
K E R N E L S F O R S E Q U E N T I A L D A T A

Lecture Thu 24.11.

() 24.11.2011 1 / 31

Soft-Margin SVM (Cortes & Vapnik, 1995)

The soft-margin SVM allows some of the training points to have smaller
margin than γ(x) = 1, subject to a penalty:

Minimize 1
2 ||w||

2 + C
∑n

i=1 ξi

Subject to yi (〈w, xi 〉+ b) > 1− ξi
for all i = 1, . . . , n.

ξi ≥ 0

AGAG

AG

AG

AG
AG AG

AG

AG

AG AG

AG

GC content after 'AG'

G
C

co
nt

en
t b

ef
or

e
'A

G
'

ξ

I ξi is called the slack variable, when positive the margin γ(xi) < 1

I The sum of slacks is to be minimized so the objective still favours
hyperplanes that separates the classes well

I The coefficient C > 0 controls the balance between maximizing the
margin and the amount of slack needed

() 24.11.2011 2 / 31

Dual Soft-Margin SVM
A dual optimization problem (gives the same solution) to the soft-margin
SVM is

Maximize
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 αiαjyiyjk(xi , xj)

Subject to 0 ≤ αi ≤ C

for all i = 1, . . . , n.∑n
i=1 αiyi = 0

I Note that the slack variables (ξ) and the weight vector (w) have
disappeared, the only variables to be optimized are the αi ’s

I The data only appears through the kernel functions k(xi , xj)

I Derivation requires techniques of optimization theory (See e.g. Boyd
S, Vandenberghe L, Convex Optimization. Cambridge University
Press, 2004)

() 24.11.2011 3 / 31

Common Kernels

Polynomial k(x, x̂) = (〈x, x̂〉+ c)d

Sigmoid k(x, x̂) = tanh(κ〈x, x̂〉) + θ)

RBF k(x, x̂) = exp
(
−‖x− x̂‖2/(2σ2)

)
Convex combinations k(x, x̂) = β1k1(x, x̂) + β2k2(x, x̂)

Normalization k(x, x̂) =
k′(x, x̂)√

k′(x, x)k′(x̂, x̂)

What if our data is not in the vector form already?

() 24.11.2011 4 / 31

Kernels for non-vectorial data

Examples of data that is originally not in feature vector form:

I Sequences

I Graphs (e.g .molecular graphs)

I Images

How to compute kernels for them (efficiently)?

() 24.11.2011 5 / 31

The String Kernel Recipe

General idea

I Count substrings shared by two strings
I The greater the number of common substrings, the

more two sequences are deemed similar

Variations

I Allow gaps
I Include wildcards
I Allow mismatches
I Include substitutions
I Motif kernels
I Assign weights to substrings

() 24.11.2011 6 / 31

Recognizing Genomic Signals

Discriminate true signal positions from all other positions

I True sites: fixed window around a true site

I Decoy sites: all other consensus sites

Examples: Transcription start site finding, splice site prediction,
alternative splicing prediction, trans-splicing, polyA signal detection,
translation initiation site detection

() 24.11.2011 7 / 31

Types of Signal Detection Problems

Problem categorization

(based on positional variability of motifs)

Position-Independent

→ Motifs may occur anywhere,

for instance, tissue classification using promoter region

() 24.11.2011 8 / 31

Types of Signal Detection Problems

Problem categorization

(based on positional variability of motifs)

Position-Dependent

→ Motifs very stiff, almost always at same position,

for instance, splice site identification

() 24.11.2011 9 / 31

Types of Signal Detection Problems

Problem categorization

(based on positional variability of motifs)

Mixture of Position-Dependent/-Independent

→ variable but still positional information

for instance, promoter identification

() 24.11.2011 10 / 31

Spectrum Kernel

To make use of position-independent motifs:

I Idea: like the bag-of-words-kernel (cf. text classification) but for
biological sequences (words are now strings of length k, called k-mers)

I Count k-mers in sequence A and sequence B.
I Spectrum Kernel is sum of product of counts (for same k-mer)

Example k = 3:

3-mer AAA AAC . . . CCA CCC . . . TTT
in x 2 4 . . . 1 0 . . . 3

in x′ 3 1 . . . 0 0 . . . 1

k(x, x′) = 2 · 3 + 4 · 1 + . . . 1 · 0 + 0 · 0 . . . 3 · 1

() 24.11.2011 11 / 31

Fast computation of spectrum kernels

Brute-force computation of k-mer spectrum would take O(|Σ|k) time,
where Σ is the alphabet in use (DNA, Protein, ...)

