
C L A S S I F I C A T I O N & S U P P O R T V E C T O R M A C H I N E S

L E C T U R E M A T E R I A L C O U R T E S Y O F
G U N N A R R Ä T S C H G U N N A R . R A E T S C H (A T) T U E B I N G E N . M P G . D E

S Ö R E N S O N N E N B U R G S O E R E N . S O N N E N B U R G (A T) T O M T O M . C O M

Lecture Mon 21.11.

() November 21, 2011 1 / 30

Classification Problems in bioinformatics

Sequence classification:

Given: DNA sequence

Predict: Does sequence belong to an CpG island or not

Diagnostic models:

Given: Expression levels of genes from a sample

Predict: Diseased or healthy

Functional genomics:

Given: Sequence of a gene

Predict: The biological function of the gene (e.g. Gene
Ontology category)

() November 21, 2011 2 / 30

Running example: Splice site recognition

I Almost all donor splice sites exhibit GU

I Almost all acceptor splice site exhibit AG

I Not all GUs and AGs are used as splice site ⇒ Classification task

() November 21, 2011 3 / 30

Classification setup

I Training data from real (label +1) and decoy (label -1) acceptor sites
I All training data contain ’AG’ dinucleotide

I Discrminative model is learned from training data

I Testing on an independent test set

() November 21, 2011 4 / 30

Classification learning with feature vectors

We will concentrate on
methods that rely on numerical
feature representation for the
data

I Each example is a vector
of values (features).

I If the example is not a
vector, a feature
representation needs to be
first computed

I What are good features to
extract? Requires
background knowledge on
the application domain.

() November 21, 2011 5 / 30

Classification learning with feature vectors
Possible features in the acceptor site recognition problem

I GC content in a window before ’AG’

I GC content in a window after ’AG’

I Occurrence of specific subsequences ’TTTAG’

intron exon
x1 x2 x3 x4 x5 x6 x7 x8 . . .

GC before 0.6 0.2 0.4 0.3 0.2 0.4 0.5 0.5 . . .
GC after 0.7 0.7 0.3 0.6 0.3 0.4 0.7 0.6 . . .
AGAGAAG 0 0 0 1 1 0 0 1 . . .
TTTAG 1 1 1 0 0 1 0 0 . . .
...

...
...

...
...

...
...

...
...

. . .

Label +1 +1 +1 −1 −1 +1 −1 −1 . . .

() November 21, 2011 6 / 30

Recognition of Splice Sites
I Given: Potential acceptor splice sites

intron exon
I Goal: Rule that distinguishes true from false ones

AGAG

AG

AG

AG
AG AG

AG

AG

AG

AG

AG

GC content after 'AG'

G
C

co
nt

en
t b

ef
or

e
'A

G
'

?

exploit that exons have higher GC
content

or

that certain motifs are located
nearby

() November 21, 2011 7 / 30

Classification learning with linear models

We will concentrate on models that take a linear form:

f (x) =
d∑

j=1

wjxj + b

I xj is the value of the j ’th feature for example x, e.g. ’GC content
before’

I wj is the weight of the j ’th feature, to be learned from the data

I b is an offset term, to be learned from the data

() November 21, 2011 8 / 30

Classification learning with linear models

We will concentrate on models that take a linear form:

f (x) =
d∑

j=1

wjxj + b = 〈w, x〉+ b

I 〈w, x〉 denotes the inner product (also known as dot product and
scalar poduct), between the weight vector and the feature vector

I Geometrically f (x) is a hyperplane (d − 1-dimensional plane) dividing
the feature space into two half-spaces

I w is the normal vector of the hyperplane, orthogonal to the
hyperplane

I Values of f (x) increase in the direction of w

() November 21, 2011 9 / 30

Classification learning with linear models

The model f (x) is turned into a classifier by thresholding at 0:

h(x) =

{
+1 if f (x) > 0
−1 if f (x) < 0

I The goal of learning the
parameters (w, b) is to
put the hyperplane in
between the two classes

I h(x) = −1⇔ f (x) < 0
for the negative class

I h(x) = +1⇔ f (x) > 0
for the positive class

AGAG

AG

AG

AG
AG AG

AG

AG

AG

AG

AG

GC content after 'AG'

G
C

co
nt

en
t b

ef
or

e
'A

G
'

?

