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Structured Overlays 

Structured overlays are typically based on the notion of a 
semantic free index  

 
They utilize hashing extensively to map data to servers 
 
The cluster-based techniques typically can guarantee a 

very small number of hops to reach a given destination 
 
The decentralized DHTs balance hop count with the size of 

the routing tables, network diameter, and the ability to 
cope with changes 



Consistent hashing 

Consistent hashing was first introduced in 1997 as a solution 
for distributing requests to a dynamic set of web servers  

 
In this solution, incoming messages with keys were mapped 

to web servers that can handle the request 
 
Consistent hashing has had dramatic impact on overlay 

algorithms 
 
DHTs utilize consistent hashing to partition an identifier 

space over a distributed set of nodes. The key goal is to 
keep the number of elements that need to be moved at 
minimum 



Consistent hashing continued 

In most traditional hash tables a change in the number of 
array elements causes nearly all keys to be remapped 

They are therefore useful for balancing load to a fixed 
collection of servers, but not suitable for dynamic server 
collections 

Consistent hashing is a technique that provides hash table 
functionality in such a way that the addition or removal of 
an element does not significantly change the mapping 
of keys to elements 

The technique requires only K/n keys to be remapped on 
average, where K is the number of keys, and n is the 
number of nodes 



Ranged hash functions 

Hashing applied to the distributed case 
 
Ranged hash functions are hash functions that depend on 

the set of available buckets 
 
 A typical ranged hash function hashes items to positions in 

some space  
 
Then assigns each item to the nearest available bucket 
 
As the set of buckets changes, an item may move to a new 

nearest available bucket 
 



Another view 

 
 
A ranged hash function changes minimally as the range of 

the function changes 
 
Range changes when a server is added or removed 
 



Ranged hash with a ring 

Items and buckets are mapped to a uniformly random place 
on continuous unit ring [0,1).  

 
Each item is assigned to the closest possible bucket. 
 
Bucket order determines placement on the ring. 
 
Optimality proven for growth-restricted metric spaces  

 Given point q and distance d, the number of points within 
distance 2d is at most constant factor larger than within 
distance d. 

 
J. Aspnes at al. Ranged Hash Functions and the Price of 

Churn. SODA 2008. 



Example of Consistent Hashing 

•  Creating the structure 
•  Assign each of C hash buckets to 

random points on mod 2n circle, 
where, hash key size = n 

•  Map object to random position on 
circle 

•  Hash of object = closest 
clockwise bucket 
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Problem 

Having only one location for a bucket is not good 
 
Does not ensure good spread 
 
Solution: have multiple virtual locations for a bucket 
 
Implication: when removing / adding a bucket, have to move 

data from several servers 
 
 



Replication with virtual buckets 

One point is not sufficient to characterize a bucket due to the 
required properties.  

 
A bucket is replicated κ log(C) times, where C is the number 

of distinct buckets, and κ is a constant 
 The log(C) term comes from the theory, basically it is 
needed to get the good fraction O(1/|V|) of buckets to 
servers 

 
When a new bucket is added, only those items are moved 

which are closest to one of its points. Similarly for the 
removal of a bucket. 

 
 
 
 
 
 
 



Properties of ranged hash functions 

Monotone 
 Each item has its own preference list and hashes to the 
first available bucket 

 
 This minimizes rearrangement cost 

 
 Multiple virtual locations for the item are possible 

 
 Can be described with a preference matrix 
 Items and the buckets 

 



Properties of Consistent Hashing I 

A view is a subset of the buckets (cache servers available 
from certain part of the network) 

 
Consistent hashing uses a ranged hash function to specify 

an assignment of items to buckets for every possible 
view 

 
A ranged hash family is said to be balanced if given a 

particular view, a set of elements, and a randomly 
chosen function from the hash family, with high 
probability the fraction of items mapped to each bucket is 
O(1/|V|), where V is the view 

 
In other words, items are uniformly distributed over the 

buckets of the view 
 
 
 



Properties of consistent hashing II 

Load: A balanced ranged hash function distributes load 
evenly across the buckets 

 
Monotonicity is another important property for the hash 

function. This property says that some items can be 
moved to a new bucket from old buckets, but not 
between old buckets.  The aim is to preserve an even 
distribution 

 
Spread is about ensuring that at least a constant fraction of 

the buckets are visible to clients 
 
 



Example of a ranged hash function (RHF) 

Let I be the items, C the caches, and V the views. Vi is a 
subset of C. 

