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BIOLOGICAL NETWORK INFERENCE




Networks in biology

» Network is a useful formalism for many biological phenomena
» Example networks:

» Transcription regulation networks

» Protein-protein interaction networks

» Metabolic networks

» Signal transduction networks

v

Here we focus on prediction of interactions in the network

v

The course 582653 Computational Methods of Systems Biology looks
network analysis more in depth
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Transcriptional regulation networks

Lac operon circuit

» Describe the relationships between PO e @ 08

genes encoding regulatory proteins
(Transcription factors) and the
genes they regulate by binding to
promoter region (top figure).

» Network nodes correspond to
genes (below figure)

» Edges A = B correspond to
regulatory relations 'product of
gene A controls the transcription
of gene B’

» Positive (enhancer) or negative
(repressor) regulation may be
indicated by signs or special
arrowheads (Lee et al., Science Vol. 298, 2002 )
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Protein interaction networks (PPI)

» Protein(-protein)
interaction (PPI) network
models two kinds of
interactions:

» Proteins binding to
each other and
functioning as a
complex

» Proteins catalyzing
biochemical reactions
sharing a metabolite
(enzyme network)

W
b

fi P

> Represented as undirected
networks with proteins as
nodes and the interactions
as edges
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Metabolic networks

» Metabolism is responsible
of providing the cell with
energy and building blocks
for cell growth

» Metabolic networks are
composed of biochemical
reactions, catalyzed by
enzymes (proteins) and
metabolites that
participate in the reactions
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Representing metabolic networks as graphs

For structural analysis of metabolic networks, the most frequently
encountered representations are:

» Enzyme interaction network
» Reaction graph
» Substrate graph (also called metabolite graph)
More detailed representations:
» Bi-partite graph: both reactions and metabolites as nodes
» Atom-level representations
» Boolean circuits (AND-OR graphs)
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Enzyme interaction networks

» Enzymes as nodes

> Link between two enzymes
if they catalyze reactions
that have common
metabolites

» A special kind of
protein-protein interaction -
network
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Interactions of the first kind: Physical interactions

Physical interactions (typically: binding of molecules, forming a complex)
between molecules:

» Protein and DNA: transcription factor proteins, epigenetic silencers,
histones ...

» Protein and RNA: ribosomes, transcriptase proteins, ...

» Protein and Protein: protein complexes, (some) metabolic pathways,

» Protein and Small molecule: enzymes, metabolic regulation, signaling,
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Interactions of the second kind: Abstract interactions

We will often look at abstract or logical interactions between the
components, rather than mapping physical interactions:
» Gene regulatory network: 'gene A’ negatively regulates 'gene B’

» Biologically: transcription factor protein produced by A, binds to the
promotor region of B, thus repressing the transcription of B

» Enzyme interaction network: enzyme E; interacts with enzyme E;
» Biologically: both enzymes catalyze biochemical reactions that involve
metabolite molecule M (e.g. puryvate)
» Correlated behavior: gene A has similar/dependent behaviour to gene
B in a set of experiments—do not necessarily need to have direct
regulatory relationship, although often they have
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Supervised inference of biological networks

» We will review a machine learning method for inferring missing edges
in biological networks.

» Source: Jean-Philippe Vert: Reconstruction of biological networks by
supervised machine learning approaches. In Huma M. Lodhi, Stephen

H. Muggleton: Elements of Computational Systems Biology, Wiley,
2010, pp. 165-186
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Graph reconstruction as a pattern recognition problem

> Assume a set of nodes
V ={w,...,v,} corresponding to
the biological entity of interest
(here: genes or proteins)

» Each node has an associated
feature vector ¢(v) describing the
node, composed of different data
sources available for the node

» We wish to reconstruct a set of
edges E C V x V that define the
biological network
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Data sources for interaction prediction

Indirect data for learning interations:
» Sequence information
» Gene co-expression
» Phylogenetic profiling
» Sub-cellular localization
Direct interaction data

» Yeast-two-hydrid - direct measurement of PPls

» ChIP-seq/ChlIP-chip - direct measurement of Protein-DNA binding

1.12.2011

12 /37



Sequence information

» Most abundant type of
data around

» Rationale: interaction
partners of a protein
might have similar
sequences, e.g. sharing a
binding domain

0 1.12.2011 13 /37



Gene co-expression

» Abundant data in online
databases such as Gene
Expression Omnibus
(http://www.ncbi.nlm.
nih.gov/geo/)

» High-throughput
measurements of the
whole transcriptome
(Microarray data,
RNA-sec data)

» Rationale: Genes that are
expressed in similar
conditions are more likely
to interact than others

ErgoszazRas0
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Phylogenetic profiling

