
Overlay and P2P Networks

Applications

Prof. Sasu Tarkoma

11.2.2013

Contents

Today
 Bittorrent Mainline DHT
 Scribe and PAST
 P2PSIP
 Amazon’s Dynamo
 CDNs

Thursday

 Samu Varjonen: lookups and DNS

Monday

 Remaining applications
 Some advanced topics
 Summary

Bittorrent Mainline DHT

Decentralized tracker (trackerless torrent)

Based on Kademlia

Uses a custom RPC based on UDP

The key is the info-hash, the hash of the

metadata. It uniquely identifies a torrent.
The data is a peer list of the peers in the swarm

Torrents have bootstrap nodes in the overlay

BitTorrent Mainline DHT

Each peer announces itself with the distributed
tracker
 Looking up the 8 nodes closest to the info-hash
of the torrent and sending an announce
message to them

Those 8 nodes will then add the announcing peer

to the peer list stored at that info-hash

A peer joins a torrent by looking up the peer list at

a specific info-hash

Nodes return the peer list if they have it

Kademlia in Bittorrent Mainline DHT

The implementation extends the single bit model
discussed before

The single bit model can be seen to have a prefix

 first n-1 bits need to match for the nth list

The extension introduces prefix (group of bits)-based

operation with width w for digits, giving 2w – 1
 k-buckets with the missing one containing the node ID

An m-bit prefix reduces the maximum number of lookups

from log2 n to log2
w n

This results in a prefix-based routing table!

Kademlia Routing Table Revisited

Each node knows more about close nodes than distant
nodes

Key space of each bucket grows with the power of 2 with
the distance

Querying for an ID will on average halve the distance to
the target in the each step

Node distance and subtrees

Buckets

Query Routing

Goal: Find k nodes closest to ID T
Initial Phase:
•  Select α nodes closest to T from the routing table
•  Send FIND_NODE(T) to each of the α nodes in parallel
Iteration:
•  Select α nodes closest to T from the results of previous RPC
•  Send FIND_NODE(T) to each of the α nodes in parallel
•  Terminate when a round of FIND_NODE(T) fails to return

any closer nodes
Final Phase:
•  Send FIND_NODE(T) to all of k closest nodes not already

queried
•  Return when have results from all the k-closest nodes.

Node Joining & Routing Table
Evolution

Ø Joining Node (u):
ü  Borrow an alive node’s ID (w) off-

line
ü  Initial routing table has a single k-

bucket containing u and w.

11…11 00…00

1 0

Ø Inserting new entry (v)

Find bucket B with
longest common prefix as v

Is B
full?

insert

no

B has
u?

yes

Don’t insert

no

Split B, redistribute
contacts & insert v

yes

ü  u performs FIND_NODE(u) to learn about
other nodes

1
1 0

0

1

1

1 0

0

0

1

1

1 0

0

0

8/13
Petar Maymounkov and David Mazières, Kademlia:
A Peer-to-peer Information System Based on the XOR Metric. Presentation at IPTPS 2002.

Comparisons

Kademlia and Chord
 Chord has only one direction on the ring
 Incoming traffic cannot be used to improve
routing table
 But Chord has pred/succ (sequential
neighbours)

Kademlia and Pastry

 Pastry has more complex table
 Pastry has sequential neighbours

What about Mainline DHT in practice?

Implementation details

Mainline DHT implements Kademlia with a width
of 2, and k = 8 nodes in each bucket

 Keys are replicated on the three nodes with

nodeID nearest the key with a 30-minute
timeout

If a node fails, the keys will be lost

Nodes learn implicitly

 Iterative queries, incoming messages
 Lazy removal
 Ping LRU node when bucket full

Reported Problems with Mainline DHT

An Analysis of BitTorrent’s Two Kademlia-Based DHTs
Scott A. Crosby and Dan S. Wallach, 2007
Do the DHTs work correctly? No. Mainline BitTorrent dead-ends

its lookups 20% of the time and Azureus nodes reject half of the
key store attempts.

What is the DHT lookup performance? Both implementations are
extremely slow, with median lookup times around a minute.

Why do lookups take over a minute? Lookups are slow because
the client must wait for RPCs to timeout while contacting dead
nodes. Dead nodes are commonly encountered in the area
closest to the destination key.

