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Kernels for non-vectorial data

Examples of data that is originally not in feature vector form:

I Sequences

I Graphs (e.g .molecular graphs)

I Images

How to compute kernels for them (efficiently)?
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Kernels on Graphs

Kernels on Graphs

Graphs are everywhere . . .

Graphs in Reality

I Graphs model objects and their relationships.
I Also referred to as networks.
I All common data structures can be modelled as graphs.

Graphs in Bioinformatics

I Molecular biology studies relationships between
molecular components.

I Graphs are ideal to model:
I Molecules
I Protein-protein interaction networks
I Metabolic networks
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Kernels on Graphs

Central Questions

How similar are two graphs?

I Graph similarity is the central problem for all learning
tasks such as clustering and classification on graphs.

Applications

I Function prediction for molecules, in particular, proteins
I Comparison of protein-protein interaction networks

Challenges

I Subgraph isomorphism is NP-complete.
I Comparing graphs via isomorphism checking is thus

prohibitively expensive!
I Graph kernels offer a faster, yet one based on sound

principles.
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Kernels on Graphs

From the beginning . . .

Definition of a Graph

I A graph G is a set of nodes (or vertices) V and
edges E , where E ⊂ V 2.

I An attributed graph is a graph with labels on nodes
and/or edges; we refer to labels as attributes.

I The adjacency matrix A of G is defined as

[A]ij =

{
1 if (vi , vj) ∈ E ,
0 otherwise

,

where vi and vj are nodes in G .
I A walk w of length k − 1 in a graph is a sequence of

nodes w = (v1, v2, · · · , vk) where (vi−1, vi ) ∈ E
for 1 ≤ i ≤ k .

I w is a path if vi 6= vj for i 6= j .
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Kernels on Graphs

Graph Isomorphism

Graph isomorphism (cf. Skiena, 1998)

I Find a mapping f of the vertices of G to the vertices of
H such that G and H are identical; i.e. (x , y) is an edge
of G iff (f (x), f (y)) is an edge of H. Then f is an
isomorphism, and G and F are called isomorphic.

I No polynomial-time algorithm is known for graph
isomorphism

I Neither is it known to be NP-complete

Subgraph isomorphism

I Subgraph isomorpism asks if there is a subset of edges
and vertices of G that is isomorphic to a smaller graph
H.

I Subgraph isomorphism is NP-complete
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Kernels on Graphs

Subgraph Isomorphism

NP-completeness A decision problem C is NP-complete, iff

I C is in NP
I C is NP-hard, i.e. every other problem in NP is

reducible to it

Problems for the practitioner

I Characterization of NP-complete problems:
(thought to be) hard to solve, easy
(polynomial-time) to verify

I Excessive runtime in worst case: Runtime may
grow exponentially with number of nodes

I For large graphs with many nodes, and for large
datasets of graphs, this is an enormous problem

Wanted Polynomial-time similarity measure for graphs

[Gärtner et al., 2003]
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Kernels on Graphs

Graph kernels

I Compare substructures of graphs
I Example substructures:

I Walks
I Paths
I Cyclic patterns
I Tree-shaped subgraphs
I (small) General subgraphs

() 28.11.2011 8 / 35



Kernels on Graphs

Criteria for a good graph kernel

I Expressive

I Efficient to compute

I Positive definite

I Applicable to wide range of graphs
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Kernels on Graphs

Random Walks

Principle

I Compare walks in two input graphs
I Walks are sequences of nodes that allow repetitions of

nodes

Important trick

I Walks of length k can be computed by taking the
adjacency matrix A to the power of k

I Ak(i , j) = c means that c walks of length k exist
between vertex i and vertex j
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Kernels on Graphs

From adjacency matrix to walks

I The adjacency matrix denotes the number of length 1 walks = edges
between two nodes
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Kernels on Graphs

From adjacency matrix to walks

I Matrix multiplication A2 = AA reveals the number of length 2 walks
A2
ij =

∑
h AihAhj
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Kernels on Graphs

Product Graph

How to find common walks in two graphs?