 
RHF is a map that takes a view (all possible views 2C) and 

hashes it to a cache in which the item can be found: 
 h: 2C × I à C 

 
For an item: pick a point r uniformly and independently at 

random 
For the buckets: pick a set of  κ  log C points uniformly and 

independently at random.  
For an item (V,i) map it to the first bucket b in V that is 

encountered clockwise starting from r. 
 
 
 



Bad examples 

 
Pick b in V at random: bad spread properties (needs to be 

the preference list of many buckets)  
 
Take mod of the number of caches in a view: good balance 

but not smooth (e.g. problems when adding or removing 
a server) 

 



public class ConsistentHash<T> {!
  private final HashFunction hashFunction;!
  private final int numberOfReplicas;!
  private final SortedMap<Integer, T> circle =!
    new TreeMap<Integer, T>();!
!
  public ConsistentHash(HashFunction hashFunction,!
    int numberOfReplicas, Collection<T> nodes) {!
    this.hashFunction = hashFunction;!
    this.numberOfReplicas = numberOfReplicas;!
!
    for (T node : nodes) {!
      add(node);!
    }!
  }!
  public void add(T node) {!
    for (int i = 0; i < numberOfReplicas; i++) {!
      circle.put(hashFunction.hash(node.toString() + “:” + i),!
        node);!
    }!
  }!
  public void remove(T node) {!
    for (int i = 0; i < numberOfReplicas; i++) {!
      circle.remove(hashFunction.hash(node.toString() + “:”+ i));!
    }!
  }!
  public T get(Object key) {!
    if (circle.isEmpty()) {!
      return null;!
    }!
    int hash = hashFunction.hash(key);!
    if (!circle.containsKey(hash)) {!
      SortedMap<Integer, T> tailMap =!
        circle.tailMap(hash);!
      hash = tailMap.isEmpty() ?!
             circle.firstKey() : tailMap.firstKey();!
    }!
    return circle.get(hash);!
  } } 

http://www.lexemetech.com/2007/11/consistent-
hashing.html 
 
 
Wraps around the circle here 

This code does not move data 
between buckets! 
Should be added here  



Main point in consistent hashing 

The technique requires only K/n keys to be remapped on 
average, where K is the number of keys, and n is the 
number of nodes 

 
Used in most DHT algorithms 
 
Developed by Karger et al. at MIT 

  
Somewhat involved for example in Chord 
 
Used by CDNs and caches 

 Akamai 



Semantic free indexing I 

With semantic free indexing in structured overlays, data 
objects are given unique identifiers called keys that are 
chosen from the same identifier space 

  
Keys are mapped by the overlay network protocol to a node 

in the overlay network 
 
The overlay network needs to then support scalable storage 

and retrieval (key, value) pairs 



Semantic free indexing II 

In order to realize the insertion, lookup, and removal of (key, 
value) pairs, each peer maintains a routing table that 
consists of its neighbouring peers (their node identifiers 
and IP addresses) 

 
Lookup queries are then routed across the overlay network 

using the information contained in the routing tables 
 
Typically each routing step takes the query or message 

closer to the destination 
 



DHT interfaces 

•  DHTs offer typically two functions 
–  put(key, value) 
–  get(key) à value 
–  delete(key) 

•  Supports wide range of applications 
–  Similar interface to UDP/IP   

•  Send(IP address, data) 
•  Receive(IP address) à data 

•  No restrictions are imposed on the semantics of 
values and keys 

•  An arbitrary data blob can be hashed to a key 
•  Key/value pairs are persistent and global 



Distributed applications 

Distributed Hash Table (DHT) 

Node Node Node Node 

put(key, value) get(key) value 
DHT balances keys and  

data across nodes 



Foundations of Structured Networks 

We distinguish between a routing algorithm and the routing 
geometry. The algorithm pertains to the exact details of 
routing table construction and message forwarding.  