() November 21, 2011 10 / 30

Measuring classification success: loss function

In binary classification (Y = {−1,+1}), we one may use the 0/1-loss
function:

`(f (xi), yi) =

{
0 if h(xi) = yi
1 if h(xi) 6= yi

I If all training data are on
the correct side of the
hyperplane we have∑n

i=1 `(f (xi), yi) = 0

I However, there might be
several hyperplanes that
achieve zero loss

I Does it matter which one
we choose?

AGAG

AG

AG

AG
AG AG

AG

AG

AG

AG

AG

GC content after 'AG'

G
C

co
nt

en
t b

ef
or

e
'A

G
'

?

() November 21, 2011 11 / 30

Maximum margin hyperplane
One good solution is to choose the hyperplane that lies furthest away from
the training data:

I Robustness: small change in the training data will not change the
classifications too much

I Theoretically can be shown to lead to good performance — a large
margin, distance between the hyperplane, is tied to low error on
unseen data

I Support vector machines (SVM) are based on this principle

AGAG

AG

AG

AG
AG AG

AG

AG

AG

AG

AG

GC content after 'AG'

G
C

co
nt

en
t b

ef
or

e
'A

G
'

?

AGAG

AG

AG

AG
AG AG

AG

AG

AG AG

GC content after 'AG'

G
C

co
nt

en
t b

ef
or

e
'A

G
'

() November 21, 2011 12 / 30

How to Maximize the Margin?
I For positive class the margin is given by
γ(xi) = yi f (xi) = y(< w, x > +b)

I By multiplying the weights with a arbitrary c > 1, one can increase
the margin without limit
y(< cw, x > +b) = c · y(w, x > +b) = c · γ(xi)

I Any separating hyperplane can be made to have as large margin as we
wish, cannot choose between them by taking the maximum!

AGAG

AG

AG

AG
AG AG

AG

AG

AG

AG

AG

GC content after 'AG'

G
C

co
nt

en
t b

ef
or

e
'A

G
'

?

AGAG

AG

AG

AG
AG AG

AG

AG

AG AG

GC content after 'AG'

G
C

co
nt

en
t b

ef
or

e
'A

G
'

() November 21, 2011 13 / 30

How to Maximize the Margin?
Margin maximization becomes sensible if we add a constraint that the

length of the weight vector should not change: ||w|| =
√∑m

i=1 w
2
j = 1.

Our optimization problem becomes:

Maximize γ

Subject to yi (〈w, xi 〉+ b) > γ

for all i = 1, . . . , n,

||w|| = 1

AGAG

AG

AG

AG
AG AG

AG

AG

AG AG

GC content after 'AG'

G
C

co
nt

en
t b

ef
or

e
'A

G
'

I First constraint says that all examples have at least margin of γ

I Second constraint fixes the norm of the weight vector — intuitively,
gives fixed measurement scale

I Now there will be a maximum margin hyperplane

() November 21, 2011 14 / 30

How to Maximize the Margin?

It turns out that we can equivalently fix the margin γ = 1 and seek for
shortest weight vector that achieves the margin

Minimize 1
2 ||w||

2

Subject to yi (〈w, xi 〉+ b) > 1

for all i = 1, . . . , n.

