
Overlay and P2P Networks

Structured Networks and DHTs

Prof. Sasu Tarkoma

3.10.2011

Contents

•  Structured networks
•  Foundations
•  Cluster-based structures

Structured Overlays

Structured overlays are typically based on the notion of a
semantic free index

They utilize hashing extensively to map data to servers

The cluster-based techniques typically can guarantee a

very small number of hops to reach a given destination

The decentralized DHTs balance hop count with the size of

the routing tables, network diameter, and the ability to
cope with changes

Consistent hashing

Consistent hashing was first introduced in 1997 as a solution
for distributing requests to a dynamic set of web servers

In this solution, incoming messages with keys were mapped

to web servers that can handle the request

Consistent hashing has had dramatic impact on overlay

algorithms

DHTs utilize consistent hashing to partition an identifier

space over a distributed set of nodes. The key goal is to
keep the number of elements that need to be moved at
minimum

Consistent hashing continued

In most traditional hash tables a change in the number of
array elements causes nearly all keys to be remapped

They are therefore useful for balancing load to a fixed
collection of servers, but not suitable for dynamic server
collections

Consistent hashing is a technique that provides hash table
functionality in such a way that the addition or removal of
an element does not significantly change the mapping
of keys to elements

The technique requires only K/n keys to be remapped on
average, where K is the number of keys, and n is the
number of nodes

Ranged hash functions

Hashing applied to the distributed case

Ranged hash functions are hash functions that depend on

the set of available buckets

 A typical ranged hash function hashes items to positions in

some space

Then assigns each item to the nearest available bucket

As the set of buckets changes, an item may move to a new

nearest available bucket

Another view

A ranged hash function changes minimally as the range of

the function changes

Range changes when a server is added or removed

Ranged hash with a ring

Items and buckets are mapped to a uniformly random place
on continuous unit ring [0,1).

Each item is assigned to the closest possible bucket.

Bucket order determines placement on the ring.

Optimality proven for growth-restricted metric spaces

 Given point q and distance d, the number of points within
distance 2d is at most constant factor larger than within
distance d.

J. Aspnes at al. Ranged Hash Functions and the Price of

Churn. SODA 2008.

Example of Consistent Hashing

•  Creating the structure
•  Assign each of C hash buckets to

random points on mod 2n circle,
where, hash key size = n

•  Map object to random position on
circle

•  Hash of object = closest
clockwise bucket

0

8

4 12
Bucket

14

} go to the
left bucket

Problem

Having only one location for a bucket is not good

Does not ensure good spread

Solution: have multiple virtual locations for a bucket

Implication: when removing / adding a bucket, have to move

data from several servers

Replication with virtual buckets

One point is not sufficient to characterize a bucket due to the
required properties.

A bucket is replicated κ log(C) times, where C is the number

of distinct buckets, and κ is a constant
 The log(C) term comes from the theory, basically it is
needed to get the good fraction O(1/|V|) of buckets to
servers

When a new bucket is added, only those items are moved

which are closest to one of its points. Similarly for the
removal of a bucket.

Properties of ranged hash functions

Monotone
 Each item has its own preference list and hashes to the
first available bucket

 This minimizes rearrangement cost

 Multiple virtual locations for the item are possible

 Can be described with a preference matrix
 Items and the buckets

Properties of Consistent Hashing I

A view is a subset of the buckets (cache servers available
from certain part of the network)

Consistent hashing uses a ranged hash function to specify

an assignment of items to buckets for every possible
view

A ranged hash family is said to be balanced if given a

particular view, a set of elements, and a randomly
chosen function from the hash family, with high
probability the fraction of items mapped to each bucket is
O(1/|V|), where V is the view

In other words, items are uniformly distributed over the

buckets of the view

Properties of consistent hashing II

Load: A balanced ranged hash function distributes load
evenly across the buckets

Monotonicity is another important property for the hash

function. This property says that some items can be
moved to a new bucket from old buckets, but not
between old buckets. The aim is to preserve an even
distribution

Spread is about ensuring that at least a constant fraction of

the buckets are visible to clients

Example of a ranged hash function (RHF)

Let I be the items, C the caches, and V the views. Vi is a
subset of C.

