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Non-coding DNA 

�  Non-coding DNA include 
all segments of the 
genome that does not get 
translated to proteins 

�  In higher organisms, 
most of the DNA is non-
coding 
¡  In humans, over 98% of 

the genome is non-coding 



Types of non-coding DNA 

• Functional RNA molecules that are not translated into protein.  
Noncoding functional 

RNA, RNA genes 

• Regions inside the coding region that are not transcribed into mRNA 
• Common in higher organisms Introns  

• Binding sites of special proteins called transcription factors 
• Typically within in the promotor region of the gene or within the introns 
• Carry important function 

Regulatory elements 

• Genes that have lost their protein coding ability 
• Thought to be non-functional Pseudogenes 

• Simple repeats, CpG islands 
• DNA satellites 
• Mobile sequences (transposons) 
• Possible role in epigenetics 

Repeat sequences 

• DNA with no function 
• Open question: How much of that is there?  ‘Junk DNA’ 



Functions of non-coding RNA 

ncRNA 

RNA 
enzymes:  
• Ribosomal 
RNA  

• Transfer RNA 
(tRNA) 

• Catalyze 
translation 

RNA mediated 
gene regulation 
(RNAi)  
• Micro RNA (miRNA) 
• Small interfering 

RNA (siRNA) 

Alternative 
splicing 
• Small-nuclear RNA 

(snRNA) 

Others: 
snoRNA, 
ERNA, 

srpRNA, 
tmRNA, gRNA 



Enabling technology: whole transcriptome 
profiling 

�  Modern high-throughput 
measurement technology 
allows one to observe all 
expressed genomic content 
at the same time 
¡  Tiling arrays are based on 

microarray technology 
(binding of mRNA to pre-
designed probes) 

¡  RNA-seq is based on 
sequencing the 
transcriptome 

�  Both give an unbiased view 
to the transcriptome, 
hence useful for ncRNA 
studies 



Enabling technologies: ncRNA databases 

�  Online databases that 
integrate and store data 
from different studies are a 
key piece of bioinformatics 
infrastructure 
¡  Given a candidate ncRNA 

gene a database search may 
reveal its function or at least 
clues of it 

�  Development of 
bioinformatics methods and 
tools also relies on curated 
datasets  



Discovering the function of RNA genes 

�  For RNA genes we can profile their expression  
¡  Tiling arrays, RNA-seq 

�  However expression of a sequence does not directly 
reveal its function  
¡  Differential expression studies can reveal association of the 

expression to phenotypes 
¡  Indirect evidence can be obtained from functions of co-

expressed sequences 
¡  Danger of “guilt by association” 

�  If a homologous sequence with known function can 
be found, one can transfer the annotation 
¡  This is easier with protein coding RNA as the databases are 

more comprehensive 



From sequence...to structure... to function 

�  3D structure of RNA is 
thought to determine the 
function 
¡  hard to predict from 

sequence 
¡  prediction of secondary 

structure (local loops) as a 
intermediate problem 

�  RNA secodary structure 
prediction is a well-
established field of 
bioinformatics 



Predicted RNA secondary structures 
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Identification of Novel Genes Coding for Small Expressed RNAs 
Mariana Lagos-Quintana, et al. Science 294, 853 (2001); 



Modelling MicroRNA  

�  A microRNA (miRNA) 
is a short RNA molecule 
(avg 22 nt) 

�  miRNAs bind to 
complementary 
sequences on mRNA 

�  Usually results in 
repression of translation 
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Modelling MicroRNA  

�  MicroRNA animation 
�  Two problems of interest 

¡  microRNA gene finding - 
locate microRNA genes from 
the genome 

¡  microRNA target prediction 

�  Many techniques exist, 
we will look how HMMs 
can help 
¡  Pair HMM 
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Hidden Markov Models for Sequence 
Alignment 

�  So far, we have used HMMs to detect certain regions 
from single a sequence 

�  HMMs can also be used for sequence alignment 
tasks 
¡  Pair-HMM can be used to find high-scoring alignments 

between two sequences, allowing gaps 
¡  Profile-HMM can be used to model a multiple alignment of a 

set of sequences 

�  Probabilistic alternative to combinatorial pattern 
matching algorithms (e.g. edit distance 
minimization) 
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X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC 
Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- 
  XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX 