Why are the routing tables full of dead nodes? Kademlia’s use of
iterative routing limits the ability for a node to opportunistically
discover dead nodes in its routing table (refresh. explicit ping)

Design Problems

Iterative search can return dead nodes (no checking)
 Recursive routing would implicitly define liveness

Dead nodes are pruned only with refresh or explicit

ping

XOR metric

 cannot enumerate nodes (as in Pastry or Chord)

Nodes can be ordered based on distance to given key

PAST

PAST: Cooperative, Archival File Storage and
Distribution

Runs on top of Pastry, pastry routes to closest live

nodeId

Strong persistence, high availability, scalability

API:

 Insert: store replica of a file at k diverse storage
nodes
 Lookup: retrieve file from a nearby live storage node
 Reclaim: free storage associated with a file

Files are immutable!

PAST File Storage

Storage Invariant:
File “replicas” are
stored on k nodes
with nodeIds
closest to fileId

(k is bounded by
the leaf set size)

fileId

Insert fileId

k=4

PAST File Retrieval

fileId file located in log16 N
steps (expected)

usually locates
replica nearest client
C

Lookup

k replicas C

PAST Features

Caching
 Nodes cache on nodes along the route of
lookup and insert messages (as in Freenet)
 Aim to balance load

Security

 No read access control, encryption can be used
 File authenticity with certificates
 System integrity: ids non-forgeable, sign
sensitive messages
 Randomized routing

SCRIBE

SCRIBE: Large-scale, decentralized multicast

Intrastructure to support topic-based publish/

subscribe applications

Reasonable performance
compared to IP multicast

topicId

Subscribe topicId

Publish topicId

Session Initiation Protocol (SIP)

An Application-layer control (signaling) protocol for
creating, modifying and terminating sessions
with one or more participants

Sessions include Internet multimedia conferences,

Internet telephone calls and multimedia
distribution

Members in a session can communicate via

multicast or via a mesh of unicast relations, or a
combination of these

Text based, model similar to HTTP

DNS
Server

Location
Service

Proxy Server Proxy Server

User Agent
Bob

User Agent
Alice

Internet
DNS

SIP (SDP)

 SIP
(SDP)

 SIP
(SDP)

Media (RTP)

Location lookup

P2P SIP

SIP is already ready for P2P
 Active standardization in IETF

Uses symmetric, direct client-to-client communication

Intelligence resides mostly on the network border in the user

agents
 The proxies and the registrar only perform lookup and routing
The lookup/routing functions of the proxies/registrar can be

replaced by a DHT overlay built in the user agents.
By adding join, leave and lookup capabilities, a SIP user agent can

be transformed into a peer capable of operating in a P2P
network

User Agent
Bob

User Agent
Alice

Internet

 SIP
(SDP)

 SIP
(SDP)

Media (RTP)

Proxy
(SIP/DHT)

Proxy
(SIP/DHT)

Proxy
(SIP/DHT) Proxy

(SIP/DHT)

Proxy
(SIP/DHT)

DHT

Amazon Dynamo Motivation

Aim is to store various kinds of data and have high
availability

Build a distributed storage system:

Scale
Simple: key-value
Highly available
Guarantee Service Level Agreements (SLA)

Based on the SOSP 2007 presentation and paper:
Dynamo: Amazon’s Highly Available Key-value
Store

Client requests

Request routing

…
Page rendering
components

Aggregator
services

Request routing
Services

Amazon
S3 Other

datastores

Dynamo instances

System Assumptions and
Requirements

Query Model: simple read and write operations to a data
item that is uniquely identified by a key

ACID Properties: Atomicity, Consistency, Isolation,

Durability

Efficiency: latency requirements which are in general

measured at the 99.9th percentile of the distribution

Other Assumptions: operation environment is assumed to be

non-hostile and there are no security related
requirements such as authentication and authorization

Service Level Agreements (SLA)

Application can deliver its functionality in bounded time:
Every dependency in the platform needs to deliver its
functionality with even tighter bounds

Example: service guaranteeing that it will provide a response
within 300ms for 99.9% of its requests for a peak client load
of 500 requests per second

Service-oriented
architecture of

Amazon’s platform

Dynamo Design Consideration

Sacrifice strong consistency for availability

Conflict resolution is executed during read instead of write

 Use quorums and other techniques

Other principles:

Incremental scalability
Symmetry
Decentralization
Heterogeneity

CAP Theorem

CAP, first conceived in 2000 by Eric Brewer and
formalized into a theorem in 2002 by Nancy Lynch

A useful model for describing the fundamental

behavior of NoSQL systems

CAP is generally described as following:

 Of three desirable properties you want in your
system: consistency, availability and tolerance
of network partitions,

 you can only choose two.

