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Classification Problems in bioinformatics

Sequence classification:

Given: DNA sequence

Predict: Does sequence belong to an CpG island or not

Diagnostic models:

Given: Expression levels of genes from a sample

Predict: Diseased or healthy

Functional genomics:

Given: Sequence of a gene

Predict: The biological function of the gene (e.g. Gene
Ontology category)
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Running example: Splice site recognition

I Almost all donor splice sites exhibit GU

I Almost all acceptor splice site exhibit AG

I Not all GUs and AGs are used as splice site ⇒ Classification task
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Classification setup

I Training data from real (label +1) and decoy (label -1) acceptor sites
I All training data contain ’AG’ dinucleotide

I Discrminative model is learned from training data

I Testing on an independent test set
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Classification learning with feature vectors

We will concentrate on
methods that rely on numerical
feature representation for the
data

I Each example is a vector
of values (features).

I If the example is not a
vector, a feature
representation needs to be
first computed

I What are good features to
extract? Requires
background knowledge on
the application domain.
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Classification learning with feature vectors
Possible features in the acceptor site recognition problem

I GC content in a window before ’AG’

I GC content in a window after ’AG’

I Occurrence of specific subsequences ’TTTAG’

intron exon
x1 x2 x3 x4 x5 x6 x7 x8 . . .

GC before 0.6 0.2 0.4 0.3 0.2 0.4 0.5 0.5 . . .
GC after 0.7 0.7 0.3 0.6 0.3 0.4 0.7 0.6 . . .
AGAGAAG 0 0 0 1 1 0 0 1 . . .
TTTAG 1 1 1 0 0 1 0 0 . . .
...

...
...

...
...

...
...

...
...

. . .

Label +1 +1 +1 −1 −1 +1 −1 −1 . . .
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Recognition of Splice Sites
I Given: Potential acceptor splice sites

intron exon
I Goal: Rule that distinguishes true from false ones
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exploit that exons have higher GC
content

or

that certain motifs are located
nearby
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Classification learning with linear models

We will concentrate on models that take a linear form:

f (x) =
d∑

j=1

wjxj + b

I xj is the value of the j ’th feature for example x, e.g. ’GC content
before’

I wj is the weight of the j ’th feature, to be learned from the data

I b is an offset term, to be learned from the data
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Classification learning with linear models

We will concentrate on models that take a linear form:

f (x) =
d∑

j=1

wjxj + b = 〈w, x〉+ b

I 〈w, x〉 denotes the inner product (also known as dot product and
scalar poduct), between the weight vector and the feature vector

I Geometrically f (x) is a hyperplane (d − 1-dimensional plane) dividing
the feature space into two half-spaces

I w is the normal vector of the hyperplane, orthogonal to the
hyperplane

I Values of f (x) increase in the direction of w
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Classification learning with linear models

The model f (x) is turned into a classifier by thresholding at 0:

h(x) =

{
+1 if f (x) > 0
−1 if f (x) < 0

I The goal of learning the
parameters (w, b) is to
put the hyperplane in
between the two classes

I h(x) = −1⇔ f (x) < 0
for the negative class

I h(x) = +1⇔ f (x) > 0
for the positive class
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Measuring classification success: loss function

In binary classification (Y = {−1,+1}), we one may use the 0/1-loss
function:

`(f (xi ), yi ) =

{
0 if h(xi ) = yi
1 if h(xi ) 6= yi

I If all training data are on
the correct side of the
hyperplane we have∑n

i=1 `(f (xi ), yi ) = 0

I However, there might be
several hyperplanes that
achieve zero loss

I Does it matter which one
we choose?
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Maximum margin hyperplane
One good solution is to choose the hyperplane that lies furthest away from
the training data:

I Robustness: small change in the training data will not change the
classifications too much

I Theoretically can be shown to lead to good performance — a large
margin, distance between the hyperplane, is tied to low error on
unseen data

I Support vector machines (SVM) are based on this principle
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How to Maximize the Margin?
I For positive class the margin is given by
γ(xi ) = yi f (xi ) = y(< w, x > +b)

I By multiplying the weights with a arbitrary c > 1, one can increase
the margin without limit
y(< cw, x > +b) = c · y(w, x > +b) = c · γ(xi )

I Any separating hyperplane can be made to have as large margin as we
wish, cannot choose between them by taking the maximum!
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How to Maximize the Margin?
Margin maximization becomes sensible if we add a constraint that the

length of the weight vector should not change: ||w|| =
√∑m

i=1 w
2
j = 1.

Our optimization problem becomes:

Maximize γ

Subject to yi (〈w, xi 〉+ b) > γ

for all i = 1, . . . , n,

||w|| = 1
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I First constraint says that all examples have at least margin of γ

I Second constraint fixes the norm of the weight vector — intuitively,
gives fixed measurement scale

I Now there will be a maximum margin hyperplane
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How to Maximize the Margin?