 
Geometry pertains to the way in which neighbours and 

routes are chosen. Geometry is the foundation for routing 
algorithms 

 
The key observation is that the geometry plays a 

fundamental part in the construction of decentralized 
overlays 



Geometries 
The five frequently used overlay topologies are: 
•   trees 
•   tori (k-ary n-cubes) 
•   butterflies (k-ary n-flies) 
•   de Bruijn graphs 
•   rings 
•   XOR geometry 
 
The differences between some of the geometries are subtle  
 
For example, it can be seen that the static DHT topology 

emulated by the DHT algorithms of Pastry and Tapestry 
are Plaxton trees; however, the dynamic algorithms can 
be seen as approximation of hypercubes.  

 



Trees 

The tree’s hierarchical organization makes it a suitable 
choice for efficient routing 

In a tree geometry, node identifiers represent the leaf nodes 
in a binary tree of depth log n 

The distance between any two nodes is the height of their 
smallest common subtree 

One of the first DHT algorithms, the Plaxton’s algorithm, is 
based on this geometry (object rooted at a node) 

For scalable networking, each node maintains a routing 
table with log n neighbours. In this table, the ith 
neighbour is at distance i from the current node. Greedy 
routing can then be used to forward a message to its 
destination on the network given the target identifier 



Observations on Plaxton 

Global ordering of nodes (only one root node possible) 
 
Static configuration 
 
Forest of trees where each server is a root 
 
Populate routing table to reflect possible distances 

 One suffix digit at a time 
 
 
 
 



     Entries 

Levels  
1  

Primary 

neighbour 

2 3 4 

1 0642 X042 XX02 XXX0 

2 1642 X142 XX12 XXX1 

3 2642 X242 XX22 XXX2 

4 3642 X342 XX32 XXX3 

5 4642 X442 XX42 XXX4 

6 5642 X542 XX52 XXX5 

7 6642 X642 XX62 XXX6 

8 7642 X742 XX72 XXX7 

Table size: base * address length 
In this example octal base (8)  

and 4 digit addresses 

Plaxton’s algorithm: routing table of node 3642 

Wildcards are marked with X 
Primary neighbour is one digit away 
 
Example lookup 
 
Node 3642 receives message for 2342 
• The common string is XX42  
• Two shared digits, consult second column  
and choose the correct digit 
• Send to node with one digit closer 
• Fourth line with X342 

Each routing table is organized in routing levels and 
each entry points to a set of nodes closest in 
network distance to a node which matches the 
given suffix 



Comparison to IP routing 

IP routing is based on the longest matching prefix 
 Keep a prefix data structure (ternary tree, TCAM)  
 Find next hop based on the list (or the destination) 
  

IP addresses are obtained through a local configuration 
process and/or BGP tables, default routes as well 

 
For the Plaxton / DHT case we do not have the IP address 

semantics and mapping to the IP topology 
 
The Plaxton/DHT topology is flat!  
 
Hence the table structure with suffixes/prefixes.  
 
 
 



Rings 

Rings are a popular geometry for DHTs due to their 
simplicity. In a ring geometry, nodes are placed on a one-
dimensional cyclic identifier space. The distance from an 
identifier A to B is defined as the clockwise numeric 
distance from A to B on the circle 

Rings are related with tori and hypercubes, and the 1-
dimensional torus is a ring. Moreover, a k-ary 1-cube is a 
k-node ring 

The Chord DHT is a classic example of an overlay based on 
this geometry. 

Each node has a predecessor and a successor on the ring, 
and an additional routing table for pointers to increasingly 
far away nodes on the ring 
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Hypercubes 

The distance between two nodes in the hypercube geometry is 
the number of bits by which their identifier differ.  

