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Structured Overlays 

Structured overlays are typically based on the notion of a 
semantic free index  

They utilize hashing extensively to map data to servers 

The cluster-based techniques typically can guarantee a 
very small number of hops to reach a given destination 

The decentralized DHTs balance hop count with the size of 
the routing tables, network diameter, and the ability to 
cope with changes 



Consistent hashing 

Consistent hashing was first introduced in 1997 as a solution 
for distributing requests to a dynamic set of web servers  

In this solution, incoming messages with keys were mapped 
to web servers that can handle the request 

Consistent hashing has had dramatic impact on overlay 
algorithms 

DHTs utilize consistent hashing to partition an identifier 
space over a distributed set of nodes. The key goal is to 
keep the number of elements that need to be moved at 
minimum 



Consistent hashing continued 

In most traditional hash tables a change in the number of 
array elements causes nearly all keys to be remapped 

They are therefore useful for balancing load to a fixed 
collection of servers, but not suitable for dynamic server 
collections 

Consistent hashing is a technique that provides hash table 
functionality in such a way that the addition or removal of 
an element does not significantly change the mapping 
of keys to elements 

The technique requires only K/n keys to be remapped on 
average, where K is the number of keys, and n is the 
number of nodes 



Ranged hash functions 

Ranged hash functions are hash functions that depend on 
the set of available buckets 

 A typical ranged hash function hashes items to positions in 
some space and then assigns each item to the nearest 
available bucket 

As the set of buckets changes, an item may move to a new 
nearest available bucket 



Properties of Consistent Hashing I 

A view is a subset of the buckets (cache servers)  

Consistent hashing uses a ranged hash function to specify 
an assignment of items to buckets for every possible 
view 

A ranged hash family is said to be balanced if given a 
particular view, a set of elements, and a randomly 
chosen function from the hash family, with high 
probability the fraction of items mapped to each bucket is 
O(1/|V|), where V is the view 

In other words, items are uniformly distributed over the 
buckets of the view 



Properties of consistent hashing II 

A balanced ranged hash function distributes load evenly 
across the buckets 

Monotonicity is another important property for the hash 
function. This property says that some items can be 
moved to a new bucket from old buckets, but not 
between old buckets.  The aim is to preserve an even 
distribution 

Spread is about ensuring that at least a constant fraction of 
the buckets are visible to clients 



Properties of Consistent Hashing II 

Consistent hashing involved the construction of a ranged 
hash family with the desired good properties. The idea is 
to map buckets and items to the unit interval and map a 
data item to the closest bucket 

One point is not sufficient to characterize a bucket due to the 
required properties. A bucket is replicated κ log(C) times, 
where C is the number of distinct buckets, and κ is a 
constant 

When a new bucket is added, only those items are moved 
which are closest to one of its points 



Example of Consistent Hashing 

•  Creating the structure 
•  Assign each of C hash buckets to 

random points on mod 2n circle, 
where, hash key size = n 

•  Map object to random position on 
circle 

•  Hash of object = closest 
clockwise bucket 
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Main point in consistent hashing 

The technique requires only K/n keys to be remapped on 
average, where K is the number of keys, and n is the 
number of nodes 

Used in most DHT algorithms 

Somewhat involved for example in Chord 

Used by CDNs and caches 
 Akamai 



Semantic free indexing I 

With semantic free indexing in structured overlays, data 
objects are given unique identifiers called keys that are 
chosen from the same identifier space 

Keys are mapped by the overlay network protocol to a node 
in the overlay network 

The overlay network needs to then support scalable storage 
and retrieval (key, value) pairs 



Semantic free indexing II 

In order to realize the insertion, lookup, and removal of (key, 
value) pairs, each peer maintains a routing table that 
consists of its neighbouring peers (their node identifiers 
and IP addresses) 

Lookup queries are then routed across the overlay network 
using the information contained in the routing tables 

Typically each routing step takes the query or message 
closer to the destination 



DHT interfaces 

•  DHTs offer typically two functions 
–  put(key, value) 
–  get(key)  value 
–  delete(key) 

•  Supports wide range of applications 
–  Similar interface to UDP/IP   

•  Send(IP address, data) 
•  Receive(IP address)  data 

•  No restrictions are imposed on the semantics of 
values and keys 

•  An arbitrary data blob can be hashed to a key 
•  Key/value pairs are persistent and global 



Distributed applications 

Distributed Hash Table (DHT) 

Node Node Node Node 

put(key, value) get(key) value 
DHT balances keys and  

data across nodes 



Foundations of Structured Networks 

We distinguish between a routing algorithm and the routing 
geometry. The algorithm pertains to the exact details of 
routing table construction and message forwarding.  