It turns out that we can equivalently fix the margin γ = 1 and seek for
shortest weight vector that achieves the margin

Minimize 1
2 ||w||

2

Subject to yi (〈w, xi 〉+ b) > 1

for all i = 1, . . . , n.
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I All points have at least margin of = 1

I The points that have margin γ(x) = 1 are called support vectors

I The set of support vectors uniquely identifies the hyperplane
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How to Maximize the Margin? Non-separable data

In practise data rarely separates cleanly into two halfspaces by a
hyperplane, for multitude of reasons:

I Measurement errors

I Insufficient features

I Annotation errors
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I For any hyperplane, there will be an example with a negative margin

I Our optimization problem has no feasible solution
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Soft-Margin SVM (Cortes & Vapnik, 1995)

The soft-margin SVM allows some of the training points to have smaller
margin than γ(x) = 1, subject to a penalty:

Minimize 1
2 ||w||

2 + C
∑n

i=1 ξi

Subject to yi (〈w, xi 〉+ b) > 1− ξi
for all i = 1, . . . , n.

ξi ≥ 0
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I ξi is called the slack variable, when positive the margin γ(xi ) < 1

I The sum of slacks is to be minimized so the objective still favours
hyperplanes that separates the classes well

I The coefficient C > 0 controls the balance between maximizing the
margin and the amount of slack needed
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An important detail (I)
minimize

w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi (〈w, xi 〉+ b) > 1− ξi for all i = 1, . . . , n.
ξi > 0 for all i = 1, . . . , n

Theorem: The optimal w can be written as a linear combination of the
examples (for appropriate α’s):

w =
n∑

i=1

αiyixi

⇒ Plug in!

Now optimize for the variables α, b, and ξ!

Corollary: Optimization problem only depends on the inner products of
the examples

〈x, x̂〉 =
D∑

d=1

xd x̂d
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An important detail (II)
minimize

w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi (〈w, xi 〉+ b) > 1− ξi for all i = 1, . . . , n.
ξi > 0 for all i = 1, . . . , n

Theorem: The optimal w can be written as a linear combination of the
examples (for appropriate α’s):

w =
n∑

i=1

αiyixi ⇒ Plug in!

Now optimize for the variables α, b, and ξ!

Corollary: Optimization problem only depends on the inner products of
the examples

〈x, x̂〉 =
D∑

d=1

xd x̂d
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An important detail (III)

minimize
α,b,ξ

1

2

∥∥∥∥∥
N∑
i=1

αiyixi

∥∥∥∥∥
2

+ C
n∑

i=1

ξi

subject to yi

(∑N
j=1 αjyj〈xj , xi 〉+ b

)
> 1− ξi for all i = 1, . . . , n.

ξi > 0 for all i = 1, . . . , n

Theorem: The optimal w can be written as a linear combination of the
examples (for appropriate α’s):

w =
n∑

i=1

αiyixi ⇒ Plug in!

Now optimize for the variables α, b, and ξ!

Corollary: Optimization problem only depends on the inner products of
the examples

〈x, x̂〉 =
D∑

d=1

xd x̂d
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An important detail (IV)

minimize
α,b,ξ

1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi , xj〉+ C
n∑

i=1

ξi

subject to yi

(∑N
j=1 αjyj〈xj , xi 〉+ b

)
> 1− ξi for all i = 1, . . . , n.

ξi > 0 for all i = 1, . . . , n

Theorem: The optimal w can be written as a linear combination of the
examples (for appropriate α’s):

w =
n∑

i=1

αiyixi ⇒ Plug in!

Now optimize for the variables α, b, and ξ!

Corollary: Optimization problem only depends on the inner products of
the examples

〈x, x̂〉 =
D∑

d=1

xd x̂d
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Kernels & the “Trick” Inflating the Feature Space

Recognition of Splice Sites
I Given: Potential acceptor splice sites

intron exon
I Goal: Rule that distinguishes true from false ones

Linear Classifiers
with large margin
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Kernels & the “Trick” Inflating the Feature Space

Recognition of Splice Sites
I Given: Potential acceptor splice sites

intron exon
I Goal: Rule that distinguishes true from false ones
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More realistic problem?

I Not linearly separable!

I Need nonlinear separation?

I Need more features?
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Kernels & the “Trick” Inflating the Feature Space

Nonlinear Separations
Linear separation might not be sufficient!
⇒ Map into a higher dimensional feature space

Example: all pairwise products of features

Φ : R2 → R3

(x1, x2) 7→ (z1, z2, z3) := (x2
1 ,
√

2 x1x2, x
2
2 )
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Kernels & the “Trick” Kernel “Trick”

Kernel “Trick”

Example: x ∈ R2 and Φ(x) := (x2
1 ,
√

2 x1x2, x
2
2 )

〈Φ(x),Φ(x̂)〉 =
〈

(x2
1 ,
√

2 x1x2, x
2
2 ), (x̂2

1 ,
√

2 x̂1x̂2, x̂
2
2 )
〉

= 〈(x1, x2), (x̂1, x̂2)〉2

= 〈x, x̂〉2

: =: k(x, x̂)

I Inner product in feature space (here R3) can be computed in input
space (here R2)!

