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Networks in biology

I Network is a useful formalism for many biological phenomena
I Example networks:

I Transcription regulation networks
I Protein-protein interaction networks
I Metabolic networks
I Signal transduction networks

I Here we focus on prediction of interactions in the network

I The course 582653 Computational Methods of Systems Biology looks
network analysis more in depth
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Transcriptional regulation networks

I Describe the relationships between
genes encoding regulatory proteins
(Transcription factors) and the
genes they regulate by binding to
promoter region (top figure).

I Network nodes correspond to
genes (below figure)

I Edges A =⇒ B correspond to
regulatory relations ’product of
gene A controls the transcription
of gene B’

I Positive (enhancer) or negative
(repressor) regulation may be
indicated by signs or special
arrowheads (Lee et al., Science Vol. 298, 2002 )
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Protein interaction networks (PPI)

I Protein(-protein)
interaction (PPI) network
models two kinds of
interactions:

I Proteins binding to
each other and
functioning as a
complex

I Proteins catalyzing
biochemical reactions
sharing a metabolite
(enzyme network)

I Represented as undirected
networks with proteins as
nodes and the interactions
as edges

() 1.12.2011 4 / 37



Metabolic networks

I Metabolism is responsible
of providing the cell with
energy and building blocks
for cell growth

I Metabolic networks are
composed of biochemical
reactions, catalyzed by
enzymes (proteins) and
metabolites that
participate in the reactions

E.Coli glycolysis, EMP database,

www.empproject.com
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Representing metabolic networks as graphs

For structural analysis of metabolic networks, the most frequently
encountered representations are:

I Enzyme interaction network

I Reaction graph

I Substrate graph (also called metabolite graph)

More detailed representations:

I Bi-partite graph: both reactions and metabolites as nodes

I Atom-level representations

I Boolean circuits (AND-OR graphs)
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Enzyme interaction networks

I Enzymes as nodes

I Link between two enzymes
if they catalyze reactions
that have common
metabolites

I A special kind of
protein-protein interaction
network
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Interactions of the first kind: Physical interactions

Physical interactions (typically: binding of molecules, forming a complex)
between molecules:

I Protein and DNA: transcription factor proteins, epigenetic silencers,
histones . . .

I Protein and RNA: ribosomes, transcriptase proteins, . . .

I Protein and Protein: protein complexes, (some) metabolic pathways,
. . .

I Protein and Small molecule: enzymes, metabolic regulation, signaling,
. . .
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Interactions of the second kind: Abstract interactions

We will often look at abstract or logical interactions between the
components, rather than mapping physical interactions:

I Gene regulatory network: ’gene A’ negatively regulates ’gene B’
I Biologically: transcription factor protein produced by A, binds to the

promotor region of B, thus repressing the transcription of B

I Enzyme interaction network: enzyme E1 interacts with enzyme E2

I Biologically: both enzymes catalyze biochemical reactions that involve
metabolite molecule M (e.g. puryvate)

I Correlated behavior: gene A has similar/dependent behaviour to gene
B in a set of experiments—do not necessarily need to have direct
regulatory relationship, although often they have
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Supervised inference of biological networks

I We will review a machine learning method for inferring missing edges
in biological networks.

I Source: Jean-Philippe Vert: Reconstruction of biological networks by
supervised machine learning approaches. In Huma M. Lodhi, Stephen
H. Muggleton: Elements of Computational Systems Biology, Wiley,
2010, pp. 165-186
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Graph reconstruction as a pattern recognition problem

I Assume a set of nodes
V = {v1, . . . , vn} corresponding to
the biological entity of interest
(here: genes or proteins)

I Each node has an associated
feature vector φ(v) describing the
node, composed of different data
sources available for the node

I We wish to reconstruct a set of
edges E ⊂ V × V that define the
biological network
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Data sources for interaction prediction

Indirect data for learning interations:

I Sequence information

I Gene co-expression

I Phylogenetic profiling

I Sub-cellular localization

Direct interaction data

I Yeast-two-hydrid - direct measurement of PPIs

I ChIP-seq/ChIP-chip - direct measurement of Protein-DNA binding
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Sequence information

I Most abundant type of
data around

I Rationale: interaction
partners of a protein
might have similar
sequences, e.g. sharing a
binding domain
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Gene co-expression

