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Classification Problems in bioinformatics

Sequence classification:
Given: DNA sequence

Predict: Does sequence belong to an CpG island or not
Diagnostic models:

Given: Expression levels of genes from a sample
Predict: Diseased or healthy
Functional genomics:

Given: Sequence of a gene

Predict: The biological function of the gene (e.g. Gene
Ontology category)
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Running example: Splice site recognition

[ €XoNn — intron 1€XON intron 1€XON - intron 1€XON - intron T— exon
DNA - I e o I

TGA
transcription

AUG GU AG GU AG GU AG  GU AG

ATG GT AG GT AG GT AG GT AG TAGTAA

pre-mRNA <= | N N O "

UAG,UAA
splicing UGA
mRNA e+ P "
AUG UAG,UAA
translation UGA
protein N I ¢

» Almost all donor splice sites exhibit GU
» Almost all acceptor splice site exhibit AG
» Not all GUs and AGs are used as splice site = Classification task
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Classification setup

» Training data from real (label +1) and decoy (label -1) acceptor sites
» All training data contain 'AG’ dinucleotide

» Discrminative model is learned from training data

» Testing on an independent test set

Example Label

Training
Data

Testing
Data

AACTTGGGTGTGCCGC @
ATATTATAGCCG
GCGCAAGGGGGCCTTC

TTGCCGAAAAGGCTAAA Predictions

= Jd1D

ATCCCGGATTGGATG
AGGGTCCCCTTGAGAGG
CCGGGTATATATATAGG
TTAGGTTCCCTCCGCGC
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Classification learning with feature vectors

We will concentrate on
methods that rely on numerical
feature representation for the
data

» Each example is a vector
of values (features).

> If the example is not a
vector, a feature
representation needs to be
first computed

» What are good features to
extract? Requires
background knowledge on
the application domain.

ATCCCGGATTGGATG AT
AGGGTCCCCTTGAGAGG  [——n

CCGGGTATATATATAGG
TTAGGTTCCCTCCGCGC

ggg 0 11,11
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Classification learning with feature vectors
Possible features in the acceptor site recognition problem

» GC content in a window before 'AG’

» GC content in a window after 'AG’

» Occurrence of specific subsequences 'TTTAG’

AAGAACGTTTCAACCATTTTGAG
ATTACAGATATAATAATCTAATT
ACTAACACATCCGTCTGTGCC
ATCATCAATCTCCAAAACCAACAC

intron exon
X1 X2 X3 X4 X5 X6 X7 X8
GC before | 0.6 0.2 04 03 02 04 05 05
GC after 0.7 0.7 03 0.6 03 04 07 0.6
AGAGAAG | 0 0 0 1 1 0 0 1
TTTAG 1 1 1 0 0 1 0 O
Label +1 +1 41 -1 -1 +1 -1 -1

0
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Recognition of Splice Sites

» Given: Potential acceptor splice sites

GAACGTTTCAACCATTTTGAG
TTACAGATATAATAATCTAATT
ACTAACACATCCGTCTGTGCC
TCATCAATCTCCAAAACCAACAC

intron exon
» Goal: Rule that distinguishes true from false ones

A

exploit that exons have higher GC
content

or

that certain motifs are located
nearby

GC content before 'AG'

GC content after 'AG'
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Classification learning with linear models

We will concentrate on models that take a linear form:

d
F(x) =) wx+b
j=1

> x; is the value of the j'th feature for example x, e.g. 'GC content
before’

> w; is the weight of the j'th feature, to be learned from the data
> b is an offset term, to be learned from the data
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Classification learning with linear models

We will concentrate on models that take a linear form:

d
f(x) =) wx;+b=(w,x)+b
=1

v

(w, x) denotes the inner product (also known as dot product and
scalar poduct), between the weight vector and the feature vector

v

Geometrically 7(x) is a hyperplane (d — 1-dimensional plane) dividing
the feature space into two half-spaces

» w is the normal vector of the hyperplane, orthogonal to the
hyperplane

v

Values of f(x) increase in the direction of w
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Classification learning with linear models

The model f(x) is turned into a classifier by thresholding at 0:

[ 41 iff(x)>0
h(x) —{ 1 i f(x) <0

» The goal of learning the
parameters (w, b) is to

put the hyperplane in
between the two classes
» h(x)=-1<1f(x) <0
for the negative class
» h(x) =414 f(x)>0
for the positive class

GC content before 'AG'

GC content after 'AG'
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Measuring classification success: loss function

In binary classification () = {—1,+41}), we one may use the 0/1-loss

function: i i) = Ji
e(f(x,-),yf):{ - ZK% £y

> If all training data are on )
the correct side of the
hyperplane we have
it Uf(xi),yi) =0

» However, there might be
several hyperplanes that
achieve zero loss

GC content before 'AG'

» Does it matter which one

we choose? GC content after 'AG'
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Maximum margin hyperplane

One good solution is to choose the hyperplane that lies furthest away from
the training data:

» Robustness: small change in the training data will not change the
classifications too much

» Theoretically can be shown to lead to good performance — a large
margin, distance between the hyperplane, is tied to low error on
unseen data

» Support vector machines (SVM) are based on this principle

GC content before 'AG'

®®®
OO

GC content after 'AG'

GC content before 'AG'

@ © @

GC content after 'AG'
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How to Maximize the Margin?

» For positive class the margin is given by
v(xi) = yif (xi) = y(< w,x > +b)

» By multiplying the weights with a arbitrary ¢ > 1, one can increase
the margin without limit
y(< ew,x > +b) = c-y(w,x > +b) = c - v(x;)

» Any separating hyperplane can be made to have as large margin as we
wish, cannot choose between them by taking the maximum!

@

GC content before 'AG'
GC content before 'AG"

GC content after 'AG' GC content after 'AG'
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How to Maximize the Margin?

Margin maximization becomes sensible if we add a constraint that the
length of the weight vector should not change: ||w|| = /> ", WJ-2 =1.
Our optimization problem becomes:

Maximize ol 2 ©
Subject to  y;({w,x;) + b) =~ § 0O - g
foralli=1,...,n, g 5=
Iwil =1 52 @

/ GC content after 'AG'
» First constraint says that all examples have at least margin of

» Second constraint fixes the norm of the weight vector — intuitively,
gives fixed measurement scale

» Now there will be a maximum margin hyperplane
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How to Maximize the Margin?

It turns out that we can equivalently fix the margin v =1 and seek for
shortest weight vector that achieves the margin

L. 1 2 o )
Minimize aldl p @
Subject to  yi({w,x;) +b) >1 s o
foralli=1,...,n. H -1

GC content after 'AG'

» All points have at least margin of =1

» The points that have margin v(x) = 1 are called support vectors

» The set of support vectors uniquely identifies the hyperplane
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How to Maximize the Margin? Non-separable data

In practise data rarely separates cleanly into two halfspaces by a
hyperplane, for multitude of reasons:

» Measurement errors
» Insufficient features

» Annotation errors

GC content before 'AG'

/ GC content after 'AG'
» For any hyperplane, there will be an example with a negative margin

» Our optimization problem has no feasible solution

November 21, 2011 16 / 30



Soft-Margin SVM (Cortes & Vapnik, 1995)

The soft-margin SVM allows some of the training points to have smaller
margin than v(x) = 1, subject to a penalty:

Minmize  YwIP+CYL e § o0
Subject to  yi({w,x;) +b) = 1—¢; g Q
forall i=1,...,n. o
£ >0 ’

- GC content after 'AG'
» &; is called the slack variable, when positive the margin v(x;) < 1

» The sum of slacks is to be minimized so the objective still favours
hyperplanes that separates the classes well

> The coefficient C > 0 controls the balance between maximizing the
margin and the amount of slack needed

0 November 21, 2011 17 /30



An important detail (1) "
... 2
minimize EHWH + C;f;

w’b’g

subject to y;j({w,x;) + b) > 1—¢& foralli=1,...,n.
& >0foralli=1,...,n

Theorem: The optimal w can be written as a linear combination of the
examples (for appropriate a's):

n
W = E Qi YiX;
i=1

0 November 21, 2011 18 / 30



An important detalil ()
migvl’iﬁize EHWH2 + C;f;
=
subject to y;j({w,x;) + b) > 1—¢& foralli=1,...,n.
& >0foralli=1,...,n