I Fastest computation methods are
based on suffix trees

I Principle: all suffixes of string s
are stored in a suffix tree in O(|s|)
time, matches to k-mers in string
t are read from the tree in O(|t|)

I Instead of suffix trees, suffix arrays
can be used to save space
[Teo and Vishwanathan, 2006]

I More about suffix data structure
techniques: course 58093String
Processing Algorithms

() 24.11.2011 12 / 31

Spectrum Kernel with Mismatches
General idea [Leslie et al., 2003]

I Do not enforce strictly exact matches

I Define mismatch neighborhood of `-mer s with up to m mismatches
N`,m(s): all length-` sequences that differ from s by at most m
mismatches

I Construct feature φβ(s) = 1 if s ∈ Nk,m(β), and

φMismatch
(l ,m) (s) = (φβ(s))β∈Σ`

I For sequence x of any length, the map is then extended as:

φMismatch
(l ,m) (x) =

∑
`-mers s in x

(φMismatch
(l ,m) (s))

I The mismatch kernel is the inner product in feature space defined by:

kMismatch
(l ,m) (x, x′) =

〈
ΦMismatch

(l ,m) (x),ΦMismatch
(l ,m) (x′)

〉
() 24.11.2011 13 / 31

Spectrum Kernel with weighted Gaps

General idea [Lodhi et al., 2002]

I Allow gaps in matches, down-weight matches with g gaps by λg ,
0 < λ ≤ 1

I Let i = (i1, . . . , ik) be a set of indices to string s,
gaps(i) = ik − i1 + 1− k

I Feature φβ(s) =
∑

i:s(i)=β λ
gaps(i), sums up the weights of the

matches

I Feature vector
φGap(s) = (φβ(s))β∈Σ`

() 24.11.2011 14 / 31

Fast Algorithms for Gap-Weighted Spectrum Kernels

I The dynamic programming algorithm by [Lodhi et al., 2002] computes the
gap-weighted spectrum kernels in time O(k |s||t|) where k is the
number of non-gap characters in the subsequences

I Idea intuitively: tabulate the sum of match weights for all prefixes of
the two sequences for l = 1, . . . , k − 1 non-gap characters. This
requires filling k − 1 times a O(|s||t|)dynamic programming table

I We will take a look at an algorithm based on trie-data structure that
works in time proportional to the number of matching subsequences
[Rousu and Shawe-Taylor, 2005]

I Works better than the dynamic programming method when compared
sequences are long and total number of gaps is limited

() 24.11.2011 15 / 31

Trie-based computation of gap-weighted spectrum kernels
[Rousu and Shawe-Taylor, 2005]

I Trie: tree shaped data structure
for a (set of) string(s).

I Root corresponds to empty string,

I Internal nodes correspond to
subsequences .

I Children of a node corresponds of
extensions of the substring with
one character

I Nodes of the trie may contain links
to occurences, or counts, or both

() 24.11.2011 16 / 31

Trie-based computation of gap-weighted spectrum kernels
[Rousu and Shawe-Taylor, 2005]

I One can also build the tree for
words or motifs: lets us compare
chains of words/motifs (we call
these phrases)

I Key idea for kernel k(s, t) : build
the tree so that it only contains
the phrases contained in both
sequences s and t

Trie built for the pair s = ’The
cat was chased by the fat dog’
and t = ’The fat cat bit the
dog’

() 24.11.2011 17 / 31

Trie-based computation of gap-weighted spectrum kernels
[Rousu and Shawe-Taylor, 2005]

I We build the tree by scanning the
two strings from each position

I Store the indices of the matches
to the nodes of the trie (one set
for matches of subsequence u in s,
another set for t)