At each step a greedy forwarding mechanism corrects (or fixes) 
one bit to reduce the distance between the current message 
address and the destination.  

Hypercubes are related to tori. In one dimension a line bends 
into a circle (a ring) resulting in a 1-torus. In two dimensions, 
a rectangle wraps into the two-dimensional torus, 2-torus.  An 
n dimensional hypercube can be transformed into an n-torus 
by connecting the opposite faces together.  

The Content Addressable Network (CAN) is an example of a 
DHT based on a d-dimensional torus. 



Differences 

 
The main different between hypercube routing and tree 

routing is that the former allows bits to be fixed in any 
order 

 
Tree routing requires that the bits are corrected in a strict 

order (digit by digit, still can be redundancy in the table) 
 
Thus hypercube is more restricted in selecting neighbours in 

the routing table but offers more possibilities for route 
selection! 
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Butterfly Geometry 

A k-ary n-fly network consists of kn source nodes, n stages 
of kn−1 switches, and kn destination nodes 

The network is unidirectional and the degree of each 
switching node is 2k 

The diameter of the network is logarithmic to the number of 
source nodes. At each level l, a switching node is 
connected to the identically numbered element at level l + 
1 and to a switching node whose number differs from the 
current node only at the lth most significant bit 

The main drawback of this structure is that there is only one 
path from a source to a destination, in other words, 
there is no path diversity. In addition, butterfly networks 
do not have as good locality properties as tori 



Butterfly network (with a tree) 



De Bruijn Graph 

 
An n-dimensional de Bruijn graph of k symbols is a directed 

graph representing overlaps between sequences of 
symbols. It has kn vertices that represent all possible 
sequences of length n of the given symbols 

 
In a n-dimensional de Bruijn graph with 2 symbols, there are 

2n nodes, each of which has a unique n-bit identifier.  



Creating a de Bruijn graph 

The node with identifier i is connected to  
 nodes 2i mod 2n and 2i + 1 mod 2n 

 

A routing algorithm can route to any destination in n hops by 
successively shifting in the bits of the destination 
identifier. 

 
Routing a message from node m to node k is accomplished 

by taking the number m and shifting in the bits of k one at 
a time until the number has been replaced by k 

 



De Bruijn Graph 

Consider a node n with identifier b1 b2 ...bk , bi ∈ {0, 1}  
 
n has an out-edge to the nodes with identifier b2 ...bk 0 and 

b2 ...bk 1.  
 
Node 00: out edge to 00 and 01 
Node 01: out edge to 10 and 11 
Node 10: out edge to 00 and 01 
Node 11: out edge to 10 and 11 
 
This adjacency scheme, based on shifting the identifier 

strings associated with a node yields a simple prefix 
based routing policy. 

 



Constructing de Bruijn Graphs 

De Bruijn graph for 2m node network can be constructed in a 
recursive fashion from a 2m-1 node network. 

 
Take the edge of the 2m-1 node network 
 
Add a node in the middle 
 
Details: 
http://research.microsoft.com/en-us/um/people/nswamy/

papers/halo-tr.pdf 
 
 
 



Example: Adding a digit 
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Figure 2.1 The 8-node dB(2, 3) graph constructed as the egde-graph of a 4-node
dB(2, 2) graph.
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Source: Jyh-Wen Mao  The Coloring and Routing Problems on de 
Bruijn Interconnection Networks, PhD dissertation 2003. 
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The XOR Geometry 

The Kademlia P2P system defines a routing metric in which 
the distance between two nodes is the numeric value of 
the exclusive OR (XOR) of their identifiers 

 
The idea is to take messages closer to the destination by 

using the XOR distance d(x,y) = XOR(x,y) (taken as an 
integer) 

 
The routing therefore ”fixes” high order bits in the current 

address to take it closer to the destination 
 
Satisfies triangle property, symmetric, unidirectional 



XOR Metric and Triangle Property 

Triangle inequality property 
d(x,z) <= d(x,y) + d(y,z) 
 
Easy to see that XOR satisfies this 
 
Useful for determining distances between nodes 
 
Unidirectional: 

 For any given point x and a distance D > 0, there is 
exactly one point y such that d(x,y) = D. This means that 
lookups converge.  

