
Overlay and P2P Networks

Structured Networks and DHTs

Prof. Sasu Tarkoma

4.10.2010

Contents

•  Structured networks
•  Foundations
•  Cluster-based structures

Structured Overlays

Structured overlays are typically based on the notion of a
semantic free index

They utilize hashing extensively to map data to servers

The cluster-based techniques typically can guarantee a
very small number of hops to reach a given destination

The decentralized DHTs balance hop count with the size of
the routing tables, network diameter, and the ability to
cope with changes

Consistent hashing

Consistent hashing was first introduced in 1997 as a solution
for distributing requests to a dynamic set of web servers

In this solution, incoming messages with keys were mapped
to web servers that can handle the request

Consistent hashing has had dramatic impact on overlay
algorithms

DHTs utilize consistent hashing to partition an identifier
space over a distributed set of nodes. The key goal is to
keep the number of elements that need to be moved at
minimum

Consistent hashing continued

In most traditional hash tables a change in the number of
array elements causes nearly all keys to be remapped

They are therefore useful for balancing load to a fixed
collection of servers, but not suitable for dynamic server
collections

Consistent hashing is a technique that provides hash table
functionality in such a way that the addition or removal of
an element does not significantly change the mapping
of keys to elements

The technique requires only K/n keys to be remapped on
average, where K is the number of keys, and n is the
number of nodes

Ranged hash functions

Ranged hash functions are hash functions that depend on
the set of available buckets

 A typical ranged hash function hashes items to positions in
some space and then assigns each item to the nearest
available bucket

As the set of buckets changes, an item may move to a new
nearest available bucket

Properties of Consistent Hashing I

A view is a subset of the buckets (cache servers)

Consistent hashing uses a ranged hash function to specify
an assignment of items to buckets for every possible
view

A ranged hash family is said to be balanced if given a
particular view, a set of elements, and a randomly
chosen function from the hash family, with high
probability the fraction of items mapped to each bucket is
O(1/|V|), where V is the view

In other words, items are uniformly distributed over the
buckets of the view

Properties of consistent hashing II

A balanced ranged hash function distributes load evenly
across the buckets

Monotonicity is another important property for the hash
function. This property says that some items can be
moved to a new bucket from old buckets, but not
between old buckets. The aim is to preserve an even
distribution

Spread is about ensuring that at least a constant fraction of
the buckets are visible to clients

Properties of Consistent Hashing II

Consistent hashing involved the construction of a ranged
hash family with the desired good properties. The idea is
to map buckets and items to the unit interval and map a
data item to the closest bucket

One point is not sufficient to characterize a bucket due to the
required properties. A bucket is replicated κ log(C) times,
where C is the number of distinct buckets, and κ is a
constant

When a new bucket is added, only those items are moved
which are closest to one of its points

Example of Consistent Hashing

•  Creating the structure
•  Assign each of C hash buckets to

random points on mod 2n circle,
where, hash key size = n

•  Map object to random position on
circle

•  Hash of object = closest
clockwise bucket

0

8

4 12
Bucket

14

Main point in consistent hashing

The technique requires only K/n keys to be remapped on
average, where K is the number of keys, and n is the
number of nodes

Used in most DHT algorithms

Somewhat involved for example in Chord

Used by CDNs and caches
 Akamai

Semantic free indexing I

With semantic free indexing in structured overlays, data
objects are given unique identifiers called keys that are
chosen from the same identifier space

Keys are mapped by the overlay network protocol to a node
in the overlay network

The overlay network needs to then support scalable storage
and retrieval (key, value) pairs

Semantic free indexing II

In order to realize the insertion, lookup, and removal of (key,
value) pairs, each peer maintains a routing table that
consists of its neighbouring peers (their node identifiers
and IP addresses)

Lookup queries are then routed across the overlay network
using the information contained in the routing tables

Typically each routing step takes the query or message
closer to the destination

DHT interfaces

•  DHTs offer typically two functions
–  put(key, value)
–  get(key) value
–  delete(key)

•  Supports wide range of applications
–  Similar interface to UDP/IP

•  Send(IP address, data)
•  Receive(IP address) data

•  No restrictions are imposed on the semantics of
values and keys

•  An arbitrary data blob can be hashed to a key
•  Key/value pairs are persistent and global

Distributed applications

Distributed Hash Table (DHT)

Node Node Node Node

put(key, value) get(key) value
DHT balances keys and

data across nodes

Foundations of Structured Networks

We distinguish between a routing algorithm and the routing
geometry. The algorithm pertains to the exact details of
routing table construction and message forwarding.

Geometry pertains to the way in which neighbours and
routes are chosen. Geometry is the foundation for routing
algorithms

The key observation is that the geometry plays a
fundamental part in the construction of decentralized
overlays

Geometries
The five frequently used overlay topologies are:
•  trees
•  tori (k-ary n-cubes)
•  butterflies (k-ary n-flies)
•  de Bruijn graphs
•  rings
•  XOR geometry

The differences between some of the geometries are subtle

For example, it can be seen that the static DHT topology
emulated by the DHT algorithms of Pastry and Tapestry
are Plaxton trees; however, the dynamic algorithms can
be seen as approximation of hypercubes.

