
Overlay and P2P Networks

Unstructured networks II

Prof. Sasu Tarkoma

20.9.2010

Contents

•  Unstructured networks
–  Napster
–  Skype
–  Gnutella
–  Freenet

•  Summary

Unstructured networks

Unstructured networks are typically based on random
graphs following flat or hierarchical organization

 Unstructured networks utilize flooding and similar
opportunistic techniques, such as random walks,
expanding-ring, Time-to-Live (TTL) search, in order to
locate peers that have interesting data items.

Napster

Napster was a centralized P2P music sharing service
(mp3s)

Lauched in 1999 and made P2P popular and dubious from
the legal viewpoint
 Lawsuits from 1999, close-down in 2001, Chapter 7 in
2002, rebirth as a music store in 2003

Utilized a centralized index (server farm) for searching,
transfers were peer-to-peer

centralized
directory server

peers

Alice

Bob

1

1

1

1 2

3

User installing the software

Download the client program

Register name, password, local directory,

etc.

1. Client contacts Napster (via TCP)

Provides a list of music files it will share

… and Napster’s central server updates

the directory

2. Client searches on a title or performer

Napster identifies online clients with the

file

… and provides IP addresses

3. Client requests the file from the chosen

supplier

Supplier transmits the file to the client

Both client and supplier report status to

Napster

Napster Summary

Centralized server allows
 Consistent view of the P2P network

 Search guaranteed to find all files in the network

Limitations of this design are
 Centralized server is the weakest point of the system
 Attacks, network partitions, …
 Limited scalability

Skype

Skype is a well-known Internet telephony service
 Calls between peers
 Interface to traditional telephony services (costs money)

Skype architecture is similar to KaZaa and Gnutella
 Supernodes and regular nodes

A proprietary protocol, protocol uses encryption
A centralized server for logging and billing
Supernodes and regular nodes maintain a distributed

directory of online peers
Supernodes forward calls and call traffic (mostly for

firewalled/natted peers)
A number of built-in techniques for traversing firewalls and

NAT boxes
 STUN-like behaviour

What is NAT

Expand IP address space by deploying private address and
translating them into publicly registered addresses

Private address space (RFC 1918)
10.0.0.0 - 10.255.255.255 (10.0.0.0/8)
172.16.0.0 - 172.31.255.255 (172.16.0.0/12)
192.168.0.0 - 192.168.255.255 (192.168.0.0/16)

First described in RFC 1631
Technique of rewriting IP addresses in headers and application data

streams according to a defined policy
Based on traffic source and/or destination IP address

NATs and Firewalls

Firewalls
Security main concern
Demilitarized zone
Increasingly complex rules (what is filtered, how)

NATs
Lightweight security devices

Topology hiding and firewalling
Increasing number in deployment

Solves some of the address space problems of IPv4 (Port
Translation, NAPT)

IPv6 solves the addressing problem so NATs are not needed for
this

• Skype is P2P
• Proprietary application-layer
protocol
• Hierarchical overlay with
super nodes

• Index maps usernames to IP
addresses; distributed over
super nodes
• Peers with connectivity issues
use NAT traversal or
communicate via super node
relays

Skype
login server

Skype clients (SC)

Skype
Super Node

Skype Skype

Skype

Problem when both Alice and Bob are

behind “NATs”.

NAT prevents an outside peer from

initiating a call to insider peer

Solution:

Using Alice’s and Bob’s SNs, Relay is

chosen

Each peer initiates session with relay.

Peers can now communicate through

NATs via relay

Skype

Skype Skype

Skype peers as relays

Gnutella

Gnutella addresses some of Napster’s limitations

A decentralized P2P system based flooding the queries
 Queries are flooded and responses are sent on the
reverse path
 Downloads directly between peers

Open protocol specification, originally developed by Nullsoft
(bought by AOL)

Differs between versions
 0.4 is the original version (simple flooding)
 0.7 is more advanced (similar to KaZaa)
 More structure (hierarchy is good for scalability!)

Gnutella v0.4 protocol messages

A peer joining the network needs to discover the adress of a
peer who is already a member of the network
 New peer sends GNUTELLA CONNECT message

A peer then uses PING messages to discover peers and
receives PONG messages. PONGs include data
regarding peers and follow the reverse path of PINGs.