Geometry pertains to the way in which neighbours and 
routes are chosen. Geometry is the foundation for routing 
algorithms 

The key observation is that the geometry plays a 
fundamental part in the construction of decentralized 
overlays 



Geometries 
The five frequently used overlay topologies are: 
•   trees 
•   tori (k-ary n-cubes) 
•   butterflies (k-ary n-flies) 
•   de Bruijn graphs 
•   rings 
•   XOR geometry 

The differences between some of the geometries are subtle  

For example, it can be seen that the static DHT topology 
emulated by the DHT algorithms of Pastry and Tapestry 
are Plaxton trees; however, the dynamic algorithms can 
be seen as approximation of hypercubes.  



Trees 

The tree’s hierarchical organization makes it a suitable 
choice for efficient routing 

One of the first DHT algorithms, the Plaxton’s algorithm, is 
based on this geometry 

 In a tree geometry, node identifiers represent the leaf nodes 
in a binary tree of depth log n 

The distance between any two nodes is the height of their 
smallest common subtree 

For scalable networking, each node maintains a routing 
table with log n neighbours. In this table, the ith 
neighbour is at distance i from the current node. Greedy 
routing can then be used to forward a message to its 
destination on the network given the target identifier 



Rings 

Rings are a popular geometry for DHTs due to their 
simplicity. In a ring geometry, nodes are placed on a one-
dimensional cyclic identifier space. The distance from an 
identifier A to B is defined as the clockwise numeric 
distance from A to B on the circle 

Rings are related with tori and hypercubes, and the 1-
dimensional torus is a ring. Moreover, a k-ary 1-cube is a 
k-node ring 

The Chord DHT is a classic example of an overlay based on 
this geometry. 

Each node has a predecessor and a successor on the ring, 
and an additional routing table for pointers to increasingly 
far away nodes on the ring 
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Hypercubes 

The distance between two nodes in the hypercube geometry is 
the number of bits by which their identifier differ.  

At each step a greedy forwarding mechanism corrects (or fixes) 
one bit to reduce the distance between the current message 
address and the destination.  

The main different between hypercube routing and tree routing 
is that the former allows bits to be fixed in any order whereas 
the latter requires that the bits are corrected in a strict order 

Hypercubes are related to tori. In one dimension a line bends 
into a circle (a ring) resulting in a 1-torus. In two dimensions, 
a rectangle wraps into the two-dimensional torus, 2-torus.  An 
n dimensional hypercube can be transformed into an n-torus 
by connecting the opposite faces together.  

The Content Addressable Network (CAN) is an example of a 
DHT based on a d-dimensional torus. 
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Butterfly Geometry 

A k-ary n-fly network consists of kn source nodes, n stages 
of kn−1 switches, and kn destination nodes 

The network is unidirectional and the degree of each 
switching node is 2k 

The diameter of the network is logarithmic to the number of 
source nodes. At each level l, a switching node is 
connected to the identically numbered element at level l + 
1 and to a switching node whose number differs from the 
current node only at the lth most significant bit 

The main drawback of this structure is that there is only one 
path from a source to a destination, in other words, 
there is no path diversity. In addition, butterfly networks 
do not have as good locality properties as tori 



Butterfly network (with a tree) 



De Bruijn Graph 

An n-dimensional de Bruijn graph of k symbols is a directed 
graph representing overlaps between sequences of 
symbols. It has kn vertices that represent all possible 
sequences of length n of the given symbols 

In a n-dimensional de Bruijn graph with 2 symbols, there are 
2n nodes, each of which has a unique n-bit identifier.  

The node with identifier i is connected to nodes 2i mod 2n 

and 2i + 1 mod 2n 

A routing algorithm can route to any destination in n hops by 
successively shifting in the bits of the destination 
identifier. 

Routing a message from node m to node k is accomplished 
by taking the number m and shifting in the bits of k one at 
a time until the number has been replaced by k 
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The XOR Geometry 

The Kademlia P2P system defines a routing metric in which 
the distance between two nodes is the numeric value of 
the exclusive OR (XOR) of their identifiers 

The idea is to take messages closer to the destination by 
using the XOR distance d(x,y) = XOR(x,y) (taken as an 
integer) 

The routing therefore ”fixes” high order bits in the current 
address to take it closer to the destination 

Satisfies triangle property, symmetric 



Comparing geometries 

Gummadi et al. compared the different geometries, including 
the tree, hypercube, butterfly, ring, and XOR geometries.  