Trees

The tree’s hierarchical organization makes it a suitable
choice for efficient routing

One of the first DHT algorithms, the Plaxton’s algorithm, is
based on this geometry

 In a tree geometry, node identifiers represent the leaf nodes
in a binary tree of depth log n

The distance between any two nodes is the height of their
smallest common subtree

For scalable networking, each node maintains a routing
table with log n neighbours. In this table, the ith
neighbour is at distance i from the current node. Greedy
routing can then be used to forward a message to its
destination on the network given the target identifier

Rings

Rings are a popular geometry for DHTs due to their
simplicity. In a ring geometry, nodes are placed on a one-
dimensional cyclic identifier space. The distance from an
identifier A to B is defined as the clockwise numeric
distance from A to B on the circle

Rings are related with tori and hypercubes, and the 1-
dimensional torus is a ring. Moreover, a k-ary 1-cube is a
k-node ring

The Chord DHT is a classic example of an overlay based on
this geometry.

Each node has a predecessor and a successor on the ring,
and an additional routing table for pointers to increasingly
far away nodes on the ring

N1

N8

N14

N21

N32
N38

N42

N51

N56

2m-1 0

+1
+2

+4

+8

+16

+32

Finger Maps to Real node

1,2,3

4

5

6

x+1,x+2,x+4

x+8

x+16

x+32

N14

N21

 N32

 N42

m=6
for j=1,...,m the
fingers of p+2j-1

Predecessor node

Hypercubes

The distance between two nodes in the hypercube geometry is
the number of bits by which their identifier differ.

At each step a greedy forwarding mechanism corrects (or fixes)
one bit to reduce the distance between the current message
address and the destination.

The main different between hypercube routing and tree routing
is that the former allows bits to be fixed in any order whereas
the latter requires that the bits are corrected in a strict order

Hypercubes are related to tori. In one dimension a line bends
into a circle (a ring) resulting in a 1-torus. In two dimensions,
a rectangle wraps into the two-dimensional torus, 2-torus. An
n dimensional hypercube can be transformed into an n-torus
by connecting the opposite faces together.

The Content Addressable Network (CAN) is an example of a
DHT based on a d-dimensional torus.

d = 0
N = 1

d = 1
N = 2 d = 2

N = 4

d = 3
N = 8

d = 4
N = 16

Hypercubes

Butterfly Geometry

A k-ary n-fly network consists of kn source nodes, n stages
of kn−1 switches, and kn destination nodes

The network is unidirectional and the degree of each
switching node is 2k

The diameter of the network is logarithmic to the number of
source nodes. At each level l, a switching node is
connected to the identically numbered element at level l +
1 and to a switching node whose number differs from the
current node only at the lth most significant bit

The main drawback of this structure is that there is only one
path from a source to a destination, in other words,
there is no path diversity. In addition, butterfly networks
do not have as good locality properties as tori

Butterfly network (with a tree)

De Bruijn Graph

An n-dimensional de Bruijn graph of k symbols is a directed
graph representing overlaps between sequences of
symbols. It has kn vertices that represent all possible
sequences of length n of the given symbols

In a n-dimensional de Bruijn graph with 2 symbols, there are
2n nodes, each of which has a unique n-bit identifier.

The node with identifier i is connected to nodes 2i mod 2n

and 2i + 1 mod 2n

A routing algorithm can route to any destination in n hops by
successively shifting in the bits of the destination
identifier.

Routing a message from node m to node k is accomplished
by taking the number m and shifting in the bits of k one at
a time until the number has been replaced by k

De Bruijn Graph

000 001

010

011

100

101

110

111

The XOR Geometry

The Kademlia P2P system defines a routing metric in which
the distance between two nodes is the numeric value of
the exclusive OR (XOR) of their identifiers

The idea is to take messages closer to the destination by
using the XOR distance d(x,y) = XOR(x,y) (taken as an
integer)

The routing therefore ”fixes” high order bits in the current
address to take it closer to the destination

Satisfies triangle property, symmetric

Comparing geometries

Gummadi et al. compared the different geometries, including
the tree, hypercube, butterfly, ring, and XOR geometries.

Loguinov et al. complemented this list with de Bruijn graphs.
The conclusions of these comparisons include that the ring,

XOR, and de Bruijn geometries are more flexible than the
others and permit the choice of neighbours and
alternative routes

The ring and XOR geometries were also found to be the
most flexible in terms of choosing neighbours and routes

Only de Bruijn graphs allow alternate paths that are
independent of each other

Distributed Data Structures (DDS)

•  DHTs are an example of DDS
•  DHT algorithms are available for clusters and wide-area

environments
–  They are different!