 



Comparing geometries 

Gummadi et al. compared the different geometries, including 
the tree, hypercube, butterfly, ring, and XOR geometries.  

 
Loguinov et al. complemented this list with de Bruijn graphs.  
 
The conclusions of these comparisons include that the ring, 

XOR, and de Bruijn geometries are more flexible than the 
others and permit the choice of neighbours and 
alternative routes  

 
The ring and XOR geometries were also found to be the 

most flexible in terms of choosing neighbours and routes 
 
Only de Bruijn graphs allow alternate paths that are 

independent of each other 



Comparison 

Can you choose neighbours? 
  

Can you choose routes? 
 
Are there alternative routes? 
 
Are there alternative routes without overlap?  
 
 
 



Comparison 

Tree Hypercube Ring Butterfly XOR De 
Bruijn 

Neighbour 
selection 

Yes 1 Yes 1 Yes No 

Route 
selection 

1 Yes Yes 1 Some Yes 

Sequential 
neighbours 

No No Yes No No Yes  

Independent 
paths 

No No No No No Yes 



Discussion 

Based on previous table the ring looks pretty good 
 
But this is partly due to the sequential neighbours property 

(predecessor and successor on the ring) 
 
If sequential neighbours is added to other geometries, XOR 

and de Bruijn are also good 



Distributed Data Structures (DDS) 

•  DHTs are an example of DDS 
•  DHT algorithms are available for clusters and wide-area 

environments 
–  They are different! 

•  Cluster-based solutions 
–  Ninja 
–  LH* and variants 

•  Wide-area solutions 
–  Chord, Tapestry, .. 
–  Flat DHTs, peers are equal 
–  Maintain a subset of peers in a routing table 



Distributed Data Structures (DDS) 

•  Ninja project (UCB) 
–  New storage layer for cluster services 
–  Partition conventional data structure across nodes in 

a cluster 
–  Replicate partitions with replica groups in cluster 

•  Availability 
–  Sync replicas to disk (durability) 

•  Other DDS for data / clusters 
–  LH* Linear Hashing for Distributed Files 
–  Redundant versions for high-availability 



LH*sa 

SDDS (1993) 

Data Structures 
Classic data 
structures 

Tree-based 

m-d Tree 
1-d Tree 

   RP*, … 
k-RP*,  … LH*, DDH,  

DHTs (Chord, ...)  

Hash-based 

High Availability  

1-dimensional d-dimensional 

DHTs 
(CAN,...) 

   LH*RS 

LH*s 

k-Availability 
Security 

LH*m LH*g 

LH*RS
p2p 

Taxonomy 



Linear Hashing 

Use a family of hash functions h0, h1, h2, ... 
Each function’s range is twice that of its 

predecessor 
 
When all the pages at one level (the current 

hash function) have been split, a new level is 
applied 

 
Splitting occurs gradually 

 Current hash function, then you know if a 
bucket has been split from a split counter 

 
Pages are split when overflows occur – but not 

necessarily the page with the overflow 
 
Splitting a round robin fashion 
 



Linear Hashing II 

Use a family of hash functions h0, h1, h2, ... 

hi(key) = h(key) mod(2iN) 
N = initial number of buckets 

h is some hash function  

hi+1 doubles the range of hi 

 

Keep track of the next bucket to split and the 
current level: half of a split bucket is moved 
to the new bucket 

 
 



Linear Hashing III 

Algorithm proceeds in rounds. Current round number is 
Level, Next = 0 

 
There are Nlevel (N * 2Level) buckets at round start 
 

 Buckets 0 to Next-1 have been split  
  Next to NLevel have not been split yet 
 Round ends when all initial buckets have been  split 
(when Next = NLevel).  