I When extending a match, scan
forward from each location,
adding gaps

Trie built for the pair s = ’The
cat was chased by the fat dog’
and t = ’The fat cat bit the
dog’

() 24.11.2011 18 / 31

Trie-based computation of gap-weighted spectrum kernels
[Rousu and Shawe-Taylor, 2005]

I While a match at certain index
can be extended, it remains alive

I When at the required dept of the
trie, compute the required gap
weighting

I Multiply the counts stored in the
match sets with the gap weights,
and the sum over all pairs of
matches in the two strings

Trie built for the pair s = ’The
cat was chased by the fat dog’
and t = ’The fat cat bit the
dog’

() 24.11.2011 19 / 31

Efficiency of trie-based computation [Rousu and Shawe-Taylor, 2005]

() 24.11.2011 20 / 31

Weighted Degree Kernel = Spectrum kernels for each position

To make use of position-dependent motifs:

k(x, x′) =
d∑

k=1

βk

L−k∑
l=1

I(uk,l(x) = uk,l(x
′))

I L := length of the sequence x
I d := maximal “match length” taken into account
I uk,l(x) := subsequence of length k at position l of sequence x

Example degree d = 3 :

k(x, x′) = β1 · 21 + β2 · 8 + β3 · 4
Difference to Spectrum kernel:

I Mixture of Spectrum kernels (up to degree d)
I Each position is considered independently

[Rätsch and Sonnenburg, 2004; Sonnenburg et al., 2007]

() 24.11.2011 21 / 31

Weighted Degree Kernel

I As weighting we use βk = 2 d−k+1
d(d+1) :

I Longer matches are weighted less, but they imply many shorter matches

I Computational effort is O(L · d)

Speed-up Idea: Reduce effort to O(L) by finding matching “blocks”
(computational effort O(L))

() 24.11.2011 22 / 31

GC-Content-based Splice Site Recognition

Recall the previous results:

Kernel auROC

Linear 88.2%
Polynomial d = 3 91.4%
Polynomial d = 7 90.4%

Gaussian σ = 100 87.9%
Gaussian σ = 1 88.6%
Gaussian σ = 0.01 77.3%

SVM accuracy of acceptor site recognition using polynomial and Gaussian
kernels with different degrees d and widths σ. Accuracy is measured using
the area under the ROC curve (auROC) and is computed using five-fold
cross-validation

() 24.11.2011 23 / 31

Sequence-based Splice Site Recognition

Kernel auROC

Spectrum ` = 1 94.0%
Spectrum ` = 3 96.4%
Spectrum ` = 5 94.5%

Mixed spectrum ` = 1 94.0%
Mixed spectrum ` = 3 96.9%
Mixed spectrum ` = 5 97.2%

WD ` = 1 98.2%
WD ` = 3 98.7%
WD ` = 5 98.9%

The area under the ROC curve (auROC) of SVMs with the spectrum,
mixed spectrum, and weighted degree kernels for the acceptor splice site
recognition task for different substring lengths `.

() 24.11.2011 24 / 31

Weighted Degree Kernel with Shifts

To make use of partially position-dependent motifs:

I If sequence is slightly mutated (e.g. indels), WD kernel fails

I Extension: Allow some positional variance (shifts S(l))

k(xi , xj) =
K∑

k=1

βk

L−k+1∑
l=1

γl

S(l)∑
s=0

s+l≤L

δs µk,l ,s,xi ,xj ,

µk,l,s,xi ,xj=I(uk,l+s(xi)=uk,l(xj))+I(uk,l(xi)=uk,l+s(xj)),

k(x1,x2) = w6,3 + w6,-3 + w3,4
x1

x2

[Rätsch et al., 2005]

() 24.11.2011 25 / 31

Oligo Kernel

Oligo kernel

k(x, x′) =
√
πσ

∑
u∈Σk

∑
p∈Sx

u

∑
q∈Sx′

u

e−
1

4σ2 (p−q)2

,

where

I 0 ≤ σ is a smoothing parameter

I u is a k-mer and

I Sx
u is the set of positions within sequence x at which u occurs as a

substring

Similar to WD kernel with shifts.
[Meinicke et al., 2004]