Summary of techniques used in
Dynamo and their advantages

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes Vector clocks with
reconciliation during reads

Version size is decoupled
from update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff (use

another server for replica
if proper one is not

available)

Provides high availability
and durability guarantee

when some of the replicas
are not available.

Recovering from
permanent failures

Anti-entropy using Merkle
trees (summarization of

key ranges of virtual
nodes)

Synchronizes divergent
replicas in the
background.

Membership and failure
detection

Gossip-based
membership protocol and

failure detection.

Preserves symmetry and
avoids having a

centralized registry for
storing membership and

node liveness information.

Dynamo Implementation

Data Stores
Nodes in the system are spread around a logical circle
Nodes are responsible for the region between it and its
predecessor
Virtual nodes are evenly dispersed and appear to be
regular nodes in the system, but in reality are just
handled by the nodes of the system
Can be geographically distributed

Object Data
Uses hashing of an object’s key to determine where to
store the object
Each object is replicated across N nodes (N-1
successor nodes to the coordinator node)

Consistent Hashing Revisited

Properties
 Smoothnessàaddition of bucket does not cause
movement between existing buckets
 Spread & Loadàsmall set of buckets that lie near object
 Balanceàno bucket is responsible for large number of
objects

Moderate load imbalance is possible
Virtual nodes address this
Log n replication factor gives O(items/n) balance with high

probability for a high number of uniformly distributed
items

Partition Algorithm

Consistent hashing: the output
range of a hash function is treated
as a fixed circular space or “ring”.

”Virtual Nodes”: Each node can
be responsible for more than one
virtual node.

Virtual nodes are needed to
address data/node imbalance
problem

B

C

D E

F

G
A

Key
K

Nodes B, C
and D store
keys in
range (A, B)
including K

Replication

Each data item is replicated
at N hosts

“preference list”: The list of
nodes that is responsible for
storing a particular key

B

C

D E

F

G
A

Key
K

Nodes B, C
and D store
keys in
range (A, B)
including K

Data Versioning

A put() call may return to its caller before the
update has been applied at all the replicas

A get() call may return many versions of the same

object

Challenge: an object having distinct version sub-

histories, which the system will need to
reconcile in the future

Solution: uses vector clocks in order to capture

causality between different versions of the
same object

Vector Clock

A vector clock is a list of (node, counter) pairs

Every version of every object is associated with

one vector clock

If the counters on the first object’s clock are less-

than-or-equal to all of the nodes in the second
clock, then the first is an ancestor of the second
and can be forgotten

Sloppy Quorum

The sloppy quorum technique is used to handle
temporal faults

Read/Write involve N nodes (preference list)
R/W is the minimum number of nodes that must

participate in a successful read/write operation

Setting R + W > N yields a quorum-like system.

In this model, the latency of a get (or put)

operation is dictated by the slowest of the R (or
W) replicas

R and W are usually configured to be less than N,

to provide better latency

Typical values (3,2,2)

Gossip

A gossip-based protocol propagates membership
changes and maintains an eventually consistent
view of membership

Each node contacts a peer chosen at random

every second

The two nodes efficiently reconcile their persisted

membership change histories.

Also reconcile position information on the ring

(virtual buckets)

Hinted handoff

The hinted handoff is also used to handle temporal
faults

Assume N = 3. When A is temporarily down or
unreachable during a write, send replica to D

D is hinted that the replica belongs to A and it will
deliver to A when A is recovered

As a result A is always writable

Dynamo Execution

Writes
Requires generation of a new vector clock by coordinator
Coordinator writes locally
Forwards to N nodes, if W-1 respond then the write was
successful

Reads
Forwards to N nodes, if R-1 respond then forwards to user
Only unique responses forwarded
User handles merging if multiple versions exist

Results

Their response requirement is 300ms for any request (read
or write)

Dynamo Summary

“Eventually” consistent data store
Always writable
Decentralized
All nodes have the same responsibilities

Amazon.com’s Resolution

Weakening consistency property in the system
Increase the availability

Content Delivery Networks (CDN)

Geographically distributed network of Web servers around
the globe (by an individual provider, E.g. Akamai).