AGAG

AG

AG

AG
AG AG

AG

AG

AG AG

GC content after 'AG'

G
C

co
nt

en
t b

ef
or

e
'A

G
'

I All points have at least margin of = 1

I The points that have margin γ(x) = 1 are called support vectors

I The set of support vectors uniquely identifies the hyperplane

() November 21, 2011 15 / 30

How to Maximize the Margin? Non-separable data

In practise data rarely separates cleanly into two halfspaces by a
hyperplane, for multitude of reasons:

I Measurement errors

I Insufficient features

I Annotation errors

AGAG

AG

AG

AG
AG AG

AG

AG

AG AG

AG

GC content after 'AG'

G
C

co
nt

en
t b

ef
or

e
'A

G
'

ξ

I For any hyperplane, there will be an example with a negative margin

I Our optimization problem has no feasible solution

() November 21, 2011 16 / 30

Soft-Margin SVM (Cortes & Vapnik, 1995)

The soft-margin SVM allows some of the training points to have smaller
margin than γ(x) = 1, subject to a penalty:

Minimize 1
2 ||w||

2 + C
∑n

i=1 ξi

Subject to yi (〈w, xi 〉+ b) > 1− ξi
for all i = 1, . . . , n.

ξi ≥ 0

AGAG

AG

AG

AG
AG AG

AG

AG

AG AG

AG

GC content after 'AG'

G
C

co
nt

en
t b

ef
or

e
'A

G
'

ξ

I ξi is called the slack variable, when positive the margin γ(xi) < 1

I The sum of slacks is to be minimized so the objective still favours
hyperplanes that separates the classes well

I The coefficient C > 0 controls the balance between maximizing the
margin and the amount of slack needed

() November 21, 2011 17 / 30

An important detail (I)
minimize

w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi (〈w, xi 〉+ b) > 1− ξi for all i = 1, . . . , n.
ξi > 0 for all i = 1, . . . , n

Theorem: The optimal w can be written as a linear combination of the
examples (for appropriate α’s):

w =
n∑

i=1

αiyixi

⇒ Plug in!

Now optimize for the variables α, b, and ξ!

Corollary: Optimization problem only depends on the inner products of
the examples

〈x, x̂〉 =
D∑

d=1

xd x̂d

() November 21, 2011 18 / 30

An important detail (II)
minimize

w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi (〈w, xi 〉+ b) > 1− ξi for all i = 1, . . . , n.
ξi > 0 for all i = 1, . . . , n

Theorem: The optimal w can be written as a linear combination of the
examples (for appropriate α’s):

w =
n∑

i=1

αiyixi ⇒ Plug in!

Now optimize for the variables α, b, and ξ!

Corollary: Optimization problem only depends on the inner products of
the examples

〈x, x̂〉 =
D∑

d=1

xd x̂d

() November 21, 2011 18 / 30

An important detail (III)

minimize
α,b,ξ

1

2

∥∥∥∥∥
N∑
i=1

αiyixi

∥∥∥∥∥
2

+ C
n∑

i=1

ξi

subject to yi

(∑N
j=1 αjyj〈xj , xi 〉+ b

)
> 1− ξi for all i = 1, . . . , n.

ξi > 0 for all i = 1, . . . , n

Theorem: The optimal w can be written as a linear combination of the
examples (for appropriate α’s):

w =
n∑

i=1

αiyixi ⇒ Plug in!

Now optimize for the variables α, b, and ξ!

Corollary: Optimization problem only depends on the inner products of
the examples

〈x, x̂〉 =
D∑

d=1

xd x̂d

() November 21, 2011 18 / 30

An important detail (IV)

minimize
α,b,ξ

1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi , xj〉+ C
n∑

i=1

ξi

subject to yi

(∑N
j=1 αjyj〈xj , xi 〉+ b

)
> 1− ξi for all i = 1, . . . , n.

ξi > 0 for all i = 1, . . . , n

Theorem: The optimal w can be written as a linear combination of the
examples (for appropriate α’s):

w =
n∑

i=1

αiyixi ⇒ Plug in!

Now optimize for the variables α, b, and ξ!