M 
(+1,+1) 

X 
(+1, 0) 

Y 
(0, +1) 

Pair HMM 

�  Pair HMM consist of  
¡  Begin and End state 

which do not emit 
symbols 

¡  Three normal states 
÷ M (match) 
÷ X (gap in Y) 
÷ Y (gap in X)  

Begin End 



ε	


M 
(+1,+1) 

X 
(+1, 0) 

Y 
(0, +1) 

ε	
 δ	
 δ	


1-ε	
1-ε	


1-2δ	


Pair HMM - Transitions 

�  Transition from M to X 
(resp. Y) opens a gap in 
Y (resp. X), transition 
back to M closes the 
gap 
¡  δ ~ open gap probability 
¡  ε ~ extend gap probability 

X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC 
Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- 
  XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX 



M 
px,y 

X 
qx 

Y 
qy 

ε	
 δ	
 δ	
 ε	


1-ε	
1-ε	


1-2.δ	


Pair HMM - Emissions 

�  State M: emit (b,b’) 
with probability eM
(b,b’) 

�  State X: emit (b,-) 
against a gap with 
probability ex(b) 

�   State Y: emit (-,b’) 
with probability eY(b’) 
X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC 
Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- 
  XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX 



Pair HMMs – Finding Optimal Alignment  

�  A state sequence π from begin to end state that emits 
x and y gives an alignment for them 
¡  Transition and emission probabilites give the probability of the 

alignment 

�  The best alignment of two sequences corresponds to 
the most probable state sequence  

�  Can be computed by the Viterbi algorithm 
!*= argmax! P(x, y,! )

X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC 
Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- 
  XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX 



 
VM(i, j) = eM(xi, yj) max 

 
 

VX(i, j) = eX(xi) max 
 
 

VY(i, j) =eY(yj) max 

(1 - 2δ) VM(i - 1, j - 1) 
(1 - ε) VX(i - 1, j - 1) 
(1 - ε) VY(i - 1, j - 1) 
 

δ VM(i - 1, j) 
ε VX(i - 1, j) 
 
δ VM(i, j - 1) 
ε VY(i, j - 1) 

M 
Px,y 

X 
qx 

Y 
qy 

ε	
 δ	
 δ	
 ε	


1-ε	
1-ε	


1-2δ	


Viterbi for pair-HMMs 

X TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC 
Y -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- 
  XMMYMMMMMMMYYMMMMMMYMMMMMMMXXMMMMMXXX 



Pair-HMM as sequence aligner 

�  pair HMM can be seen as 
an analogy to edit 
distance –based 
sequence alignment 

�  Instead of minimizing 
cost of edit operations 
(insert, delete, match) we 
maximize their 
probability 
A T - G T T A T 
A T C G T - A C 
M M Y M M X M M 



M 
p(x,y) 

I 
p(x) 

J 
p(y) 

ε	
 δ	
 δ	
 ε	


1-ε	
1-ε	


1-2δ-τ	


Begin End 

Full model 

�  The complete model should also contain the 
transitions between the begin, end and normal 
states 

τ	


τ	


τ	
δ	


δ	


1-2δ	




1st Problem: predicting microRNA genes 

�  Main approches for 
finding miRNA genes: 
¡  Via expression (RNA-seq); 

what if our gene is not 
higly expressed 

¡   Via homology to known 
miRNAs; but how to find 
new miRNA genes? 