() 24.11.2011 26 / 31

Regulatory Modules Kernel [Schultheiss et al., 2008]

I Search for overrepresented motifs m1, . . . ,mM (colored bars)

I Find best match of motif mi in example xj ; extract windows si ,j at position
pi ,j around matches (boxed)

I Use a string kernel, e.g. kWDS , on all extracted sequence windows, and define
a combined kernel for the sequences:

kseq(xj , xk) =
∑M

i=1 kWDS(si ,j , si ,k)

I Use a second kernel kpos , e.g. based on RBF kernel, on vector of pairwise
distances between the motif matches:

fj = (p1,j − p2,j , p1,j − p3,j , . . . , pM−1,j − pM,j)

I Regulatory Modules kernel: kRM(x, x′) := kseq(x, x′) + kpos(x, x′)

() 24.11.2011 27 / 31

Local Alignment Kernel

In order to compute the score of an alignment, one needs:

I substitution matrix S ∈ RΣ×Σ I gap penalty g : N→ R
An alignment π is then scored as follows:

CGGSLIAMM----WFGV

|...|||||....||||

C---LIVMMNRLMWFGV

sS ,g (π) = S(C ,C) + S(L, L) + S(I , I) + S(A,V) + 2S(M,M)

+S(W ,W) + S(F ,F) + S(G ,G) + S(V ,V)− g(3)− g(4)

Smith-Waterman score (not positive definite)

SWS ,g (x, y) := maxπ∈Π(x,y) sS ,g (π)

() 24.11.2011 28 / 31

Local Alignment Kernel

Local Alignment kernel [Vert et al., 2004]

Kβ(x, y) =
∑

π∈Π(x,y) exp(βsS ,g (π))

I This kernel is positive semi-definite for certain values of β > 0

I Dynamic programming algorithm exist to compute the kernel

() 24.11.2011 29 / 31

References I

C. Leslie, E. Eskin, J. Weston, and W.S. Noble. Mismatch string kernels for
discriminative protein classification. Bioinformatics, 20(4), 2003.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text
classification using string kernels. Journal of Machine Learning Research, 2:419–444,
2002.

P. Meinicke, M. Tech, B. Morgenstern, and R. Merkl. Oligo kernels for data mining on
biological sequences: a case study on prokaryotic translation initiation sites. BMC
Bioinformatics, 5(169), 2004.

G. Rätsch and S. Sonnenburg. Accurate splice site detection for Caenorhabditis elegans.
In Kernel Methods in Computational Biology. MIT Press, 2004.

G. Rätsch, S. Sonnenburg, and B. Schölkopf. RASE: recognition of alternatively spliced
exons in C. elegans. Bioinformatics, 21(Suppl. 1):i369–i377, June 2005.

J. Rousu and J. Shawe-Taylor. Efficient computation of gapped substring kernels on
large alphabets. Journal of Machine Learning Research, 6(2):1323, 2005.

() 24.11.2011 30 / 31

References II

S.J. Schultheiss, W. Busch, J.U. Lohmann, O. Kohlbacher, and G. Rätsch. Kirmes:
Kernel-based identification of regulatory modules in euchromatic sequences. In
German Conference on Bioinformatics, Lecture notes in Informatics, pages 158–167,
Heidelberg, 2008. GI, Springer Verlag. URL
http://www.fml.tuebingen.mpg.de/raetsch/projects/kirmes.

S. Sonnenburg, G. Rätsch, and K. Rieck. Large-scale learning with string kernels. In
Large-Scale Kernel Machines. MIT Press, 2007.

C.H. Teo and SVN Vishwanathan. Fast and space efficient string kernels using suffix
arrays. In Proceedings of the 23rd international conference on Machine learning,
pages 929–936. ACM, 2006.

J.-P. Vert, H. Saigo, and T. Akutsu. Local alignment kernels for biological sequences. In
Kernel Methods in Computational Biology. MIT Press, 2004.

() 24.11.2011 31 / 31

http://www.fml.tuebingen.mpg.de/raetsch/projects/kirmes