Corollary: Optimization problem only depends on the inner products of
the examples

〈x, x̂〉 =
D∑

d=1

xd x̂d

() November 21, 2011 18 / 30

Kernels & the “Trick” Inflating the Feature Space

Recognition of Splice Sites
I Given: Potential acceptor splice sites

intron exon
I Goal: Rule that distinguishes true from false ones

Linear Classifiers
with large margin

() November 21, 2011 19 / 30

Kernels & the “Trick” Inflating the Feature Space

Recognition of Splice Sites
I Given: Potential acceptor splice sites

intron exon
I Goal: Rule that distinguishes true from false ones

AG

AG

AG

AG

AG

AG AG

AG

AG

AG

AG

AG

GC content after 'AG'

G
C

co
nt

en
t b

ef
or

e
'A

G
'

More realistic problem?

I Not linearly separable!

I Need nonlinear separation?

I Need more features?

() November 21, 2011 19 / 30

Kernels & the “Trick” Inflating the Feature Space

Nonlinear Separations
Linear separation might not be sufficient!
⇒ Map into a higher dimensional feature space

Example: all pairwise products of features

Φ : R2 → R3

(x1, x2) 7→ (z1, z2, z3) := (x2
1 ,
√

2 x1x2, x
2
2)

m

m

m

m

m

m

m

m

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

x1

x2

m
m

m
m

m

m

m

m

5

5

5

5

5

5

5

5

5

5

5

5

5

z1

z3

5

z2

() November 21, 2011 20 / 30

Kernels & the “Trick” Kernel “Trick”

Kernel “Trick”

Example: x ∈ R2 and Φ(x) := (x2
1 ,
√

2 x1x2, x
2
2)

〈Φ(x),Φ(x̂)〉 =
〈

(x2
1 ,
√

2 x1x2, x
2
2), (x̂2

1 ,
√

2 x̂1x̂2, x̂
2
2)
〉

= 〈(x1, x2), (x̂1, x̂2)〉2

= 〈x, x̂〉2

: =: k(x, x̂)

I Inner product in feature space (here R3) can be computed in input
space (here R2)!

I Also works for higher orders and dimensions
⇒ relatively low-dimensional input spaces
⇒ very high-dimensional feature spaces

() November 21, 2011 21 / 30

Kernels & the “Trick” Kernel “Trick”

Putting Things Together . . .

I Use a non-linear map Φ(x) instead of original features x

I Use linear classifier on the Φ(x)’s

I From theorem: w =
n∑

i=1

αiyiΦ(xi).

I Non-linear :

f (x) = 〈w,Φ(x)〉+ b

=
n∑

i=1

αiyi 〈Φ(xi),Φ(x)〉︸ ︷︷ ︸
k(xi ,x)

+b

I Trick: k(x, x̂) = 〈Φ(x),Φ(x̂)〉, i.e. do not use Φ, but k!

() November 21, 2011 22 / 30

Kernels & the “Trick” Kernel “Trick”

Kernel ≈ Similarity Measure

Distance:

‖Φ(x)− Φ(x̂)‖2 = ‖Φ(x)‖2 − 2〈Φ(x),Φ(x̂)〉+ ‖Φ(x̂)‖2

Inner product: 〈Φ(x),Φ(x̂)〉
I If ‖Φ(x)‖2 = ‖Φ(x̂)‖2 = 1, then

inner product = 2−distance

I Angle between vectors, i.e.,

〈Φ(x),Φ(x̂)〉
‖Φ(x)‖ ‖Φ(x̂)‖

= cos(Φ(x),Φ(x̂))

() November 21, 2011 23 / 30

Kernels & the “Trick” Kernel “Trick”

How to Construct a Kernel

At least two ways to get to a kernel:

1. Construct Φ and think about efficient ways to compute the inner
product 〈Φ(x),Φ(x̂)〉

I If x is very high-dimensional, computing the inner product element by
element is slow, we don’t want to do that

2. Construct similarity measure and show that it qualifies as a kernel
(Mercer condition)

I Show that for any set of examples the matrix K = (k(xi , xj))ni,j=1 is
positive semi-definite.