RHF is a map that takes a view (all possible views 2C) and

hashes it to a cache in which the item can be found:
 h: 2C × I à C

For an item: pick a point r uniformly and independently at

random
For the buckets: pick a set of κ log C points uniformly and

independently at random.
For an item (V,i) map it to the first bucket b in V that is

encountered clockwise starting from r.

Bad examples

Pick b in V at random: bad spread properties (needs to be

the preference list of many buckets)

Take mod of the number of caches in a view: good balance

but not smooth (e.g. problems when adding or removing
a server)

public class ConsistentHash<T> {!
 private final HashFunction hashFunction;!
 private final int numberOfReplicas;!
 private final SortedMap<Integer, T> circle =!
 new TreeMap<Integer, T>();!
!
 public ConsistentHash(HashFunction hashFunction,!
 int numberOfReplicas, Collection<T> nodes) {!
 this.hashFunction = hashFunction;!
 this.numberOfReplicas = numberOfReplicas;!
!
 for (T node : nodes) {!
 add(node);!
 }!
 }!
 public void add(T node) {!
 for (int i = 0; i < numberOfReplicas; i++) {!
 circle.put(hashFunction.hash(node.toString() + “:” + i),!
 node);!
 }!
 }!
 public void remove(T node) {!
 for (int i = 0; i < numberOfReplicas; i++) {!
 circle.remove(hashFunction.hash(node.toString() + “:”+ i));!
 }!
 }!
 public T get(Object key) {!
 if (circle.isEmpty()) {!
 return null;!
 }!
 int hash = hashFunction.hash(key);!
 if (!circle.containsKey(hash)) {!
 SortedMap<Integer, T> tailMap =!
 circle.tailMap(hash);!
 hash = tailMap.isEmpty() ?!
 circle.firstKey() : tailMap.firstKey();!
 }!
 return circle.get(hash);!
 } }

http://www.lexemetech.com/2007/11/consistent-
hashing.html

Wraps around the circle here

This code does not move data
between buckets!
Should be added here

Main point in consistent hashing

The technique requires only K/n keys to be remapped on
average, where K is the number of keys, and n is the
number of nodes

Used in most DHT algorithms

Developed by Karger et al. at MIT

Somewhat involved for example in Chord

Used by CDNs and caches

 Akamai

Semantic free indexing I

With semantic free indexing in structured overlays, data
objects are given unique identifiers called keys that are
chosen from the same identifier space

Keys are mapped by the overlay network protocol to a node

in the overlay network

The overlay network needs to then support scalable storage

and retrieval (key, value) pairs

Semantic free indexing II

In order to realize the insertion, lookup, and removal of (key,
value) pairs, each peer maintains a routing table that
consists of its neighbouring peers (their node identifiers
and IP addresses)

Lookup queries are then routed across the overlay network

using the information contained in the routing tables

Typically each routing step takes the query or message

closer to the destination

DHT interfaces

•  DHTs offer typically two functions
–  put(key, value)
–  get(key) à value
–  delete(key)

•  Supports wide range of applications
–  Similar interface to UDP/IP

•  Send(IP address, data)
•  Receive(IP address) à data

•  No restrictions are imposed on the semantics of
values and keys

•  An arbitrary data blob can be hashed to a key
•  Key/value pairs are persistent and global

Distributed applications

Distributed Hash Table (DHT)

Node Node Node Node

put(key, value) get(key) value
DHT balances keys and

data across nodes

Foundations of Structured Networks

We distinguish between a routing algorithm and the routing
geometry. The algorithm pertains to the exact details of
routing table construction and message forwarding.

