one of 128 different distances
 (first n-1 bits need to match for the nth list)

1 0

1…11 0…00

Simple iterative lookup

Consult the
k-bucket
that
has the
smallest
distance to
destination

Kademlia

Kademlia

Foundation XOR metric

Routing function Matching key and nodeID

System parameters Number of peers N, base of peer identifier B

Routing performance O(logB N) + small constant

Routing state BlogB N + B

Joins/leaves logB N + small constant

Viceroy

The key point in Viceroy is the emphasis on constant
degrees. The primary motivation was to develop an
algorithm that has constant linkage cost, logarithmic path
length, and best achievable congestion under the
constraints

It generally has constant degree such as CAN. Its degree is

smaller than in Chord, Tapestry, and Pastry

Viceroy assumes a global ordering on all the nodes in the

system, which may make practical deployments in
decentralized environments challenging

Viceroy network

The idea is to approximate a butterfly network

The butterfly network results in constant node degree and

thus state

The algorithm is rather involved

Idea is to use the butterfly levels for routing and then vicinity

search

 Message is routed upwards to the butterfly network root,
and then downwards towards the correct destination, a
shortcut may be used to reduce the routing cost

A

B
0 1

Level 1

Level 2

Level 3

Viceroy

Viceroy

Foundation Butterfly network

Routing function Routing using levels of tree,
vicinity search

System parameters Number of peers N

Routing performance O(log N)

Routing state Constant

Joins/leaves log N
Note: assumes global ordering of
nodes

Summary

•  Overlay networks have been proposed
–  Searching, storing, routing, notification,..
–  Lookup (Chord, Tapestry, Pastry),

coordination primitives (i3), middlebox
support (DOA)

–  Logarithmic scalability, decentralised,…

•  Many applications for overlays
–  Lookup, rendezvous, data distribution

and dissemination, coordination, service
composition, general indirection support

•  Deployment open. PlanetLab.

CAN Chord Kademlia Koorde Pastry Tapestry Viceroy

Foundation Multi-dimensional
space (d-
dimensional
torus)

Circular
space
(hyper-
cube)

XOR metric de Bruijn
graph

Plaxton-style
mesh (hyper-
cube)

Plaxton-style
mesh (hyper-
cube)

Butterfly
network

Routing
function

Maps (key,value)
pairs to
coordinate space

Matching
key and
nodeID

Matching
key and
nodeID

Matching key
and nodeID

Matching key
and prefix in
nodeID

Suffix
matching

Routing using
levels of tree,
vicinity
search

System
parameters

Number of peers
N, number of
dimensions d

Number of
peers N

Number of
peers N,
base of peer
identifier B

Number of
peers N

Number of
peers N,
base of peer
identifier B

Number of
peers N,
base of peer
identifier B

Number of
peers N

Routing
performance

O(dN1/d) O(log N) O(logB N) +
small
constant

Between
O(log log N)
and O(log N),
depending on
state

O(logB N)

O(logB N) O(log N)

Routing state 2d log N BlogB N + B

From
constant to
log N

2BlogB N

logB N Constant

Joins/leaves 2d (log N)2

logB N +
small
constant

log N

logB N

logB N

log N

Comparison: Geometries

We observe that the foundations differ across the
algorithms, but result in similar scalability properties

The foundations were considered earlier in the previous

chapter and for the considered systems they are tori,
ring, XOR metric, de Bruijn graph, hypercube, and
butterfly network (note Koorde uses de Brujn over Chord,
not presented in the slides)

The conclusions of several comparisons of the geometries

are that the ring, XOR, and de Bruijn geometries are
more flexible than the others and permit the choice of
neighbours and alternative routes

Comparison: Routing

The routing tables of DHTs can vary from size O(1) to O(n).
The algorithms need to balance between maintenance
cost and lookup cost

 From the view point of routing state Chord, Pastry, and
Tapestry offer logarithmic routing table sizes, whereas
Koorde and Viceroy and support constant or near-
constant sizes

Churn and dynamic peers can also be supported with
logarithmic cost in some of the systems, such as Koorde,
Pastry, Tapestry, and Viceroy

Recent analysis indicates that large routing tables actually
lead to both low traffic and low lookup hops. These good
design points translate into one-hop routing for systems
of medium size and two-hop routing for large systems

Comparison: Churn

Li et al. provide a comparison of different DHTs under churn
They examine the fundamental design choices of systems

including Tapestry, Chord, and Kademlia. The insights
based on this work include the following:

•  Larger routing tables are more cost-effective than more
frequent periodic stabilization

•  Knowledge about new nodes during lookups may allow to
eliminate the need for stabilization

•  Parallel lookups result in reduced latency due to
timeouts, which provide information about the network
conditions

Comparison: Network Proximity

Support for network proximity is one key feature of overlay
algorithms. The three basic models for proximity
awareness in DHTs are:
–  Geographic Layout. Node identifiers are created in

such a way that nodes that are close in the network
topology are close in the nodeId space