Loguinov et al. complemented this list with de Bruijn graphs.  
The conclusions of these comparisons include that the ring, 

XOR, and de Bruijn geometries are more flexible than the 
others and permit the choice of neighbours and 
alternative routes  

The ring and XOR geometries were also found to be the 
most flexible in terms of choosing neighbours and routes 

Only de Bruijn graphs allow alternate paths that are 
independent of each other 



Distributed Data Structures (DDS) 

•  DHTs are an example of DDS 
•  DHT algorithms are available for clusters and wide-area 

environments 
–  They are different! 

•  Cluster-based solutions 
–  Ninja 
–  LH* and variants 

•  Wide-area solutions 
–  Chord, Tapestry, .. 
–  Flat DHTs, peers are equal 
–  Maintain a subset of peers in a routing table 



Distributed Data Structures (DDS) 

•  Ninja project (UCB) 
–  New storage layer for cluster services 
–  Partition conventional data structure across nodes in 

a cluster 
–  Replicate partitions with replica groups in cluster 

•  Availability 
–  Sync replicas to disk (durability) 

•  Other DDS for data / clusters 
–  LH* Linear Hashing for Distributed Files 
–  Redundant versions for high-availability 
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Linear Hashing 

Use a family of hash functions h0, h1, h2, ... 
Each function’s range is twice that of its 

predecessor 

When all the pages at one level (the current 
hash function) have been split, a new level is 
applied 

Splitting occurs gradually 
 Current hash function, then you know if a 
bucket has been split from a split counter 

Pages are split when overflows occur – but not 
necessarily the page with the overflow 

Splitting a round robin fashion 



Linear Hashing II 

Use a family of hash functions h0, h1, h2, ... 

hi(key) = h(key) mod(2iN) 
N = initial number of buckets 

h is some hash function  

hi+1 doubles the range of hi 

Keep track of the next bucket to split and the 
current level: half of a split bucket is moved 
to the new bucket 



Linear Hashing III 

Algorithm proceeds in rounds. Current round number is 
Level, Next = 0 

There are Nlevel (N * 2Level) buckets at round start 

 Buckets 0 to Next-1 have been split  
  Next to NLevel have not been split yet 
 Round ends when all initial buckets have been  split 
(when Next = NLevel).  

To start next round: 
Level=Level+1  
Next = 0 



LH* Linear Hashing for Distributed Files 

LH* generalizes linear hashing to decentralized distributed 
operation  

The system supports constant time insertion and lookup of 
data objects in a cluster.  

Data items are hashed into buckets with each bucket 
residing on a server. New servers are incorporated into 
the system when a bucket overflows using a split 
operation 

A split controller manages the split operation. When a split 
is performed, a new server is added to the system from a 
supply of servers and the hashing parameters are 
adjusted accordingly 

In a distributed environment, the clients have a view to 
these system parameters which in some cases maybe 
out of date. This requires auto-correction and 
synchronization mechanisms  
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Cluster-based Distributed Hash Tables (DHT) 

•  The NINJA project 
•  Directory for non-hierarchical data 
•  Several different ways to implement 
•  A distributed hash table 

–  Each “brick” maintains a partial map  
•  “local” keys and values 

–  Overlay addresses used to direct to the right “brick” 
•  “remote” key to the brick using hashing 

•  Resilience through parallel, unrelated mappings 



NINJA 

The API provides services with put(), get(), remove(), 
destroy() operations on hash tables. 

Behind the API the DDS needs to implement the 
mechanisms to access, partition, replicate, scale, and 
recover data  

A distributed hash table was implemented as an example of 
the DDS concept in Ninja. All operations inside the 
distributed hash table are atomic meaning that a given 
operation is either performed fully or not at all. In order to 
ensure reliability 

Elements are replicated within the DDS across multiple 
nodes called bricks. A two-phase commit algorithm is 
used to keep the replicas coherent. A brick consists of a 
buffer cache, a lock manager, a persistent chained hash 
table implementation, and an RPC communications 
system 
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Summary 

Geometries form the basis of the structured overlay 
algorithms 

A Distributed Data Structure (DDS) is a self-managing 
storage layer that runs on a cluster. The aim of the DDS 
is to support high throughput, high concurrency, 
availability, incremental scalability, offer strict consistency 
guarantees for the data 

The LH* family of algorithms are scalable DDSes intended 
for clusters 

Consistent hashing allows buckets to be added in any 
order, whereas Litwin’s Linear Hashing (LH*) scheme 
requires buckets to be added one at a time in sequence 

The Ninja system was designed to support robust distributed 
Internet services. One key component of the system was 
a cluster of servers for scalable service 