I Also works for higher orders and dimensions
⇒ relatively low-dimensional input spaces
⇒ very high-dimensional feature spaces
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Kernels & the “Trick” Kernel “Trick”

Putting Things Together . . .

I Use a non-linear map Φ(x) instead of original features x

I Use linear classifier on the Φ(x)’s

I From theorem: w =
n∑

i=1

αiyiΦ(xi ).

I Non-linear :

f (x) = 〈w,Φ(x)〉+ b

=
n∑

i=1

αiyi 〈Φ(xi ),Φ(x)〉︸ ︷︷ ︸
k(xi ,x)

+b

I Trick: k(x, x̂) = 〈Φ(x),Φ(x̂)〉, i.e. do not use Φ, but k!
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Kernels & the “Trick” Kernel “Trick”

Kernel ≈ Similarity Measure

Distance:

‖Φ(x)− Φ(x̂)‖2 = ‖Φ(x)‖2 − 2〈Φ(x),Φ(x̂)〉+ ‖Φ(x̂)‖2

Inner product: 〈Φ(x),Φ(x̂)〉
I If ‖Φ(x)‖2 = ‖Φ(x̂)‖2 = 1, then

inner product = 2−distance

I Angle between vectors, i.e.,

〈Φ(x),Φ(x̂)〉
‖Φ(x)‖ ‖Φ(x̂)‖

= cos(Φ(x),Φ(x̂))
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Kernels & the “Trick” Kernel “Trick”

How to Construct a Kernel

At least two ways to get to a kernel:

1. Construct Φ and think about efficient ways to compute the inner
product 〈Φ(x),Φ(x̂)〉

I If x is very high-dimensional, computing the inner product element by
element is slow, we don’t want to do that

2. Construct similarity measure and show that it qualifies as a kernel
(Mercer condition)

I Show that for any set of examples the matrix K = (k(xi , xj))ni,j=1 is
positive semi-definite.

I In that case, there always is an underlying feature representation, for
which the kernel represents the inner product
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Kernels & the “Trick” Common Kernels

Common Kernels

Polynomial k(x, x̂) = (〈x, x̂〉+ c)d

Sigmoid k(x, x̂) = tanh(κ〈x, x̂〉) + θ)

RBF k(x, x̂) = exp
(
−‖x− x̂‖2/(2σ2)

)
Convex combinations k(x, x̂) = β1k1(x, x̂) + β2k2(x, x̂)

Normalization k(x, x̂) =
k′(x, x̂)√

k′(x, x)k′(x̂, x̂)

Notes:

I Kernels may be combined in case of heterogeneous data

I These kernels are good for real-valued examples

I Sequences need special care (coming soon!)
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Kernels & the “Trick” Common Kernels

Toy Examples

Linear kernel RBF kernel
k(x, x̂) = 〈x, x̂〉 k(x, x̂) = exp(−‖x− x̂‖2/2σ)
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Kernels & the “Trick” Common Kernels

Kernel Summary

I Nonlinear separation ⇔ linear separation of nonlinearly mapped
examples

I Mapping Φ defines a kernel by

k(x, x̂) := 〈Φ(x),Φ(x̂)〉

I (Mercer) Kernel defines a mapping Φ (nontrivial)

I Choice of kernel has to match the data at hand

I RBF kernel often works pretty well
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Kernels & the “Trick” Common Kernels

(More) Evaluation Measures for Classification
[left] Receiver Operating Charac-
teristic (ROC) Curve

[right] Precision Recall Curve
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I Obtained by varying a threshold −∞ < τ <∞ and using that instead
of 0: f (x) > τ =⇒ +1, f (x) < τ =⇒ −1

I Record TPR/FPR or Precision(PPV)/Recall(TPR) for all τ
I In practise: sort training data in the order of f (x), and sweep over the

sorted sequence once, connect the dots
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Kernels & the “Trick” Common Kernels

(More) Evaluation Measures for Classification
[left] Receiver Operating Charac-
teristic (ROC) Curve

[right] Precision Recall Curve
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Two summarize the classifier performance over the whole curve, one
typically computes:

I Area under ROC Curve (auROC)

I Area under Precision Recall Curve (auPRC)
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Kernels & the “Trick” Results for Running Example

Running example: GC-Content-based Splice Site
Recognition

Kernel auROC

Linear 88.2%
Polynomial d = 3 91.4%
Polynomial d = 7 90.4%

Gaussian σ = 100 87.9%
Gaussian σ = 1 88.6%
Gaussian σ = 0.01 77.3%

SVM accuracy of acceptor site recognition using polynomial and Gaussian
kernels with different degrees d and widths σ. Accuracy is measured using
the area under the ROC curve (auROC) and is computed using five-fold
cross-validation
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