» Phylogenetic profile denotes the occurrence of a given protein in a set

of species

» Proteins with similar profiles more likely to interact than others

Gene 1

fes

Gene Organism A Organism B Organism C Organism D Organism E Organism F

Yes MNo Yes Mo Yes

Gene 2 Yes Yes No Na Yes No

Gene 3 Mo Mo Yes No Yag Yog

Gene 4 Yes No Yes Yes No No

Gene 5 Mo Yes Yes Mo Yas Yes

Gene & No Mo Yes No Yes Yes
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Subcellular localization

» Subcellular localization
denotes where in the cell
certain protein is
encountered

» Proteins in same
subcellular location are
more likely to interact
than others

» LOCATE database lists
protein locations with
respect over 30 subcellular
locations

- \/\/)LJ\ /'\/j

e PR o% o\/m
|

http: //locate imb.uq.edu.au/
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Yeast two-hybrid system

» Takes advantage of the modular
structure of eukaryotic
transcription factors

» DNA-binding domain (BD)
responsible of attaching the TF
to the binding site

» Activation domain (AD) that is
responsible of activating the
transcription b

» The two domains still function as
a TF if they are close proximity to

No interaction

GAL4-binding site Reporter gena

Pasitive intaraction

Increased transcription

each other, but do not function if I T e
they are expressed as individual
polypeptides

» Do not need to be physically
part of the same molecule
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Yeast two-hybrid system

» BD is fused with one of the
potentially interacting protein X
to make a "bait” protein

» AD is fused with the other
potentially interacting protein Y \ N
to make a " prey” protein GALA-binding site Aeparter gene

» If X binds with Y, BD and AD are
brought close each other, and the
whole complex starts to work as a T
TF, activating the reporter gene A

GAL4-binding site Reparter gane

No interaction

Pasitive interaction

Increased transcription

» The increased expression of the
reporter is taken as a signal of the
interaction
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de novo inference vs. graph completion

» de novo inference would entail predicting the set of edges E from the
feature vectors of the nodes alone
» This is very hard statistically
> In biology, part of the network is typically "known” already but this
information is not used!
» Instead we will assume that part of the network is already known, and
our task is to complete the netowrk by filling in the missing edges
» Potentially an easier task
» Conforms better to the way biologist work
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Global and local models

The graph completion problem can be solved by global or local models

> A global model is trained to
predict the absense or presence of
any edge in the network, single
model is needed

» A local model predicts the edges

adjacent to a seed node, need one +1
model per node 0k
-1
> In both cases the know.n .edges are O -1 T°0- 02
used to construct a training set 4, 0 N
. . . A
from which a predictive model is O 1 0>

learned
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Graph completion as binary classification

» We will formulate graph completion problem a binary classification
problem (-1 = absence of an edge, 1= presence of an edge)

» Well studied branch of machine learning with many algorithms:
decision trees, k nearest neighbor, Naive bayes.

» Here the method of choice is the support vector machine (SVM)
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Obtaining negative examples

» For binary classification we need knowledge about edges that are
known to be absent

» This is challenging as most of biological data available is positive
data, interactions known to be present

» We need to generate pseudo-negative examples: take random pairs of
nodes that are not connected and declare them absent

» Chance of introducing errors to the network
» Use background knowledge to choose negative examples in order to
decrease this chance
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Graph inference with local models

1. Take a single node v as the center

for which we predict the
neighbours (nodes connected with
the center)

. Create a local training set

Sy ={(u1,n1),- -, (un,, yn,)) 1
where (v, u;) belong to the known
part of the network (known to
present(y; = 1) or absent
(vi=-1))

. Construct a kernel for the local
training set

Ky (u,u') = (¢(u), ¢(u')) using

the data available for the nodes

+1

O +1 \?

1.12.2011 23 /37



Graph inference with local models

4. Train an SVM model h, for the
node v using the local training set

5. Predict the label for each pair

(v, V) that is outside the known P

part of the network: ?
-1
N ST
) v _1 Y = ?
h,(v') = sign (Z a;iKyv (vi, Vl)%) -1 @ R O

i=1 ~
O +1 ?
6. Repeat the procedure for all nodes
in the graph and complete the
graph by adding all positively
predicted edges
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Rationale behind the method

The approach relies on the node feature vectors ¢(v') to provide
information on which nodes the seed node is likely to interact with

» e.g. nodes are genes and features are gene expression profiles and the
goal is to predict regulatory interactions

» Then we assume that the expression profiles of genes regulated by the
gene share features distinct from the features of other genes

» The classifier learns which of the features are predictive of the
interaction
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Use for undirected graphs

» The approach is directly applicable for directed graphs.

» For undirected graphs, each undirected training pair {v, v’} should be
considered twice, once in each direction.

» To extract the prediction for an undirected edge, the two directed
predictions should be combined e.g. by averaging the scores:

F({u,v}) = (B (u) + 1u(v)) /2,

where we denote by f,(u) = (w, ¢(u)) + b the SVM score for edge
(v, u) of local classifier at node v.