Geometry pertains to the way in which neighbours and

routes are chosen. Geometry is the foundation for routing
algorithms

The key observation is that the geometry plays a

fundamental part in the construction of decentralized
overlays

Geometries
The five frequently used overlay topologies are:
•  trees
•  tori (k-ary n-cubes)
•  butterflies (k-ary n-flies)
•  de Bruijn graphs
•  rings
•  XOR geometry

The differences between some of the geometries are subtle

For example, it can be seen that the static DHT topology

emulated by the DHT algorithms of Pastry and Tapestry
are Plaxton trees; however, the dynamic algorithms can
be seen as approximation of hypercubes.

Trees

The tree’s hierarchical organization makes it a suitable
choice for efficient routing

In a tree geometry, node identifiers represent the leaf nodes
in a binary tree of depth log n

The distance between any two nodes is the height of their
smallest common subtree

One of the first DHT algorithms, the Plaxton’s algorithm, is
based on this geometry (object rooted at a node)

For scalable networking, each node maintains a routing
table with log n neighbours. In this table, the ith
neighbour is at distance i from the current node. Greedy
routing can then be used to forward a message to its
destination on the network given the target identifier

Observations on Plaxton

Global ordering of nodes (only one root node possible)

Static configuration

Forest of trees where each server is a root

Populate routing table to reflect possible distances

 One suffix digit at a time

 Entries

Levels
1

Primary

neighbour

2 3 4

1 0642 X042 XX02 XXX0

2 1642 X142 XX12 XXX1

3 2642 X242 XX22 XXX2

4 3642 X342 XX32 XXX3

5 4642 X442 XX42 XXX4

6 5642 X542 XX52 XXX5

7 6642 X642 XX62 XXX6

8 7642 X742 XX72 XXX7

Table size: base * address length
In this example octal base (8)

and 4 digit addresses

Plaxton’s algorithm: routing table of node 3642

Wildcards are marked with X
Primary neighbour is one digit away

Example lookup

Node 3642 receives message for 2342
• The common string is XX42
• Two shared digits, consult second column
and choose the correct digit
• Send to node with one digit closer
• Fourth line with X342

Each routing table is organized in routing levels and
each entry points to a set of nodes closest in
network distance to a node which matches the
given suffix

Comparison to IP routing

IP routing is based on the longest matching prefix
 Keep a prefix data structure (ternary tree, TCAM)
 Find next hop based on the list (or the destination)

IP addresses are obtained through a local configuration
process and/or BGP tables, default routes as well

For the Plaxton / DHT case we do not have the IP address

semantics and mapping to the IP topology

The Plaxton/DHT topology is flat!

Hence the table structure with suffixes/prefixes.

Rings

Rings are a popular geometry for DHTs due to their
simplicity. In a ring geometry, nodes are placed on a one-
dimensional cyclic identifier space. The distance from an
identifier A to B is defined as the clockwise numeric
distance from A to B on the circle

Rings are related with tori and hypercubes, and the 1-
dimensional torus is a ring. Moreover, a k-ary 1-cube is a
k-node ring

The Chord DHT is a classic example of an overlay based on
this geometry.

Each node has a predecessor and a successor on the ring,
and an additional routing table for pointers to increasingly
far away nodes on the ring

N1

N8

N14

N21

N32
N38

N42

N51

N56

2m-1 0

+1
+2

+4

+8

+16

+32

Finger Maps to Real node

1,2,3

4

5

6

x+1,x+2,x+4

x+8

x+16

x+32

N14

N21

 N32

 N42

m=6
for j=1,...,m the
fingers of p+2j-1

 Predecessor node

Hypercubes

The distance between two nodes in the hypercube geometry is
the number of bits by which their identifier differ.

At each step a greedy forwarding mechanism corrects (or fixes)
one bit to reduce the distance between the current message
address and the destination.

Hypercubes are related to tori. In one dimension a line bends
into a circle (a ring) resulting in a 1-torus. In two dimensions,
a rectangle wraps into the two-dimensional torus, 2-torus. An
n dimensional hypercube can be transformed into an n-torus
by connecting the opposite faces together.