Improve the performance and scalability of content retrieval.

Allow several content providers to replicate their content in a

network of servers.

Motivation

Network cost
 Huge cost involved in setting up clusters of servers
around the globe and corresponding increase in network
traffic

Economic cost

 Higher cost per service rate making them inaccessible to
lower and medium level customers

Social cost

 Monopolization of revenue

CDN Technology

Intelligent wide area traffic management
 Direct clients’ requests to optimal site based on
topological proximity

Two types of redirection: DNS redirection or URL rewriting

Cache

 Saves useful contents in cache nodes.

 Two cache policies: least frequently used standard and
least recently used standard.

CDN Types (Skeletal)

CDNs

Hosting CDN Relaying CDN

Partial Site
Content Delivery

Full Site Content
Delivery

URL
Rewriting

DNS based

Request Routing Techniques

45

CDN

Replicate content on many servers

Challenges

How to replicate content
Where to replicate content
How to find replicated content
How to choose among known replicas

How to direct clients towards replica

DNS, HTTP redirect, anycast, etc.

Akamai

46

Server Selection

Service and content is replicated in many places in network

How to direct clients to a particular server?

As part of routing à anycast, cluster load balancing
As part of application à HTTP redirect
As part of naming à DNS

Which server to use?

Best performance à to improve client performance
Based on Geography? RTT? Throughput? Load?

Lowest load à to balance load on servers
Any active node à to provide availability

CDN Architecture

Surrogate
Surrogate

Request
Routing

Infrastructure
Distribution

and
Accounting

Infrastructure

CDN

Origin
Server

Client Client

DNS

CDN DNS

CDN

Client ISP
Clients

1
6

2 3

5

4

redirection
Content
Provider

Client
DNS

(Local
DNS

server for
client)

CDN Type Coverage Solutions
Akamai Commercial

CDN service including
streaming data

Market leader Edge platform for
handling static and
dynamic content, DNS-
based request-routing

Limelight
Networks

Commercial
On-demand distribution, live
video, music, games, …

Surrogate servers in
over 70 locations in the
world

Edge-based solutions
for content delivery,
streaming support,
custom CDN for
custom delivery
solutions, DNS-based
request-routing

Coral Academic
Content replication based on
popularity (on demand),
addresses flash crowds

Experimental,
hosted on PlanetLab

Uses a DHT algorithm
(Kademlia), support for
static content, DNS-
based request-routing

CoDeeN Academic testbed
Caching of content and
redirection of HTTP requests

Experimental,
hosted on PlanetLab,
collaborative CDN

Support for static
content, HTTP direction
Consistent hashing for
mapping data to
servers

Globule Academic
Replication of content, server
monitoring, redirection to
available replicas

Apache extension,
Open Source
collaborative CDN

Support for static
content, monitoring
services, DNS-based
request-routing

Akamai

Clients fetch html document from primary server
URLs for replicated content are replaced in html

Client resolves aXYZ.g.akamaitech.net hostname

Akamai.net name server returns NS record for

g.akamaitech.net
G.akamaitech.net nameserver choses server

in region

Should try to choose server that has file in

cache - How to choose?

Uses aXYZ name and consistent hash

51

How Akamai Works

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 3

4

Akamai high-level DNS server

Akamai low-level DNS server

Akamai server

10

6
7

8

9

12

Get
index.
html

Get /cnn.com/foo.jpg

11

Get foo.jpg

5

Source: www.cs.cmu.edu/~srini/15-744/S08/lectures/17-DNS.ppt

Coral: An Open CDN

Implement an open CDN
Allow anybody to contribute
Works with unmodified clients
CDN only fetches once from origin server

Runs in PlanetLab
Based on NSDI 2004 presentation and paper

Origin
Server

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv Coral

httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Coral
httpprx
dnssrv

Browser

Browser

Browser

Pool resources to dissipate flash crowds

52

Using CoralCDN

Rewrite URLs into “Coralized” URLs

www.x.com → www.x.com.nyud.net:8090

Coral distributes the load

Who might “Coralize” URLs?
Web server operators Coralize URLs
Coralized URLs posted to portals, mailing lists
Users explicitly Coralize URLs

