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Soft-Margin SVM (Cortes & Vapnik, 1995)

The soft-margin SVM allows some of the training points to have smaller
margin than γ(x) = 1, subject to a penalty:

Minimize 1
2 ||w||

2 + C
∑n

i=1 ξi

Subject to yi (〈w, xi 〉+ b) > 1− ξi
for all i = 1, . . . , n.

ξi ≥ 0
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I ξi is called the slack variable, when positive the margin γ(xi ) < 1

I The sum of slacks is to be minimized so the objective still favours
hyperplanes that separates the classes well

I The coefficient C > 0 controls the balance between maximizing the
margin and the amount of slack needed
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Dual Soft-Margin SVM
A dual optimization problem (gives the same solution) to the soft-margin
SVM is

Maximize
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 αiαjyiyjk(xi , xj)

Subject to 0 ≤ αi ≤ C

for all i = 1, . . . , n.∑n
i=1 αiyi = 0

I Note that the slack variables (ξ) and the weight vector (w) have
disappeared, the only variables to be optimized are the αi ’s

I The data only appears through the kernel functions k(xi , xj)

I Derivation requires techniques of optimization theory (See e.g. Boyd
S, Vandenberghe L, Convex Optimization. Cambridge University
Press, 2004)
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Common Kernels

Polynomial k(x, x̂) = (〈x, x̂〉+ c)d

Sigmoid k(x, x̂) = tanh(κ〈x, x̂〉) + θ)

RBF k(x, x̂) = exp
(
−‖x− x̂‖2/(2σ2)

)
Convex combinations k(x, x̂) = β1k1(x, x̂) + β2k2(x, x̂)

Normalization k(x, x̂) =
k′(x, x̂)√

k′(x, x)k′(x̂, x̂)

What if our data is not in the vector form already?

() 24.11.2011 4 / 31



Kernels for non-vectorial data

Examples of data that is originally not in feature vector form:

I Sequences

I Graphs (e.g .molecular graphs)

I Images

How to compute kernels for them (efficiently)?
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The String Kernel Recipe

General idea

I Count substrings shared by two strings
I The greater the number of common substrings, the

more two sequences are deemed similar

Variations

I Allow gaps
I Include wildcards
I Allow mismatches
I Include substitutions
I Motif kernels
I Assign weights to substrings
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Recognizing Genomic Signals

Discriminate true signal positions from all other positions

I True sites: fixed window around a true site

I Decoy sites: all other consensus sites

Examples: Transcription start site finding, splice site prediction,
alternative splicing prediction, trans-splicing, polyA signal detection,
translation initiation site detection
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Types of Signal Detection Problems

Problem categorization

(based on positional variability of motifs)

Position-Independent

→ Motifs may occur anywhere,

for instance, tissue classification using promoter region
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Types of Signal Detection Problems

Problem categorization

(based on positional variability of motifs)

Position-Dependent

→ Motifs very stiff, almost always at same position,

for instance, splice site identification
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Types of Signal Detection Problems

Problem categorization

(based on positional variability of motifs)

Mixture of Position-Dependent/-Independent

→ variable but still positional information

for instance, promoter identification
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Spectrum Kernel

To make use of position-independent motifs:

I Idea: like the bag-of-words-kernel (cf. text classification) but for
biological sequences (words are now strings of length k, called k-mers)

I Count k-mers in sequence A and sequence B.
I Spectrum Kernel is sum of product of counts (for same k-mer)

Example k = 3:

3-mer AAA AAC . . . CCA CCC . . . TTT
# in x 2 4 . . . 1 0 . . . 3

# in x′ 3 1 . . . 0 0 . . . 1

k(x, x′) = 2 · 3 + 4 · 1 + . . . 1 · 0 + 0 · 0 . . . 3 · 1
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Fast computation of spectrum kernels

Brute-force computation of k-mer spectrum would take O(|Σ|k) time,
where Σ is the alphabet in use (DNA, Protein, ...)