The Content Addressable Network (CAN) is an example of a
DHT based on a d-dimensional torus.

Differences

The main different between hypercube routing and tree

routing is that the former allows bits to be fixed in any
order

Tree routing requires that the bits are corrected in a strict

order (digit by digit, still can be redundancy in the table)

Thus hypercube is more restricted in selecting neighbours in

the routing table but offers more possibilities for route
selection!

d = 0
N = 1

d = 1
N = 2 d = 2

N = 4

d = 3
N = 8

d = 4
N = 16

Hypercubes

Butterfly Geometry

A k-ary n-fly network consists of kn source nodes, n stages
of kn−1 switches, and kn destination nodes

The network is unidirectional and the degree of each
switching node is 2k

The diameter of the network is logarithmic to the number of
source nodes. At each level l, a switching node is
connected to the identically numbered element at level l +
1 and to a switching node whose number differs from the
current node only at the lth most significant bit

The main drawback of this structure is that there is only one
path from a source to a destination, in other words,
there is no path diversity. In addition, butterfly networks
do not have as good locality properties as tori

Butterfly network (with a tree)

De Bruijn Graph

An n-dimensional de Bruijn graph of k symbols is a directed

graph representing overlaps between sequences of
symbols. It has kn vertices that represent all possible
sequences of length n of the given symbols

In a n-dimensional de Bruijn graph with 2 symbols, there are

2n nodes, each of which has a unique n-bit identifier.

Creating a de Bruijn graph

The node with identifier i is connected to
 nodes 2i mod 2n and 2i + 1 mod 2n

A routing algorithm can route to any destination in n hops by
successively shifting in the bits of the destination
identifier.

Routing a message from node m to node k is accomplished

by taking the number m and shifting in the bits of k one at
a time until the number has been replaced by k

De Bruijn Graph

Consider a node n with identifier b1 b2 ...bk , bi ∈ {0, 1}

n has an out-edge to the nodes with identifier b2 ...bk 0 and

b2 ...bk 1.

Node 00: out edge to 00 and 01
Node 01: out edge to 10 and 11
Node 10: out edge to 00 and 01
Node 11: out edge to 10 and 11

This adjacency scheme, based on shifting the identifier

strings associated with a node yields a simple prefix
based routing policy.

Constructing de Bruijn Graphs

De Bruijn graph for 2m node network can be constructed in a
recursive fashion from a 2m-1 node network.

Take the edge of the 2m-1 node network

Add a node in the middle

Details:
http://research.microsoft.com/en-us/um/people/nswamy/

papers/halo-tr.pdf

Example: Adding a digit

00�

01�

10�

11�

000�

100�

001�

111�

110�

011�

010� 101�

Figure 2.1 The 8-node dB(2, 3) graph constructed as the egde-graph of a 4-node
dB(2, 2) graph.

10

Source: Jyh-Wen Mao The Coloring and Routing Problems on de
Bruijn Interconnection Networks, PhD dissertation 2003.

Example: Adding a digit

00�

01�

10�

11�

000�

100�

001�

111�

110�

011�

010� 101�

Figure 2.1 The 8-node dB(2, 3) graph constructed as the egde-graph of a 4-node
dB(2, 2) graph.

10

Source: Jyh-Wen Mao The Coloring and Routing Problems on de
Bruijn Interconnection Networks, PhD dissertation 2003.

The XOR Geometry

The Kademlia P2P system defines a routing metric in which
the distance between two nodes is the numeric value of
the exclusive OR (XOR) of their identifiers

The idea is to take messages closer to the destination by

using the XOR distance d(x,y) = XOR(x,y) (taken as an
integer)

The routing therefore ”fixes” high order bits in the current

address to take it closer to the destination

Satisfies triangle property, symmetric, unidirectional

XOR Metric and Triangle Property

Triangle inequality property
d(x,z) <= d(x,y) + d(y,z)

Easy to see that XOR satisfies this

Useful for determining distances between nodes

Unidirectional:

 For any given point x and a distance D > 0, there is
exactly one point y such that d(x,y) = D. This means that
lookups converge.