I Use the product graph of G1 and G2

Definition

I G× = (V×,E×), defined via

V×(G1 × G2) = {(v1,w1) ∈ V1 × V2 :
label(v1) = label(w1)}

E×(G1 × G2) = {((v1,w1), (v2,w2)) ∈ V 2(G1 × G2) :
(v1, v2) ∈ E1 ∧ (w1,w2) ∈ E2

∧(label(v1, v2) = label(w1,w2))}

Meaning

I Product graph consists of pairs of identically labeled
nodes and edges from G1 and G2
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Kernels on Graphs

Product graph

I Tracing a walk in the product graph corresponds to simultaneously
tracing common walks in the two original graphs
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Kernels on Graphs

Random Walk Kernel

The trick

I Common walks can now be computed from Ak
×

Definition of random walk kernel

I

k×(G1,G2) =

|V×|∑
i ,j=1

[
∞∑
n=0

λnAn
×]ij ,

Meaning

I Random walk kernel counts all pairs of matching walks
I λ is decaying factor for the sum to converge

(components of An tend to infinity as n→∞)
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Kernels on Graphs

Runtime of Random Walk Kernels

Notation

I given two graphs G1 and G2

I n is the number of nodes in G1 and G2

Computing product graph

I requires comparison of all pairs of edges in G1 and G2

I runtime O(n4)

Powers of adjacency matrix

I matrix multiplication or inversion for n2 * n2 matrix
I runtime O(n6)

Total runtime

I O(n6)
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Kernels on Graphs

Tottering

Artificially high similarity scores

I Walk kernels allow walks to visit same edges and nodes
multiple times → artificially high similarity scores by
repeated visits to same two nodes

Additional node labels

I Mahé et al. [2004] add additional node labels to reduce
number of matching nodes → improved classification
accuracy

Forbidding cycles with 2 nodes

I Mahé et al. [2004] redefine walk kernel to forbid
subcycles consisting of two nodes → no practical
improvement
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Kernels on Graphs

All-paths Kernel?

Idea
I Determine all paths from two graphs
I Compare paths pairwise to yield kernel

Advantage
I No tottering

Problem
I All-paths kernel is NP-hard to compute.
I Requires the set of graphs to be small enough, such as

metabolite molecules in biochemical reactions
I Feasible to be compute for metabolites and reactions in

KEGG database [Heinonen et al., 2012]

Longest paths?
I Also NP-hard – same reason as for all paths

Shortest Paths!
I computable in O(n3) by the classic Floyd-Warshall

algorithm ’all-pairs shortest paths’
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Kernels on Graphs

Shortest-path Kernels

Kernel computation

I Determine all shortest paths in two input graphs
I Compare all shortest distances in G1 to all shortest

distances in G2

I Sum over kernels on all pairs of shortest distances gives
shortest-path kernel

Runtime

I Given two graphs G1 and G2

I n is the number of nodes in G1 and G2

I Determine shortest paths in G1 and G2 separately:
O(n3)

I Compare these pairwise: O(n4)
I Hence: Total runtime complexity O(n4)

[Borgwardt and Kriegel, 2005]

() 28.11.2011 19 / 35



Kernels on Graphs

Protein function prediction with graph kernels

I Motivation: protein 3D structure determines its function in principle

I But: experimental determination of the function of a protein remains
a difficult, time- and cost-intensive task.

I In silico verification of the protein function via molecular simulation is
extremely demanding computationally

I Can we learn to predict the function from the structure (and
sequence) making use of known 3D structures and associated
biological functions?
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Kernels on Graphs

Levels of protein structure

1. Primary structure: amino
acid sequence

2. Secondary structure: local
organization of the
sequence to α helices, β
strands and unorganized
coils

3. Tertiary structure: 3D
organization of the protein

4. Quaternary structure:
protein complexes
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Kernels on Graphs

Representing protein structures via kernels
Represent proteins as protein graphs:

I Secondary structure elements (SSE) as nodes: e.g. helix of length 30
amino acids

I Edges between elements that are adjacent in sequence (sequence
edge) or close in 3D space (structural edge)