A peer uses the QUERY message to find files, and receives
QUERYHIT messages as replies (again on reverse path)

Peers forward QUERY messages (flooding)
The QUERYHIT contains the IP address of the node that

can then be used for the file transfer (HTTP)

Query message sent

over existing TCP

connections

Peers forward

Query message

QueryHit sent over

reverse path

Query

QueryHit

Query

QueryHit

File transfer:
HTTP

Scalability:
limited scope
flooding

The Gnutella Protocol

Ultra node

Ultra node

Ultra node

Ultra node layer

Flooding
(Bloom filters)

Leaf
Leaf Leaf

Leaf Data transfer

The Gnutella v0.7 Architecture

Gnutella v0.7 routing

Since version 0.6, Gnutella has been a composite network
consisting of leaf nodes and ultra nodes. The leaf nodes
have a small number of connections to ultra nodes,
typically three

The ultra nodes are hubs of connectivity, each being
connected to more than 32 other ultra nodes.

When a node with enough processing power joins the
network, it becomes an ultra peer and establishes
connections with other ultra nodes

This network between the ultra nodes is flat and
unstructured. Then the ultra node must establish a
minimum number of connections with client nodes in
order to continue acting as an ultra node. These changes
attempt to make the Gnutella network reflect the power-
law distributions found in many natural systems.

Query Routing Protocol

In Gnutella terminology, the leaf nodes and ultra nodes use
the Query Routing Protocol to update routing tables,
called Query Routing Table (QRT)

The QRT consists of a table hashed keywords that is sent
by a leaf node to its ultra nodes

 Ultra nodes merge the available QRT structures that they
have received from the leaf nodes, and exchange these
merged tables with their neighbouring ultra nodes

Query routing is performed by hashing the search words and
then testing whether or not the resulting hash value is
present in the QRT of the present node

The classical Gnutella protocol used reverse path routing to
send a message back to this origin peer. Later
incarnations of the protocol use UDP to directly contact
the origin peer

 Bloom filters in Gnutella v0.7

Bloom filters are probabilistic structures used to store
dictionaries

A bit-vector that supports constant time querying of
keywords

Decrease Increase

Number of hash functions (k) Less computation
Higher false positive rate

More computation
Lower false positive rate

Size of filter (m) Smaller space requirements
Higher false positive rate

More space is needed
Lower false positive rate

Number of elements in the
inserted set (n)

Lower false positive rate Higher false positive rate

0 1 0 1 1 1 0 0 0 0

x

 0 1 0 1 0 0 1 0

y z

Example Bloom filter

A

B D

C

F

G E

H

Perfect mapping for message from A.
Link D-E is traversed only once.

Inefficient mapping that results in link D-E
being traversed six times

A

B D

C

F

G E

H

Mapping the Gnutella Network

Overlay networks can result in really bad application
layer routing configurations unless the underlay is
taken into account!

Gnutella v0.4 Gnutella v0.7

Decentralization Flat topology (random
graph), equal peers

Random graph with two
tiers. Two kinds of nodes,
regular and ulta nodes. Ultra
nodes are connectivity hubs

Foundation Flooding mechanism Selective flooding using the
super nodes

Routing function Flooding mechanism Selective flooding
mechanism

Routing performance Search until Time-To-Live
expires, no guarantee to
locate data

Search until Time-To-Live
expires, second tier
improves efficiency, no
guarantee to locate data

Routing state Constant Constant

Reliability
Performance degrades
when the number of peer
grows

Performance degrades when
the number of peer grows

Freenet

The unstructured P2P systems presented so do not offer
good security and privacy features

Many of these shortcomings are addressed in the Freenet
file sharing system

This system emphasizes anonymity in file sharing and
protects both authors and readers

Freenet II

The system works in a bit different way to Gnutella, because
it allows users to publish content to the P2P networks
and then disconnect from the network

The published content will remain in the network and be
accessible for users until it is eventually removed if there
is not enough interest in the data

The Freenet network is responsible for keeping the data
available and distributing it data in a secure and
anonymous way

Overview of Freenet

The Freenet network is a decentralized loosely structured
overlay network similar to Gnutella

The system is a self-organizing P2P network and creates a
collaborative virtual file system by pooling unused disk
space

 Prominent features of the system include emphasis on
security, publisher anonymity, and deniability. Moreover,
the system also focuses on data replication for availability
and performance.