Comparing geometries

Gummadi et al. compared the different geometries, including
the tree, hypercube, butterfly, ring, and XOR geometries.

Loguinov et al. complemented this list with de Bruijn graphs.

The conclusions of these comparisons include that the ring,

XOR, and de Bruijn geometries are more flexible than the
others and permit the choice of neighbours and
alternative routes

The ring and XOR geometries were also found to be the

most flexible in terms of choosing neighbours and routes

Only de Bruijn graphs allow alternate paths that are

independent of each other

Comparison

Can you choose neighbours?

Can you choose routes?

Are there alternative routes?

Are there alternative routes without overlap?

Comparison

Tree Hypercube Ring Butterfly XOR De
Bruijn

Neighbour
selection

Yes 1 Yes 1 Yes No

Route
selection

1 Yes Yes 1 Some Yes

Sequential
neighbours

No No Yes No No Yes

Independent
paths

No No No No No Yes

Discussion

Based on previous table the ring looks pretty good

But this is partly due to the sequential neighbours property

(predecessor and successor on the ring)

If sequential neighbours is added to other geometries, XOR

and de Bruijn are also good

Distributed Data Structures (DDS)

•  DHTs are an example of DDS
•  DHT algorithms are available for clusters and wide-area

environments
–  They are different!

•  Cluster-based solutions
–  Ninja
–  LH* and variants

•  Wide-area solutions
–  Chord, Tapestry, ..
–  Flat DHTs, peers are equal
–  Maintain a subset of peers in a routing table

Distributed Data Structures (DDS)

•  Ninja project (UCB)
–  New storage layer for cluster services
–  Partition conventional data structure across nodes in

a cluster
–  Replicate partitions with replica groups in cluster

•  Availability
–  Sync replicas to disk (durability)

•  Other DDS for data / clusters
–  LH* Linear Hashing for Distributed Files
–  Redundant versions for high-availability

LH*sa

SDDS (1993)

Data Structures
Classic data
structures

Tree-based

m-d Tree
1-d Tree

 RP*, …
k-RP*, … LH*, DDH,

DHTs (Chord, ...)

Hash-based

High Availability

1-dimensional d-dimensional

DHTs
(CAN,...)

 LH*RS

LH*s

k-Availability
Security

LH*m LH*g

LH*RS
p2p

Taxonomy

Linear Hashing

Use a family of hash functions h0, h1, h2, ...
Each function’s range is twice that of its

predecessor

When all the pages at one level (the current

hash function) have been split, a new level is
applied

Splitting occurs gradually

 Current hash function, then you know if a
bucket has been split from a split counter

Pages are split when overflows occur – but not

necessarily the page with the overflow

Splitting a round robin fashion

Linear Hashing II

Use a family of hash functions h0, h1, h2, ...

hi(key) = h(key) mod(2iN)
N = initial number of buckets

h is some hash function

hi+1 doubles the range of hi

Keep track of the next bucket to split and the
current level: half of a split bucket is moved
to the new bucket

Linear Hashing III

Algorithm proceeds in rounds. Current round number is
Level, Next = 0

There are Nlevel (N * 2Level) buckets at round start

 Buckets 0 to Next-1 have been split
 Next to NLevel have not been split yet
 Round ends when all initial buckets have been split
(when Next = NLevel).

To start next round:

Level=Level+1
Next = 0

Linear Hashing III

Algorithm proceeds in rounds. Current round number is
Level, Next = 0

There are Nlevel (N * 2Level) buckets at round start

 Buckets 0 to Next-1 have been split
 Next to NLevel have not been split yet
 Round ends when all initial buckets have been split
(when Next = NLevel).