–  Proximity Routing. The routing tables do not take
network proximity into account; however, the routing
algorithm can choose a node from the routing table
that is closest in terms of network proximity

–  Proximity Neighbour Selection. In this model, the
routing table construction takes network proximity into
account. Routing table entries are chosen in such a
way that at least some of them are close in the
network topology to the current node

Asymptotic Tradeoffs

We analyze the asymptotic tradeoff curve between the
routing table size and the network diameter

Analysis of the tradeoffs between the two metrics indicate
that the routing table size of Ω(log n) is a threshold
point that separates two distinct state-efficiency regions

One can observe that this point is in the middle of the
symbolic asymptotic curve. If the routing table size is
asymptotically smaller or equal, the requirement for
congestion-free operation prevents it from achieving the
smaller asymptotic diameter

 When the routing table size is larger, the requirement for
congestion-free operation does not limit the system
anymore

O(1) O(log n) O(n1/d) O(n) Worst-case
distance

Routing table
size

0

<= d

log n

n 1

2

3

4

Routing table size and network distance

Criticism

There have been two main criticisms of structured systems
The first pertains to peer transience, which is an important

factor in maintaining robustness. Transient peers result in
churn, which is a current concern with DHTs.

The second criticism of structured systems stems from their
foundation in consistent hashing, which makes it more
challenging to implement scalable query processing than
for unstructured systems. Given that the popular file-
sharing applications rely extensively on metadata based
queries, simple exact-match key searches are not
sufficient for them and additional solutions are needed on
top of the basic DHT API

It is also possible to combine structured and unstructured
algorithms in so called hybrid models

Key security issues

Security is a weak point of many overlays and DHTs

Not an issue with centrally managed system, but a

significant concern for decentralized systems

Freenet was our key example of a secure P2P system

Overlays are vulnerable to the sybil attack

 One entity presents multiple identities for malicious intent.

Security Considerations

Malicious nodes
Attacker floods DHT with data
Attacker returns incorrect data

self-authenticating data
Attacker denies data exists or supplies incorrect routing

info
Basic solution: using redundancy

k-redundant networks
What if attackers have quorum?

Need a way to control creation of node Ids
Solution: secure node identifiers

Use public keys

Sybil and Eclipse attacks

Sybil attack
 Malicious nodes overwhelm the network with identities
 Without a central authority that certifies identifies (binding
real-world person to nodeID) no realistic approach exists
to completely stop the sybil attack

Eclipse attack

 A group of malicious nodes tries to dominate the
neighbor set
 Start with Sybil and then neighbour discovery
 Network partitions

Skip graph I

A skip graph is a probabilistic structure based on the skip
list data structure

The skip list has simple and easy insert and delete
operations that do not require tree rearrangements. Thus
the operations are fast

The skip list is a set of layered ordered linked lists. All
nodes are part of the bottom layer 0 list. Part of the
nodes take part in the layer 1 with some fixed probability.
For each layer there is a probability for a node to be part
of that layer

As a result the upper layers of a skip list are sparse. This
means that a lookup can quickly go through the list by
traversing the sparse upper layer until it is close to the
target

Additional material

Skip graph II

The downside of this approach is that the sparse upper layer
nodes are potential hotspots and single points of failure.

Skip graphs address this limitation and introduce multiple

lists at each level to improve redundancy. Every node
participates in one of the lists at each level

On average O(log n) levels are needed in the structure,

where n is the number of nodes

Skip Graph III

The skip graph is a distributed version of the skip list and its
performance is comparable to the other DHTs

Each node in a skip graph has average of log n neighbours

The main benefit of the structure comes from its ability to

support prefix and proximity search operations. DHTs
guarantee that a data can be located, but they do not
typically guarantee where the data will be located

 Skip graphs are able to support location-sensitive name

searches, because they use ordered lists

CANON: Adding Hierarchy to DHTs

Most DHTs that have been proposed are flat and non-
hierarchical structures. They thus contrasts the
traditional distributed systems, which have employed
hierarchy to achieve scalability

A hierarchical DHT can be constructed that retains the
homogeneity of load and functionality of the flat DHTs. A
generic construction called Canon has been shown to
offer the same routing state and routing hops trade-off
found in the flat DHT designs

The benefits of this approach include fault isolation,
adaptation to the underlying physical network and its
organizational boundaries, and hierarchical storage of
content and access control

0

5

10

12

Ring A

3

8

13

2

Ring B

3

8

13

2

0

5

10

12

The Merged Ring

CANON Example

The nodes keep their original links
Each node m in one ring creates a link to a node
m′ in the other ring if and only if:
•  m′ is the closest node that is at least distance 2k
away for some 0 ≤ k ≤ N
•  m′ is closer to m than any node in the ring of m