Each node maintains a dynamic routing table to be able to
process requests for certain files. In order to obtain a file,
a user sends a request message that includes a key for
the desired file

Freenet components

The Freenet network consists of three crucial parts:
–  Bootstrapping, which pertains to how a new node

enters the network
–  File identifier keys, which are needed to be able to

find files in the network. The keys can be derived
using several different ways and each of them have
their implications for the system and security

–  Key-based routing, which is the process of finding a
node that hosts the desired file

Freenet messages

Freenet has the following central messages:
–  Data insert. This message allows a node to insert

new data into the network. The message includes a
key and the data file.

–  Data request. A node requests for a certain file. The
request contains the key of the file.

–  A reply. The reply is sent by the node that has the
requested file. The actual file is included in the reply
message.

–  Data failed. This operation denotes a failure to locate
a file. The message will contain the location of the
node where the failure occurs and the reason.

A

D

E

C

B

F

1
2

3

4
6

5 9

7

8 10
11

12
Object request

Reply

Failed request

Search in Freenet

id next_hop file

…

…

Depth-first search
With backtracking
Routing table:

Freenet versions

There are significant differences between Freenet protocol
versions

Before version 0.7, the system used a heuristic algorithm
where nodes did not have fixed locations and routing was
based finding the closest node that advertised a given
key

Upon successful request, new shortcut connections were
sometimes created between the requesting node and the
responder, and old connections were discarded

This was changed to an algorithm that clusters nodes
together and creates shortcuts (trying to leverage small
world properties)

Routing in Freenet

The new algorithm introduced the notion of node location,
which is a number between 0 and 1

This location metric is used to cluster nodes.

File names are also transformed into numbers
 Easy to compare file number to node number

Idea: place data to numerically closest node, cache data
towards this node, locally greedy routing

This kind of approach works well with popular data, the more
a file is requested by clients, the more it will cached by
intermediate nodes

Freenet Routing in Detail

1.  When a client issues a request for a file, the node first
checks if the file is locally available in the data store. If
the file is not found, the file key is turned into a number
in a similar fashion.

2.  The request is then routed to the node that has the
numerically closest location value to the key.

3.  This routing process is repeated until a preset number of
hops is reached.

4.  If the desired file is found during the routing process, the
file is cached on each node along the path (given that
there is room).

Location Swapping in Freenet

Node swap is needed for clustering

Nodes swap location information in order to position its
location in an optimal way to its peers

A node randomly chooses a node in its proximity and sends
a swap request

A swap is performed if the swap reduces distances,
otherwise the swap is performed with a probability based
on the calculated distances

Deterministic swap always decreases the average distances
of a node to its neighbours, probabilistic swap is used to
escape local minima

Freenet routing properties

The routing and location algorithm result in four key
properties:
–  Over time nodes tend to specialize in requesting for

similar keys as they receive search requests from
other nodes for similar keys

–  As the consequence of the above, nodes tend to
store similar keys over time. This stems from the
caching of requested files

–  Keys are semantic free and the similarity of keys does
not result in similarity of the files

–  Higher-level routing is independent of the underlying
network topology

Problems with Freenet Routing

The new Freenet routing algorithm is unable to provide
performance guarantees with active malicious
participants

 The algorithm also degenerates over time (even with
passive adversaries) if the network experiences churn

 The recommended approach to address both problems is to
periodically reset the locations of peers

Also: no guarantee to locate data

Privacy in Freenet

Privacy is realized using a variation of Chaum’s mix-net
scheme for anonymous communication

Messages travel through the network through node-to-node
chains. Each link is individually encrypted. Each node in
this chain knows only about its immediate neighbours,
the endpoints are decoupled from each other

This approach protects both the publishers and the
consumers. It is very difficult for an adversary to destroy
a file because it is distributed across the network

Challenges: Location swapping exposes network topology

MIX

MIX routes and forwards messages from several senders to
several receivers in such a way that no relation between
any particular sender and any particular receiver can be
discerned by an external observer

The classic application of MIX has been untraceable digital
pseudonyms

 Other application cases are synchronous and asynchronous
communication systems, and electronic voting systems.