Theorem: The optimal w can be written as a linear combination of the
examples (for appropriate a's):

n
w = Za;y;x; = Plug in!
i=1
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An important detail  (I11)

N 2 n
D aiyixil +C> &
i=1 i=1

subject to y; (ZJNZI ajyi(xj, x;) + b) >1-¢foralli=1,....n.
& >0foralli=1,...,n

o 1
minimize =
a7b7§ 2

Theorem: The optimal w can be written as a linear combination of the
examples (for appropriate a's):

n
w = Za,-y,-x,- = Plug in!
i=1

Now optimize for the variables a, b, and &!
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An important detail (V)

minimize fZZoz a;yiyi(Xi, ;) + CZf:

a7b7
¢ i=1 j=1

subject to y; (ZJN:1 ajyi(xj, ;) + b) >1—¢foralli=1,...,n
&>0foralli=1,...,n

Theorem: The optimal w can be written as a linear combination of the
examples (for appropriate 's):

w = Za;y;x; = Plug in!

Now optimize for the variables a, b, and &!
Corollary: Optimization problem only depends on the inner products of

the examples D
= E XdXd
d=1
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Kernels & the “Trick” Inflating the Feature Space

Recognition of Splice Sites

» Given: Potential acceptor splice sites
GAACGTTTCAACCATTTTGAG
TTACAGATATAATAATCTAATT
ACTAACACATCCGTCTGTGCC
TCATCAATCTCCAAAACCAACAC
intron exon

» Goal: Rule that distinguishes true from false ones

A

Linear Classifiers
with large margin

GC content before 'AG'

GC content after 'AG'
() November 21, 2011 19 / 30



Kernels & the “Trick” Inflating the Feature Space

Recognition of Splice Sites

» Given: Potential acceptor splice sites

GAACGTTTCAACCATTTTCAC
ATTACAGATATAATAATCTAATT
ACTAACACATCCGTCTGTGCC
TCATCAATCTCCAAAACCAACAC
intron exon

» Goal: Rule that distinguishes true from false ones

GC content before 'AG'

More realistic problem?
> Not linearly separable!

» Need nonlinear separation?

» Need more features?

GC content after 'AG'
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Kernels & the “Trick” Inflating the Feature Space

Nonlinear Separations

Linear separation might not be sufficient!
= Map into a higher dimensional feature space

Example: all pairwise products of features

¢:R? — R?
. 2 2
(x1,%) — (21,20, 23) = (X2, V2 x10, X3)
A Z
3
X “ xZ %
X X X x
X
X x X X
I A x X
- ~. \ %
xS, > N X o X
/. “ N o\
[ O o) D \ O X
{ Ji L ( X
\ > N oo d
X o / X
X\\\ o o x o o \\ X !
- X A -
X « \\ )
N\
X X X X ,/’/\\
V4 LCIN
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Kernels & the “Trick” Kernel “Trick”

Kernel “Trick”
Example: x € R? and ®(x) := (x7, /2 x1x2, x3)

(@), %) = (& V2x00.4). (V2 1%, )
= (1, %), (%1, %))
= (%’

= k(x,x

~—

» Inner product in feature space (here R3) can be computed in input
space (here R?)!

» Also works for higher orders and dimensions
= relatively low-dimensional input spaces
= very high-dimensional feature spaces
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Kernels & the “Trick” Kernel “Trick”

Putting Things Together ...