I Compare the protein graphs by graph kernels
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Kernels on Graphs

Types of data for edges and nodes
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Kernels on Graphs

Protein graph kernel [Borgwardt et al., 2005]

Protein graph kernel is defiend as a kernel over walks

kwalk(walk1,walk2) =
n−1∏
i=1

kstep((vi , vi+1), (wi ,wi+1))

with steps in the walk given by kernel over node and edge similarities

kstep((vi , vi+1), (wi ,wi+1))

= knode(vi ,wi ) ∗ knode(vi+1,wi+1) ∗ kedge((vi , vi+1), (wi ,wi+1))

() 28.11.2011 24 / 35



Kernels on Graphs

Protein graph kernel [Borgwardt et al., 2005]

Node kernel

knode(vi ,wi ) = ktype(vi ,wi ) · knodelabel(vi ,wi ) · klength(vi ,wi )

Edge kernel

kedge((vi , vi+1), (wi ,wi+1))

= ktype((vi , vi+1), (wi ,wi+1)) · klength((vi , vi+1), (wi ,wi+1))

I Type kernel ktype : forces matched edges to have the same type
(structural edges or sequence edges) and the same types of SSEs as
end points (helices, strands)

I Length kernel klength: only allow matching SSEs that have close to
same length in amino acids, for structural edges close to same
distance in 3D space

I Node label kernel: knodelabels : compare the physico-chemical features
of the SSEs
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Kernels on Graphs

Representing enzyme function: EC classification

I Proteins catalyzing
biochemical reactions are
called enzymes

I Enzymatic functions are
classified in the Enzyme
Commission (EC) system

I Hierachy of four levels

1. Main class (1-6):
specifies the general
type of reaction

2. Levels 2-3: specify the
reaction mechanism

3. Level 4: specify the
substrate molecules
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Kernels on Graphs

Experiments [Borgwardt et al., 2005]

I Prediction of the first EC
digit (main class)

I 600 enzymes with
functional classification
from BRENDA database
(100 for each main EC
class)

I protein structures from
PDB

I SVM used as the classifier

I Different data used as
node labels
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Kernels on Graphs

Classifying biochemical reactions

I Metabolic pathways are
composed of biochemical
reactions catalyzed by
enzymes

I The catalyzing enzyme is
not known for many
metabolic reaction steps
(e.g. ’?’s in the picture)

I Can we predict
automatically the
functional classification?
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Kernels on Graphs

Representing reactions via graphs

I How to represent similarity of reactions

I A biochemical reaction involves a set of molecules

I Pairwise comparison of substrates and products in two reactions with
graph kernels

I Combine the molecule kernels into a reaction kernel (e.g. sum up the
kernels)

I But can we do this more elegantly?
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Kernels on Graphs

Reaction graph
I Key principle: one to one

correspondence of atoms
in substrate and product
molecules

I A node in reaction graph
represents the
corresponding atoms in
substrates and products

I Labeled edges
corresponding to bonds::

I New: those that exist in
products but not in
substrates

I Removed: those that
exist in substrates but
not in products

I Intact: those that exist
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Kernels on Graphs

Kernels from reaction graphs

I Any graph kernel for
labeled graphs will do

I Walks and paths will
contain reaction
information: e.g.
C (Intact)C (New)N(Removed)C ,
C (Removed)O(New)C

I Walk/Path kernel will
represent the similarity of
reactions in terms of paths
that are altered in similar
manner
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Kernels on Graphs

Experiments in reaction function prediction

I Given a reaction, predict
its functional class

I Data: ca. 17000
biochemical reactions from
KEGG database

I Input: graph kernel on
reaction graphs

I Output: 3 first digits of
the EC code(s)
corresponding to the
reaction
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Kernels on Graphs

Results [Heinonen et al., 2012]

I Reporting test errors from
5-fold cross-validation

I Correct predictions are
those that have three first
EC digits correct

I Walk kernel clearly inferior
to others

I All paths kernel better
than shortest paths

I RGK kernel [Saigo et al.,
2010] on average the best
(specially developed for
this task)
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