53

Resolver Browser

Coral
dns srv
http prx Coral

dns srv
http prx

Coral
dns srv
http prx

Coral
dns srv
http prx

Coral
dns srv
http prx

4 4

2
5

3

9

8,11

1 6

7
10 www.x.com

.nyud.net

www.x.com
.nyud.net/

Coral
dns srv
http prx Coral

dns srv
http prx

DNS Redirection

Return proxy,
preferably one
near client

Cooperative
Web Caching

Coral Server Discovery

 Each Coral server inserts its IP network prefix as
key, its IP address as value

 DNS server does DHT lookup on client IP prefix
to find nearby Coral server

 Each Coral server uses traceroute to find nearby

routers
 Registers itself under IP of each nearby router
 Coral DNS server traceroutes to client
 Looks up each router IP address in mapping

Hierarchical DHT

A hierarchy of DHTs, with clustering at lower
levels
 DHT based on XOR metric

 Nearby (< 20 ms) Coral nodes form an L2 DHT
 L1: 60 ms
 L0: global
 Search in L2 DHT first
 If nearby copy exists, will find it first
 Only search L1, L0 if miss in lower level

Finding URLs

Look up the URL in a DHT
 key=URL, value=IP addr of Coral cache that
has the URL

 Coral cache fetches the page from that other
cache

 If DHT had more than one value for key, fetch

page from more than one
 In case one is down or slow

Return servers within appropriate cluster
e.g., for resolver RTT = 19 ms, return from cluster < 20 ms

Use network hints to find nearby servers
i.e., client and server on same subnet

Otherwise, take random walk within cluster

DNS measurement mechanism

Resolver

Browser
Coral
httpprx
dnssrv

Server probes client (2 RTTs)

Coral
httpprx
dnssrv

Key-based XOR routing
000… 111… Distance to key

None

< 60 ms

< 20 ms

Thresholds

Minimizes lookup latency
Prefer values stored by nodes within faster clusters

Prevent insertion hotspots

NYU

Halt put routing at full and loaded node
Full → M vals/key with TTL > ½ insertion TTL
Loaded → β puts traverse node in past minute

Store at furthest, non-full node seen

n  Store value once in each level cluster
n  Always storing at closest node causes hotspot

…

(log n) β reqs / min

Coral lacks…
Central management
A priori knowledge of network topology

Anybody can join system
Any special tools (e.g., BGP feeds)

Coral has…
Large number of vantage points to probe topology
Distributed index in which to store network hints
Each Coral node maps nearby networks to self

Challenges for DNS Redirection

Coral DNS server probes resolver

Once local, stay local
 When serving requests from nearby DNS resolver

Respond with nearby Coral proxies
Respond with nearby Coral DNS servers

 → Ensures future requests remain local

Else, help resolver find local Coral DNS server

Coral’s DNS Redirection

Internet Indirection Infrastructure (i3)

•  A DHT - based overlay network
–  Based on Chord

•  Aims to provide more flexible communication model than
current IP addressing

•  Also a forwarding infrastructure
–  i3 packets are sent to identifiers
–  each identifier is routed to the i3 node responsible for

that identifier
–  the node maintains triggers that are installed by

receivers
–  when a matching trigger is found the packet is

forwarded to the receiver

i3 II

•  An i3 identifier may be bound to a host, object, or a
session

•  i3 has been extended with ROAM
–  Robust Overlay Architecture for Mobility
–  Allows end hosts to control the placement of

rendezvous-points (indirection points) for efficient
routing and handovers

–  Legacy application support
•  user level proxy for encapsulating IP packets to i3

packets

Source: http://i3.cs.berkeley.edu/

R inserts a trigger (id, R) and receives
all packets with identifier id.

the host changes its address from R1 to R2,
it updates its trigger from (id, R1) to (id, R2).

Mobility is transparent for the sender

Source: http://i3.cs.berkeley.edu/

A multicast tree using a hierarchy of triggers

Source: http://i3.cs.berkeley.edu/

Anycast using the longest matching prefix rule.

Source: http://i3.cs.berkeley.edu/

Sender-driven service composition using
a stack of identifiers

Receiver-driven service composition using
a stack of identifiers

Summary

Key applications
 Kademlia and Mainline DHT (XOR geometry)
 PAST and SCRIBE (Pastry)
 Akamai (consistent hashing)

 Amazon (Dynamo, consistent hashing, ring geometry)
 Coral (XOR geometry)

The Cloud

…
Google Microsoft

Amazon
Yahoo …