Most applications use a cascade of MIXes forming so called
MIX-net

MIX-nets obfuscate the relation between the senders and
receivers

Onion routing is based on this idea

Privacy in Freenet II

MIX is used as a pre-routing phase in Freenet

A request goes through one or more MIX stages (with
nested encryption) to the first Freenet node

Offers sender anonymity and security for the first hop

Freenet file types

CHKs (Content Hash Key) are useful for single non-mutable
files, for example audio and video files (simply a hash of the
description)

SSKs (Signed Subspace Key) are intended for sites with
mutable data. A typical usage case involves a Web site. Hash
of a public key, symmetric key (hash of the description),
signature. Defines a personal namespace that anyone can
read but can be written only with the private key.

USK (Updatable Subspace Key) are used for creating a link to
the most current version of an SSK site. They are essentially
wrappers around SSKs.

KSK (Keyword Signed Keys) are used for human-
understandable links that do not require trust in the creator.
The keypair is generated from the keyword (a string).

Indirect files allow metadata-based distributed pointers to a file

KSK example (retrieval using strings)

String
Key

generation

Encrypt

Hash Public key

Private key

File and
Signature File key

Stored file

Example of KSK Usage

1.  A deterministic algorithm is used to generate a cryptographic
public/private key pair and a symmetric key based on the file
description. The same description will results in the same
keys irrespective of the node performing the computation.

2.  The public key is stored with the data and it will be used to
verify the authenticity of the data.

3.  The file is encrypted using the symmetric encryption key.
4.  The private key is used to sign the file.
5.  In order to retrieve the file, a user needs to know the file

description. This description can then be used to generate
the decryption key.

SSK example (retrieval using strings and
public keys)

String

Encrypt

Hash Public key

Private key

File and
Signature

File key

Stored file

Hash
XOR

Hash

 Aperture i

Film i

Node

Film

 Exposure i

 Lense i

Node

i

B622A17E28

 Aperture i

Node

 Lense i

Freenet indirect files (keyword CHKs pointers)

Freenet v0.7

Decentralization Similar to DHTs, two modes (darknet and
opennet), two tiers

Foundation Keywords and text strings are used to
identify data objects. Assumes small world
structure for efficiency

Routing function Clustering using node location and file
identifier. Searches from peer to peer using
text string. Path folding optimization

Routing performance Search based on Hop-To-Live, no
guarantee to locate data. With small world
property O(log(n)2) hops are required,
where n is the number of nodes.

Routing state With small world property O(log(n)2)

Reliability
No central point of failure

BitTorrent Freenet v0.7 Gnutella v0.4 Gnutella v0.7

Decentralization Centralized model Similar to DHTs, two modes
(darknet and opennet), two
tiers

Flat topology
(random graph),
equal peers

Random graph with
two tiers. Two kinds of
nodes, regular and ulta
nodes. Ultra nodes are
connectivity hubs

Foundation Tracker Keywords and text strings
are used to identify data
objects. Assumes small
world structure for efficiency

 Flooding
mechanism

Selective flooding
using the super nodes

Routing function Tracker Clustering using node
location and file identifier.
Searches from peer to peer
using text string. Path
folding optimization

Flooding
mechanism

Selective flooding
mechanism

Routing performance Guarantee to locate
data, good
performance for
popular data

Search based on Hop-To-
Live, no guarantee to locate
data. With small world
property O(log(n)2) hops are
required, where n is the
number of nodes.

Search until Time-
To-Live expires, no
guarantee to
locate data

Search until Time-To-
Live expires, second
tier improves efficiency,
no guarantee to locate
data

Routing state Constant, choking
may occur

With small world property O
(log(n)2)

Constant Constant

Reliability
Tracker keeps track of
the peers and pieces

No central point of failure Performance
degrades when the
number of peer
grows

Performance degrades
when the number of
peer grows

Summary

We can summarize that unstructured P2P networks have
favourable properties for a class of applications

The applications need to be willing to accept best effort content
discovery and exchange, and to host replicated content and
then share the content with other peers

The peers may come and go and the system state is transient
(minimal assumptions on how long each peer participates in
the network)

Key point: data can be placed on an arbitrary node, typically no
guarantees on finding the data

The dominant operation in this class of applications is keyword-
based searching for content