I Fastest computation methods are
based on suffix trees

I Principle: all suffixes of string s
are stored in a suffix tree in O(|s|)
time, matches to k-mers in string
t are read from the tree in O(|t|)

I Instead of suffix trees, suffix arrays
can be used to save space
[Teo and Vishwanathan, 2006]

I More about suffix data structure
techniques: course 58093String
Processing Algorithms
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Spectrum Kernel with Mismatches
General idea [Leslie et al., 2003]

I Do not enforce strictly exact matches

I Define mismatch neighborhood of `-mer s with up to m mismatches
N`,m(s): all length-` sequences that differ from s by at most m
mismatches

I Construct feature φβ(s) = 1 if s ∈ Nk,m(β), and

φMismatch
(l ,m) (s) = (φβ(s))β∈Σ`

I For sequence x of any length, the map is then extended as:

φMismatch
(l ,m) (x) =

∑
`-mers s in x

(φMismatch
(l ,m) (s))

I The mismatch kernel is the inner product in feature space defined by:

kMismatch
(l ,m) (x, x′) =

〈
ΦMismatch

(l ,m) (x),ΦMismatch
(l ,m) (x′)

〉
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Spectrum Kernel with weighted Gaps

General idea [Lodhi et al., 2002]

I Allow gaps in matches, down-weight matches with g gaps by λg ,
0 < λ ≤ 1

I Let i = (i1, . . . , ik) be a set of indices to string s,
gaps(i) = ik − i1 + 1− k

I Feature φβ(s) =
∑

i:s(i)=β λ
gaps(i), sums up the weights of the

matches

I Feature vector
φGap(s) = (φβ(s))β∈Σ`
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Fast Algorithms for Gap-Weighted Spectrum Kernels

I The dynamic programming algorithm by [Lodhi et al., 2002] computes the
gap-weighted spectrum kernels in time O(k |s||t|) where k is the
number of non-gap characters in the subsequences

I Idea intuitively: tabulate the sum of match weights for all prefixes of
the two sequences for l = 1, . . . , k − 1 non-gap characters. This
requires filling k − 1 times a O(|s||t|)dynamic programming table

I We will take a look at an algorithm based on trie-data structure that
works in time proportional to the number of matching subsequences
[Rousu and Shawe-Taylor, 2005]

I Works better than the dynamic programming method when compared
sequences are long and total number of gaps is limited
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Trie-based computation of gap-weighted spectrum kernels
[Rousu and Shawe-Taylor, 2005]

I Trie: tree shaped data structure
for a (set of) string(s).

I Root corresponds to empty string,

I Internal nodes correspond to
subsequences .

I Children of a node corresponds of
extensions of the substring with
one character

I Nodes of the trie may contain links
to occurences, or counts, or both
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Trie-based computation of gap-weighted spectrum kernels
[Rousu and Shawe-Taylor, 2005]

I One can also build the tree for
words or motifs: lets us compare
chains of words/motifs (we call
these phrases)

I Key idea for kernel k(s, t) : build
the tree so that it only contains
the phrases contained in both
sequences s and t

Trie built for the pair s = ’The
cat was chased by the fat dog’
and t = ’The fat cat bit the
dog’
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Trie-based computation of gap-weighted spectrum kernels
[Rousu and Shawe-Taylor, 2005]

I We build the tree by scanning the
two strings from each position

I Store the indices of the matches
to the nodes of the trie (one set
for matches of subsequence u in s,
another set for t)

I When extending a match, scan
forward from each location,
adding gaps

Trie built for the pair s = ’The
cat was chased by the fat dog’
and t = ’The fat cat bit the
dog’
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Trie-based computation of gap-weighted spectrum kernels
[Rousu and Shawe-Taylor, 2005]

I While a match at certain index
can be extended, it remains alive

I When at the required dept of the
trie, compute the required gap
weighting

I Multiply the counts stored in the
match sets with the gap weights,
and the sum over all pairs of
matches in the two strings

Trie built for the pair s = ’The
cat was chased by the fat dog’
and t = ’The fat cat bit the
dog’
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Efficiency of trie-based computation [Rousu and Shawe-Taylor, 2005]
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Weighted Degree Kernel = Spectrum kernels for each position

To make use of position-dependent motifs:

k(x, x′) =
d∑

k=1

βk

L−k∑
l=1

I(uk,l(x) = uk,l(x
′))

I L := length of the sequence x
I d := maximal “match length” taken into account
I uk,l(x) := subsequence of length k at position l of sequence x

Example degree d = 3 :

k(x, x′) = β1 · 21 + β2 · 8 + β3 · 4
Difference to Spectrum kernel:

I Mixture of Spectrum kernels (up to degree d)
I Each position is considered independently