I Abundant data in online
databases such as Gene
Expression Omnibus
(http://www.ncbi.nlm.
nih.gov/geo/)

I High-throughput
measurements of the
whole transcriptome
(Microarray data,
RNA-sec data)

I Rationale: Genes that are
expressed in similar
conditions are more likely
to interact than others
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Phylogenetic profiling

I Phylogenetic profile denotes the occurrence of a given protein in a set
of species

I Proteins with similar profiles more likely to interact than others
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Subcellular localization

I Subcellular localization
denotes where in the cell
certain protein is
encountered

I Proteins in same
subcellular location are
more likely to interact
than others

I LOCATE database lists
protein locations with
respect over 30 subcellular
locations

http://locate.imb.uq.edu.au/
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Yeast two-hybrid system

I Takes advantage of the modular
structure of eukaryotic
transcription factors

I DNA-binding domain (BD)
responsible of attaching the TF
to the binding site

I Activation domain (AD) that is
responsible of activating the
transcription

I The two domains still function as
a TF if they are close proximity to
each other, but do not function if
they are expressed as individual
polypeptides

I Do not need to be physically
part of the same molecule
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Yeast two-hybrid system

I BD is fused with one of the
potentially interacting protein X
to make a ”bait” protein

I AD is fused with the other
potentially interacting protein Y
to make a ”prey” protein

I If X binds with Y , BD and AD are
brought close each other, and the
whole complex starts to work as a
TF, activating the reporter gene

I The increased expression of the
reporter is taken as a signal of the
interaction
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de novo inference vs. graph completion

I de novo inference would entail predicting the set of edges E from the
feature vectors of the nodes alone

I This is very hard statistically
I In biology, part of the network is typically ”known” already but this

information is not used!

I Instead we will assume that part of the network is already known, and
our task is to complete the netowrk by filling in the missing edges

I Potentially an easier task
I Conforms better to the way biologist work
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Global and local models

The graph completion problem can be solved by global or local models

I A global model is trained to
predict the absense or presence of
any edge in the network, single
model is needed

I A local model predicts the edges
adjacent to a seed node, need one
model per node

I In both cases the known edges are
used to construct a training set
from which a predictive model is
learned
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Graph completion as binary classification

I We will formulate graph completion problem a binary classification
problem (-1 = absence of an edge, 1= presence of an edge)

I Well studied branch of machine learning with many algorithms:
decision trees, k nearest neighbor, Naive bayes.

I Here the method of choice is the support vector machine (SVM)
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Obtaining negative examples

I For binary classification we need knowledge about edges that are
known to be absent

I This is challenging as most of biological data available is positive
data, interactions known to be present

I We need to generate pseudo-negative examples: take random pairs of
nodes that are not connected and declare them absent

I Chance of introducing errors to the network
I Use background knowledge to choose negative examples in order to

decrease this chance
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Graph inference with local models

1. Take a single node v as the center
for which we predict the
neighbours (nodes connected with
the center)

2. Create a local training set
Sv = {(u1, y1), . . . , (uNv , yNv ))},
where (v , ui ) belong to the known
part of the network (known to
present(yi = 1) or absent
(yi = −1))

3. Construct a kernel for the local
training set
KV (u, u′) = 〈φ(u), φ(u′)〉 using
the data available for the nodes
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Graph inference with local models

4. Train an SVM model hv for the
node v using the local training set

5. Predict the label for each pair
(v , v ′) that is outside the known
part of the network:

hv (v ′) = sign

(
Nv∑
i=1

αiKV (vi , v
′)yi

)

6. Repeat the procedure for all nodes
in the graph and complete the
graph by adding all positively
predicted edges
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Rationale behind the method

The approach relies on the node feature vectors φ(v ′) to provide
information on which nodes the seed node is likely to interact with

I e.g. nodes are genes and features are gene expression profiles and the
goal is to predict regulatory interactions

I Then we assume that the expression profiles of genes regulated by the
gene share features distinct from the features of other genes

I The classifier learns which of the features are predictive of the
interaction
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Use for undirected graphs

I The approach is directly applicable for directed graphs.

I For undirected graphs, each undirected training pair {v , v ′} should be
considered twice, once in each direction.