To start next round:

Level=Level+1
Next = 0

Example

1 2 3 4

Start: i =0, N = 4, next = 0
Overflow of 3: i =0, N = 4, next = 1
Overflow of 1: i =0, N = 4, next = 2
Overflow of 4: i =0, N = 4, next = 3
Overflow of 2: i =0, N = 4, next = 0
Next level: i =1, N = 4, next = 0

When splitting, half of
the content is moved to
the new bucket, just
take this into account
when looking up (old
and new hash function)

Now we have
moved to the
new hash
function
altogether,
splitting starts
again!

Read operation

Use h(level, key) if it is greater than or equal to the next
counter

Otherwise use h(level+1, key), because they have been

rehashed with the new level

Overflow of a bucket

What happens if there is no space, bucket overflows and it is
not the next bucket to split?

Use overflow buckets, normal bucket has a pointer to the

overflow bucket

Overflow bucket taken into account when the bucket in

question is split (round robin)

Linear hashing

Spreads the cost of the expansion across insertion
operations

Buckets split one at a time

LH* Linear Hashing for Distributed Files

LH* generalizes linear hashing to decentralized distributed
operation

The system supports constant time insertion and lookup of
data objects in a cluster.

Data items are hashed into buckets with each bucket
residing on a server. New servers are incorporated into
the system when a bucket overflows using a split
operation

A split controller manages the split operation. When a split
is performed, a new server is added to the system from a
supply of servers and the hashing parameters are
adjusted accordingly

In a distributed environment, the clients have a view to
these system parameters which in some cases maybe
out of date. This requires auto-correction and
synchronization mechanisms

Client 1

n’=5
i’=6

Client 2

n’=0
i’=2

srvr 0

10

srvr 1

10
… … … …

Client m

n’=31
i’=9

srvr 80

9

srvr 512

10

srvr 583

10

srvr 591

10

n=80

LH* Example

Split

Coord

Bucket

 c

Bucket

 n

Bucket

 n+2l

Insert

2.Split 4.Splitdone

3.Init

Tuples

LH* Bucket Split

Cluster-based Distributed Hash Tables (DHT)

•  The NINJA project
•  Directory for non-hierarchical data
•  Several different ways to implement
•  A distributed hash table

–  Each “brick” maintains a partial map
•  “local” keys and values

–  Overlay addresses used to direct to the right “brick”
•  “remote” key to the brick using hashing

•  Resilience through parallel, unrelated mappings

NINJA

The API provides services with put(), get(), remove(),
destroy() operations on hash tables.

Behind the API the DDS needs to implement the
mechanisms to access, partition, replicate, scale, and
recover data

A distributed hash table was implemented as an example of
the DDS concept in Ninja. All operations inside the
distributed hash table are atomic meaning that a given
operation is either performed fully or not at all. In order to
ensure reliability

Elements are replicated within the DDS across multiple
nodes called bricks. A two-phase commit algorithm is
used to keep the replicas coherent. A brick consists of a
buffer cache, a lock manager, a persistent chained hash
table implementation, and an RPC communications
system

client client client client

service
DSS lib

service
DSS lib

storage
“brick”

storage
“brick”

storage
“brick”

storage
“brick”

storage
“brick”

storage
“brick”

SAN

Service interacts
with DSS lib

Hash table API

Redundant, low
latency, high
 throughput

network

Brick = single-
node, durable

hash table,
replicated

clients interact
with any
service
“front-end”

Summary

Geometries form the basis of the structured overlay
algorithms

A Distributed Data Structure (DDS) is a self-managing
storage layer that runs on a cluster. The aim of the DDS
is to support high throughput, high concurrency,
availability, incremental scalability, offer strict consistency
guarantees for the data

The LH* family of algorithms are scalable DDSes intended
for clusters

Consistent hashing allows buckets to be added in any
order, whereas Litwin’s Linear Hashing (LH*) scheme
requires buckets to be added one at a time in sequence

The Ninja system was designed to support robust distributed
Internet services. One key component of the system was
a cluster of servers for scalable service