 
To start next round: 

Level=Level+1  
Next = 0 



Linear Hashing III 

Algorithm proceeds in rounds. Current round number is 
Level, Next = 0 

 
There are Nlevel (N * 2Level) buckets at round start 
 

 Buckets 0 to Next-1 have been split  
  Next to NLevel have not been split yet 
 Round ends when all initial buckets have been  split 
(when Next = NLevel).  

 
To start next round: 

Level=Level+1  
Next = 0 



Example 

1 2 3 4 

Start: i =0, N = 4, next = 0 
Overflow of 3: i =0, N = 4, next = 1 
Overflow of 1: i =0, N = 4, next = 2 
Overflow of 4: i =0, N = 4, next = 3 
Overflow of 2: i =0, N = 4, next = 0 
Next level: i =1, N = 4, next = 0 

When splitting, half of 
the content is moved to 
the new bucket, just 
take this into account 
when looking up (old 
and new hash function) 

Now we have 
moved to the 
new hash 
function 
altogether, 
splitting starts 
again! 



Read operation 

Use h(level, key) if it is greater than or equal to the next 
counter  

 
Otherwise use h(level+1, key), because they have been 

rehashed with the new level 
 



Overflow of a bucket 

What happens if there is no space, bucket overflows and it is 
not the next bucket to split? 

 
Use overflow buckets, normal bucket has a pointer to the 

overflow bucket  
 
Overflow bucket taken into account when the bucket in 

question is split (round robin) 
 
 



Linear hashing 

Spreads the cost of the expansion across insertion 
operations 

 
Buckets split one at a time 
 
 



LH* Linear Hashing for Distributed Files 

LH* generalizes linear hashing to decentralized distributed 
operation  

The system supports constant time insertion and lookup of 
data objects in a cluster.  

Data items are hashed into buckets with each bucket 
residing on a server. New servers are incorporated into 
the system when a bucket overflows using a split 
operation 

A split controller manages the split operation. When a split 
is performed, a new server is added to the system from a 
supply of servers and the hashing parameters are 
adjusted accordingly 

In a distributed environment, the clients have a view to 
these system parameters which in some cases maybe 
out of date. This requires auto-correction and 
synchronization mechanisms  
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Cluster-based Distributed Hash Tables (DHT) 

•  The NINJA project 
•  Directory for non-hierarchical data 
•  Several different ways to implement 
•  A distributed hash table 

–  Each “brick” maintains a partial map  
•  “local” keys and values 

–  Overlay addresses used to direct to the right “brick” 
•  “remote” key to the brick using hashing 

•  Resilience through parallel, unrelated mappings 



NINJA 

The API provides services with put(), get(), remove(), 
destroy() operations on hash tables. 

Behind the API the DDS needs to implement the 
mechanisms to access, partition, replicate, scale, and 
recover data  

A distributed hash table was implemented as an example of 
the DDS concept in Ninja. All operations inside the 
distributed hash table are atomic meaning that a given 
operation is either performed fully or not at all. In order to 
ensure reliability 

Elements are replicated within the DDS across multiple 
nodes called bricks. A two-phase commit algorithm is 
used to keep the replicas coherent. A brick consists of a 
buffer cache, a lock manager, a persistent chained hash 
table implementation, and an RPC communications 
system 
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Summary 

Geometries form the basis of the structured overlay 
algorithms 

A Distributed Data Structure (DDS) is a self-managing 
storage layer that runs on a cluster. The aim of the DDS 
is to support high throughput, high concurrency, 
availability, incremental scalability, offer strict consistency 
guarantees for the data 

The LH* family of algorithms are scalable DDSes intended 
for clusters 

Consistent hashing allows buckets to be added in any 
order, whereas Litwin’s Linear Hashing (LH*) scheme 
requires buckets to be added one at a time in sequence 

The Ninja system was designed to support robust distributed 
Internet services. One key component of the system was 
a cluster of servers for scalable service 