I In that case, there always is an underlying feature representation, for
which the kernel represents the inner product

() November 21, 2011 24 / 30

Kernels & the “Trick” Common Kernels

Common Kernels

Polynomial k(x, x̂) = (〈x, x̂〉+ c)d

Sigmoid k(x, x̂) = tanh(κ〈x, x̂〉) + θ)

RBF k(x, x̂) = exp
(
−‖x− x̂‖2/(2σ2)

)
Convex combinations k(x, x̂) = β1k1(x, x̂) + β2k2(x, x̂)

Normalization k(x, x̂) =
k′(x, x̂)√

k′(x, x)k′(x̂, x̂)

Notes:

I Kernels may be combined in case of heterogeneous data

I These kernels are good for real-valued examples

I Sequences need special care (coming soon!)

() November 21, 2011 25 / 30

Kernels & the “Trick” Common Kernels

Toy Examples

Linear kernel RBF kernel
k(x, x̂) = 〈x, x̂〉 k(x, x̂) = exp(−‖x− x̂‖2/2σ)

() November 21, 2011 26 / 30

Kernels & the “Trick” Common Kernels

Kernel Summary

I Nonlinear separation ⇔ linear separation of nonlinearly mapped
examples

I Mapping Φ defines a kernel by

k(x, x̂) := 〈Φ(x),Φ(x̂)〉

I (Mercer) Kernel defines a mapping Φ (nontrivial)

I Choice of kernel has to match the data at hand

I RBF kernel often works pretty well

() November 21, 2011 27 / 30

Kernels & the “Trick” Common Kernels

(More) Evaluation Measures for Classification
[left] Receiver Operating Charac-
teristic (ROC) Curve

[right] Precision Recall Curve

0 0.2 0.4 0.6 0.8 1
0.01

0.1

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

ROC

proposed method
firstef
eponine
mcpromotor

proposed method

firstef

mcpromotor

eponine

0 0.2 0.4 0.6 0.8 1

0.1

1

true positive rate

po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e

PPV

proposed method
firstef
eponine
mcpromotor

proposed method

firstef
eponine

mcpromotor

I Obtained by varying a threshold −∞ < τ <∞ and using that instead
of 0: f (x) > τ =⇒ +1, f (x) < τ =⇒ −1

I Record TPR/FPR or Precision(PPV)/Recall(TPR) for all τ
I In practise: sort training data in the order of f (x), and sweep over the

sorted sequence once, connect the dots

() November 21, 2011 28 / 30

Kernels & the “Trick” Common Kernels

(More) Evaluation Measures for Classification
[left] Receiver Operating Charac-
teristic (ROC) Curve

[right] Precision Recall Curve

0 0.2 0.4 0.6 0.8 1
0.01

0.1

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

ROC

proposed method
firstef
eponine
mcpromotor

proposed method

firstef

mcpromotor

eponine

0 0.2 0.4 0.6 0.8 1

0.1

1

true positive rate

po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e

PPV

proposed method
firstef
eponine
mcpromotor

proposed method

firstef
eponine

mcpromotor

Two summarize the classifier performance over the whole curve, one
typically computes:

I Area under ROC Curve (auROC)

I Area under Precision Recall Curve (auPRC)

() November 21, 2011 29 / 30

Kernels & the “Trick” Results for Running Example

Running example: GC-Content-based Splice Site
Recognition

Kernel auROC

Linear 88.2%
Polynomial d = 3 91.4%
Polynomial d = 7 90.4%

Gaussian σ = 100 87.9%
Gaussian σ = 1 88.6%
Gaussian σ = 0.01 77.3%

SVM accuracy of acceptor site recognition using polynomial and Gaussian
kernels with different degrees d and widths σ. Accuracy is measured using
the area under the ROC curve (auROC) and is computed using five-fold
cross-validation

() November 21, 2011 30 / 30

	Kernels & the ``Trick''
	Inflating the Feature Space
	Kernel ``Trick''
	Common Kernels
	Results for Running Example