[Rätsch and Sonnenburg, 2004; Sonnenburg et al., 2007]
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Weighted Degree Kernel

I As weighting we use βk = 2 d−k+1
d(d+1) :

I Longer matches are weighted less, but they imply many shorter matches

I Computational effort is O(L · d)

Speed-up Idea: Reduce effort to O(L) by finding matching “blocks”
(computational effort O(L))
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GC-Content-based Splice Site Recognition

Recall the previous results:

Kernel auROC

Linear 88.2%
Polynomial d = 3 91.4%
Polynomial d = 7 90.4%

Gaussian σ = 100 87.9%
Gaussian σ = 1 88.6%
Gaussian σ = 0.01 77.3%

SVM accuracy of acceptor site recognition using polynomial and Gaussian
kernels with different degrees d and widths σ. Accuracy is measured using
the area under the ROC curve (auROC) and is computed using five-fold
cross-validation
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Sequence-based Splice Site Recognition

Kernel auROC

Spectrum ` = 1 94.0%
Spectrum ` = 3 96.4%
Spectrum ` = 5 94.5%

Mixed spectrum ` = 1 94.0%
Mixed spectrum ` = 3 96.9%
Mixed spectrum ` = 5 97.2%

WD ` = 1 98.2%
WD ` = 3 98.7%
WD ` = 5 98.9%

The area under the ROC curve (auROC) of SVMs with the spectrum,
mixed spectrum, and weighted degree kernels for the acceptor splice site
recognition task for different substring lengths `.
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Weighted Degree Kernel with Shifts

To make use of partially position-dependent motifs:

I If sequence is slightly mutated (e.g. indels), WD kernel fails

I Extension: Allow some positional variance (shifts S(l))

k(xi , xj) =
K∑

k=1

βk

L−k+1∑
l=1

γl

S(l)∑
s=0

s+l≤L

δs µk,l ,s,xi ,xj ,

µk,l,s,xi ,xj=I(uk,l+s(xi )=uk,l(xj))+I(uk,l(xi )=uk,l+s(xj)),

k(x1,x2) = w6,3                      +                  w6,-3   + w3,4
x1

x2

[Rätsch et al., 2005]
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Oligo Kernel

Oligo kernel

k(x, x′) =
√
πσ

∑
u∈Σk

∑
p∈Sx

u

∑
q∈Sx′

u

e−
1

4σ2 (p−q)2

,

where

I 0 ≤ σ is a smoothing parameter

I u is a k-mer and

I Sx
u is the set of positions within sequence x at which u occurs as a

substring

Similar to WD kernel with shifts.
[Meinicke et al., 2004]
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Regulatory Modules Kernel [Schultheiss et al., 2008]

I Search for overrepresented motifs m1, . . . ,mM (colored bars)

I Find best match of motif mi in example xj ; extract windows si ,j at position
pi ,j around matches (boxed)

I Use a string kernel, e.g. kWDS , on all extracted sequence windows, and define
a combined kernel for the sequences:

kseq(xj , xk) =
∑M

i=1 kWDS(si ,j , si ,k)

I Use a second kernel kpos , e.g. based on RBF kernel, on vector of pairwise
distances between the motif matches:

fj = (p1,j − p2,j , p1,j − p3,j , . . . , pM−1,j − pM,j)

I Regulatory Modules kernel: kRM(x, x′) := kseq(x, x′) + kpos(x, x′)
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Local Alignment Kernel

In order to compute the score of an alignment, one needs:

I substitution matrix S ∈ RΣ×Σ I gap penalty g : N→ R
An alignment π is then scored as follows:

CGGSLIAMM----WFGV

|...|||||....||||

C---LIVMMNRLMWFGV

sS ,g (π) = S(C ,C ) + S(L, L) + S(I , I ) + S(A,V ) + 2S(M,M)

+S(W ,W ) + S(F ,F ) + S(G ,G ) + S(V ,V )− g(3)− g(4)

Smith-Waterman score (not positive definite)

SWS ,g (x, y) := maxπ∈Π(x,y) sS ,g (π)
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Local Alignment Kernel

Local Alignment kernel [Vert et al., 2004]

Kβ(x, y) =
∑

π∈Π(x,y) exp(βsS ,g (π))

I This kernel is positive semi-definite for certain values of β > 0

I Dynamic programming algorithm exist to compute the kernel
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