•  Cluster-based solutions
–  Ninja
–  LH* and variants

•  Wide-area solutions
–  Chord, Tapestry, ..
–  Flat DHTs, peers are equal
–  Maintain a subset of peers in a routing table

Distributed Data Structures (DDS)

•  Ninja project (UCB)
–  New storage layer for cluster services
–  Partition conventional data structure across nodes in

a cluster
–  Replicate partitions with replica groups in cluster

•  Availability
–  Sync replicas to disk (durability)

•  Other DDS for data / clusters
–  LH* Linear Hashing for Distributed Files
–  Redundant versions for high-availability

LH*sa

SDDS (1993)

Data Structures
Classic data
structures

Tree-based

m-d Tree
1-d Tree

 RP*, …
k-RP*, … LH*, DDH,

DHTs (Chord, ...)

Hash-based

High Availability

1-dimensional d-dimensional

DHTs
(CAN,...)

 LH*RS

LH*s

k-Availability
Security

LH*m LH*g

LH*RS
p2p

Taxonomy

Linear Hashing

Use a family of hash functions h0, h1, h2, ...
Each function’s range is twice that of its

predecessor

When all the pages at one level (the current
hash function) have been split, a new level is
applied

Splitting occurs gradually
 Current hash function, then you know if a
bucket has been split from a split counter

Pages are split when overflows occur – but not
necessarily the page with the overflow

Splitting a round robin fashion

Linear Hashing II

Use a family of hash functions h0, h1, h2, ...

hi(key) = h(key) mod(2iN)
N = initial number of buckets

h is some hash function

hi+1 doubles the range of hi

Keep track of the next bucket to split and the
current level: half of a split bucket is moved
to the new bucket

Linear Hashing III

Algorithm proceeds in rounds. Current round number is
Level, Next = 0

There are Nlevel (N * 2Level) buckets at round start

 Buckets 0 to Next-1 have been split
 Next to NLevel have not been split yet
 Round ends when all initial buckets have been split
(when Next = NLevel).

To start next round:
Level=Level+1
Next = 0

LH* Linear Hashing for Distributed Files

LH* generalizes linear hashing to decentralized distributed
operation

The system supports constant time insertion and lookup of
data objects in a cluster.

Data items are hashed into buckets with each bucket
residing on a server. New servers are incorporated into
the system when a bucket overflows using a split
operation

A split controller manages the split operation. When a split
is performed, a new server is added to the system from a
supply of servers and the hashing parameters are
adjusted accordingly

In a distributed environment, the clients have a view to
these system parameters which in some cases maybe
out of date. This requires auto-correction and
synchronization mechanisms

Client 1

n’=5
i’=6

Client 2

n’=0
i’=2

srvr 0

10

srvr 1

10

… … … …

Client m

n’=31
i’=9

srvr 80

9

srvr 512

10

srvr 583

10

srvr 591

10

n=80

LH* Example

Split

Coord

Bucket

c

Bucket

n

Bucket

n+2l

Insert

2.Split 4.Splitdone

3.Init

Tuples

LH* Bucket Split

Cluster-based Distributed Hash Tables (DHT)

•  The NINJA project
•  Directory for non-hierarchical data
•  Several different ways to implement
•  A distributed hash table

–  Each “brick” maintains a partial map
•  “local” keys and values

–  Overlay addresses used to direct to the right “brick”
•  “remote” key to the brick using hashing

•  Resilience through parallel, unrelated mappings

NINJA

The API provides services with put(), get(), remove(),
destroy() operations on hash tables.

Behind the API the DDS needs to implement the
mechanisms to access, partition, replicate, scale, and
recover data

A distributed hash table was implemented as an example of
the DDS concept in Ninja. All operations inside the
distributed hash table are atomic meaning that a given
operation is either performed fully or not at all. In order to
ensure reliability

Elements are replicated within the DDS across multiple
nodes called bricks. A two-phase commit algorithm is
used to keep the replicas coherent. A brick consists of a
buffer cache, a lock manager, a persistent chained hash
table implementation, and an RPC communications
system

client client client client

service
DSS lib

service
DSS lib

storage
“brick”

storage
“brick”

storage
“brick”

storage
“brick”

storage
“brick”

storage
“brick”

SAN

Service interacts
with DSS lib

Hash table API

Redundant, low
latency, high
 throughput

network

Brick = single-
node, durable

hash table,
replicated

clients interact
with any
service

“front-end”

Summary

Geometries form the basis of the structured overlay
algorithms

A Distributed Data Structure (DDS) is a self-managing
storage layer that runs on a cluster. The aim of the DDS
is to support high throughput, high concurrency,
availability, incremental scalability, offer strict consistency
guarantees for the data

The LH* family of algorithms are scalable DDSes intended
for clusters

Consistent hashing allows buckets to be added in any
order, whereas Litwin’s Linear Hashing (LH*) scheme
requires buckets to be added one at a time in sequence

The Ninja system was designed to support robust distributed
Internet services. One key component of the system was
a cluster of servers for scalable service