» Use a non-linear map ®(x) instead of original features x

» Use linear classifier on the ®(x)'s
» From theorem: w = 2”: a,y;iP(x;).
> Non-linear : -
f(x) = (w,®(x))+b
3 i (0(x), O(x) 45
i=1 K(xix)
» Trick: k(x,X) = (®(x), P(X)), i.e. do not use ¢, but k!
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Kernels & the “Trick” Kernel “Trick”

Kernel =~ Similarity Measure

Distance:

[0(x) — SR)[* = [[@(x)[* — 2(d(x), D(%)) + [ *(%)]

Inner product: (®(x), P(X))
> If [ O(x)[|> = [|®(X)]|* = 1, then

inner product = 2—distance

» Angle between vectors, i.e.,

P00, (X)) = cos(®P(x), P(x
o)) o)~ C(®X): *())
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Kernels & the “Trick” Kernel “Trick”

How to Construct a Kernel

At least two ways to get to a kernel:

1. Construct ® and think about efficient ways to compute the inner
product (®(x), d(X))

> If x is very high-dimensional, computing the inner product element by
element is slow, we don't want to do that

2. Construct similarity measure and show that it qualifies as a kernel
(Mercer condition)

> Show that for any set of examples the matrix K = (k(xi, x;)); _;
positive semi-definite.

» In that case, there always is an underlying feature representation, for
which the kernel represents the inner product

is
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Kernels & the “Trick” Common Kernels

Common Kernels

Polynomial k(x,%) = ({x,%)+ ¢)¢
Sigmoid  k(x,X) = tanh(k(x,X))+ 0)
RBF k(x,X) = exp (—||x—§(||2/(2a2))
Convex combinations k(x,X) = [iki(x,X) + foka(x, X)
k'(x, X)
b %) k/(x, x)k/ (X, X)

Normalization k

Notes:
» Kernels may be combined in case of heterogeneous data
» These kernels are good for real-valued examples

» Sequences need special care (coming soon!)
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Kernels & the “Trick” Common Kernels

Toy Examples

Linear kernel RBF kernel
k(x,%) = (x, %) k(x, %) = exp(—||x — &[|*/20)
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Kernels & the “Trick” Common Kernels

Kernel Summary

v

Nonlinear separation < linear separation of nonlinearly mapped
examples

v

Mapping ® defines a kernel by

k(x, %) := (®(x), (%))

v

(Mercer) Kernel defines a mapping ® (nontrivial)
Choice of kernel has to match the data at hand

v

v

RBF kernel often works pretty well
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Kernels & the “Trick” Common Kernels

&I\/Iore) Evaluation Measures for Classification

left] Receiver Operating Charac- [right] Precision Recall Curve
teristic (ROC) Curve
ROC PPV
1 d method !
Propose —— proposed method
— firstef
° proposed method | ___ eponine
o 3 ~——— mcpromotor
g
é mcpromolor g
g 2
—— proposed method| é
firstef mcpromotor
0.1 ——eponine 0.1
~—— mcpromotor
0.01
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
false positive rate true positive rate
» Obtained by varying a threshold —co < 7 < 0o and using that instead
of 0: f(x) >7 = +1,f(x) <7 = -1
» Record TPR/FPR or Precision(PPV)/Recall(TPR) for all 7
» In practise: sort training data in the order of f(x), and sweep over the

sorted sequence once, connect the dots
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Kernels & the “Trick” Common Kernels

(More) Evaluation Measures for Classification

[left] Receiver Operating Charac- [right] Precision Recall Curve
teristic (ROC) Curve
ROC PPV
! roposed method !
prop —— proposed method
— firstef
° proposed method | ___ eponine

S

o E mcpromotor
E o
) 2
= 5]
= mcpromotor k=1
g 3
a a
] .§
— proposed method| =3

firstef mcpromotor
01 —— eponine 01
—— mcpromotor
0.01
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
false positive rate true positive rate

Two summarize the classifier performance over the whole curve, one
typically computes:

» Area under ROC Curve (auROCQ)

» Area under Precision Recall Curve (auPRC)
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Kernels & the “Trick” Results for Running Example

Running example: GC-Content-based Splice Site

Recognition

Kernel auROC
Linear 88.2%
Polynomial d =3 | 91.4%
Polynomial d =7 | 90.4%
Gaussian ¢ =100 | 87.9%
Gaussian 0 =1 88.6%
Gaussian ¢ = 0.01 | 77.3%

SVM accuracy of acceptor site recognition using polynomial and Gaussian
kernels with different degrees d and widths o. Accuracy is measured using
the area under the ROC curve (auROC) and is computed using five-fold

cross-validation
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