I To extract the prediction for an undirected edge, the two directed
predictions should be combined e.g. by averaging the scores:

f ({u, v}) = (fv (u) + fu(v)) /2,

where we denote by fv (u) = 〈w, φ(u)〉+ b the SVM score for edge
(v , u) of local classifier at node v .

I If average score is positive predict an edge {u, v}.
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Pros and cons of the local method

I Splitting a large network problem into a set of local problems can be
beneficial in terms of computation time

I Time to train and predict in each node gets smaller
I Parallel architectures can be easily used as the local problems are

treated independent

I Data fragmentation is a potential pitfall: if there are not enough
examples for some seed nodes, accuracy of the model can suffer
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Graph inference with global models

I Local approach splits the data into independent units

I Information sharing between the local problems is not possible

I e.g. if (u, v) interact, u is similar to u′ and v is similar to v ′, the pair
(u′, v ′) is likely to interact a well

I The local approach only uses pairs with a single node as the center,
so this information is not used

I To make use of the above kind of information, the model needs to be
defined on edges (or pairs of nodes), not single nodes
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Graph inference with global models

I We wish to represent each pair of nodes by a feature vector ψ(u, v)
which should contain features predictive of the interaction of that pair

I Using this representation the classifier then learns to separate
interacting pairs from non-interaction

I However, our feature vectors φ(v) are defined on nodes
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Features for pairs of nodes

I Consider building a feature representation ψ(u, v) for pairs of nodes
from feature representations of the nodes

I We want to enable learning from correlations of node features: φk(u)
and φl(v) co-occur in the data

I Without assuming that exactly the same features are present
I e.g sequence motif k in protein u co-occurs with sequence motif l in

protein v
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Features for pairs of nodes

I To build all feature pairs we take the tensor product (also called outer
product or direct product):

ψ(u, v) = φ(u)⊗ φ(v) =
(
φk(u) · φl(v)

)d
k,l=1

I The feature vector now maps all feature pairs between the two nodes

I The above feature representation ψ(u, v) is not symmetrical: the
positions os u and v matter

I For undirected graphs we average the directed features

ψTPPK ({u, v}) = (ψ(u, v) + ψ(v , u)) /2
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Tensor product pairwise kernel (TPPK)

I The kernel, called Tensor product pairwise kernel (TPPK)

KTPPK ({u, v}, {u′, v ′}) = 〈ψTPPK (u, v), ψTPPK (u′, v ′)〉

represents similarity of two pairs of nodes

I The classifier can now learn which co-occurring features are predictive
of the interaction

I Because of the properties of tensor product, computation of a kernel
from the feature representation is easy:

KTPPK

(
{u, v}, {u′, v ′}

)
=

(KV (u, u′) · KV (v , v ′) + KV (u, v ′) · KV (v , u′)) (1)

where KV (u, u′) = 〈φ(u), φ(u′)〉 is the kernel similarity of nodes.

I The kernel can be built from similar data sources as the local models
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Putting it together

I With the global model, the training and prediction setup is
straight-forward

I We take the training set of pairs S = {(e1, y1), . . . , (eN , yN)}
I Train a single SVM model

I For each pair not in the training set, predict with SVM using the
TPPK kernel

f ({u, v}) = sign

(
N∑
i=1

αiKTPPK (ei , {u, v})yi

)

() 1.12.2011 33 / 37



Experiments in PPI inference

Compared methods (not explained here):

I MLPK–global model with a different kernel

I kCCA–kernel canonical correlation analysis

I em–expectation maximization based method

I Direct–de novo inference predicting edges between similar edges
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Experiments in enzyme interaction network inference

Compared methods (not explained here):

I MLPK–global model with a different kernel

I kCCA–kernel canonical correlation analysis

I em–expectation maximization based method

I Direct–de novo inference predicting edges between similar edges
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Experiments for transcription regulation network inference

I Input data: gene expression data of E. coli bacteria
I Stratified cross-validation scheme used:

I Genes that are part of the same operon typically behave very similarly
I Given one gene from the operon in the training set, it is very easy to

predict the others
I Considered to artificially boost the predictive accuracy
I This problem is avoided if all genes of an operon belong to the training

set or test set at the same time
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Experiments in transcription regulation network inference

Compared methods:

I SIRENE - local supervised model stratified for operon sharing

I SIRENE-bias - local supervised model without stratification

I CLR - context likelihood of relatedness algorithm

() 1.12.2011 37 / 37