» If average score is positive predict an edge {u, v}.
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Pros and cons of the local method

» Splitting a large network problem into a set of local problems can be
beneficial in terms of computation time

» Time to train and predict in each node gets smaller
> Parallel architectures can be easily used as the local problems are
treated independent

» Data fragmentation is a potential pitfall: if there are not enough
examples for some seed nodes, accuracy of the model can suffer
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Graph inference with global models

» Local approach splits the data into independent units
» Information sharing between the local problems is not possible

» e.g. if (u,v) interact, u is similar to v’ and v is similar to v/, the pair
(v, V') is likely to interact a well

» The local approach only uses pairs with a single node as the center,
so this information is not used

» To make use of the above kind of information, the model needs to be
defined on edges (or pairs of nodes), not single nodes
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Graph inference with global models

» We wish to represent each pair of nodes by a feature vector ¢ (u, v)
which should contain features predictive of the interaction of that pair

» Using this representation the classifier then learns to separate
interacting pairs from non-interaction

» However, our feature vectors ¢(v) are defined on nodes

' (1,2) $
1 ®
” 2,4)
) \_ .( % Y
4
LE 1,3 © 5
3 2@ (1,4) o] (3,4)
Known graph Genomic data ’
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Features for pairs of nodes

» Consider building a feature representation 1(u, v) for pairs of nodes
from feature representations of the nodes
» We want to enable learning from correlations of node features: ¢4 (u)
and ¢;(v) co-occur in the data
» Without assuming that exactly the same features are present
> e.g sequence motif k in protein u co-occurs with sequence motif / in
protein v
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Features for pairs of nodes

v

To build all feature pairs we take the tensor product (also called outer
product or direct product):

d

Y(u,v) = ¢(u) ® ¢(v) = (¢k(u) : ¢I(V))k,/:1

The feature vector now maps all feature pairs between the two nodes

v

v

The above feature representation ¢ (u, v) is not symmetrical: the
positions os u and v matter

v

For undirected graphs we average the directed features

Yreek({u, v}) = (¥(u, v) + (v, u)) /2

0 1122011  31/37



Tensor product pairwise kernel (TPPK)

» The kernel, called Tensor product pairwise kernel (TPPK)

Krepk({u, v}, {u',v'}) = (Wrppi (u, v), drppk (U, V')

represents similarity of two pairs of nodes

» The classifier can now learn which co-occurring features are predictive
of the interaction

» Because of the properties of tensor product, computation of a kernel
from the feature representation is easy:

KTPPK ({U, V}, {u', V/}) =
(Ky(u,d') - Ky(v,V') + Ky(u,V') - Ky(v,u')) (1)

where Ky (u, u') = (¢(u), #(u')) is the kernel similarity of nodes.

» The kernel can be built from similar data sources as the local models
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Putting it together

v

With the global model, the training and prediction setup is
straight-forward

v

We take the training set of pairs S = {(e1,y1), ..., (en,yn)}

v

Train a single SVM model

v

For each pair not in the training set, predict with SVM using the
TPPK kernel

N
f({u,v}) = sign (Z aiKrppk(ei, {u, v})y;)

i=1
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Experiments in PPl inference

Compared methods (not explained here):
» MLPK-global model with a different kernel
» kCCA—kernel canonical correlation analysis
> em—expectation maximization based method
» Direct—de novo inference predicting edges between similar edges

1

w 0.8 0.8
2
£
S06 S 06
o &
= (=)
= —Local | & —Local
5 0.4] 0.4
e —TPrK| © —TPPK
= —MLPK —MLPK
T o2 —Direct 0.2 — Direct
—kCCA —kCCA
0 —em 0 —em
0 0.8 1 0 0.2 0.4 0.6 0.8 1

0.2 0.4 0. .
Ratio of false positives

"Recall
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Experiments in enzyme interaction network inference

Compared methods (not explained here):

>

MLPK-global model with a different kernel
kCCA—kernel canonical correlation analysis
em—expectation maximization based method

Direct—de novo inference predicting edges between similar edges
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Experiments for transcription regulation network inference

» Input data: gene expression data of E. coli bacteria

» Stratified cross-validation scheme used:
» Genes that are part of the same operon typically behave very similarly
» Given one gene from the operon in the training set, it is very easy to
predict the others
» Considered to artificially boost the predictive accuracy
» This problem is avoided if all genes of an operon belong to the training
set or test set at the same time

The lac Operon and its Control Elements

lacl cap P o facZ facY  lacA : genes
. - - - 3 DNA
site |
AUG s AUG
» messenger RNA
s s s
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Experiments in transcription regulation network inference

Compared methods:
» SIRENE - local supervised model stratified for operon sharing
» SIRENE-bias - local supervised model without stratification

» CLR - context likelihood of relatedness algorithm
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Figure 6: Comparison of the CLR method and the local pattern recognition approach (called
SIRENE] on the reconstruction of a regulatory network: ROC (left) and precision/recall (right)
curves. The curve STRENE- Bias corresponds to the performance of STRENE with a cross-validation
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