¡  Ab initio prediction from 
sequence; how can we get 
accurate predictions? 
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Ab initio prediction of microRNA genes 

�  Challenges for HMMs 
¡  miRNA genes are short 
¡  no codon structure to help 

modelling 
¡  hard to make an accurate 

HMM based on that 

�  ProMIR system  
¡  Takes advantage of the 

secondary structure of the 
RNA 
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Nam, et al. Human microRNA prediction through a probabilistic co-learning model of 
sequence and structure. Nucleic Acids Research, 2005, 33 (11), 3570-3581 



Pair HMM in ProMiR 

�  States: two components 
¡  Match (M), mismatch (U), insertion (I), deletion (D) 
¡  Inside (+) or outside the miRNA region (-) 
¡  Total of 8 states: M+,U+,I+,D+,M-,U-,I-,D- 

�  Emissions (“.” denotes gap):  
¡  A-U,U-A,G-C,C-G,U-G,G-U in match state 
¡  .-A,.-U,.-G,.-C in deletion state 
¡  A-.,U-.,G-.,C-. in insertion state 
¡  All other pairs can be emitted in mismatch state 
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Pair HMM modelling of miRNA 
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Training data for ProMiR 

�  Need to have a collection of RNA secondary 
structures from miRNA and other genes 

�  Positive data: 81 5’ strand, 55 3’ strand known 
human miRNAs 
¡  The true miRNA region will give the T/F labeling 

�  Negative data: 1000 extended stem–loop structures 
randomly extracted from human chromosomes 
¡  This is really pseudo-negative data: something that is likely to 

not to be a miRNA 

�  Stem–loop structures were predicted using the 
Vienna RNA software package   
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ProMIR Pipeline 

a)  Predict RNA extended stem-
loop structures 

b)  Match to database of expressed 
sequence tags (EST) 

c)  pre-miRNA Scoring by 
pairwise-HMM 

d)  In silico verification:  
¡  free energy calculations (MFE) 
¡  negative evidence: BLAST match to 

known non-miRNA 
¡  presence of known conservation 

patterns 
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Confusion matrix Evaluation metrics 

Evaluation metrics cheat sheet 
26 

�  Accuracy: ACC = (TP + TN) / (TP + TN + FP + FN) 

�  Precision/Positive predictive value: PPV = 
TP / (TP + FP) 

�  Recall/Sensitivity/True positive rate: TPR =  
TP / (TP + FN) 

�  Specificity/True negative rate: SPC = TN / (FP 
+ TN)  

�  False positive rate: FPR  = FP / (FP + TN) 

�  False discovery rate: FDR = FP / (FP + TP) 
�  Negative predictive value: NPV = TN/(TN + FN) 



Prediction results for ProMiR 

27 



2nd problem: predicting miRNA targets 

�  miRNAs bind the mRNA transcripts to regulate 
(typically stop) their translation proteins 

�  The binding is established via complementary base 
pairing (A-U,C-G) 

�  The base pairing does not need to be perfect 
¡  Wobble pairing (Non-watson-crick base pairing) 
¡  Mismatches 
¡  Insertions 



2nd problem: predicting miRNA targets 

�  Given a miRNA sequence, can 
we predict which mRNA 
transcripts it will bind? 

�  Gao et al. position their 
method as a post-processing 
tool aiming to decrease the 
false positive rate (FP) of the 
primary prediction tools 

Gao et al. MicroRNA target prediction based on second-order Hidden Markov Model. Front. 
Biol. 2010, 5(2): 171–179 



2nd problem: predicting miRNA targets 

�  Gaso et al’s tool is a Pair-HMM 
representing the alignment of 
miRNA-mRNA 

�  Second order HMM-model: 
transition probability ajkl to 
state l depends on two 
previous states j and k 

Gao et al. MicroRNA target prediction based on second-order Hidden Markov Model. Front. 
Biol. 2010, 5(2): 171–179 



HMM structure 
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Training data for the pair HMM 

�  Positive data: 244 known miRNA-target pairs from 
Tarbase, including worm, fruit fly, zebrafish, 
rat,mouse and human sequences from Tarbase 

�  Negative data: 49 (only!) pairs that are believed not 
to interact: 22 from Tarbase, rest collected from 
scientific papers 

�  Two HMMs are built, one from each dataset 
¡  “True Target Binding Site” model 
¡  “False Target Binding Site” model 
¡  Higher scoring model “wins” 
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Pipeline 

33 



Confusion matrix Evaluation metrics 

Evaluation metrics cheat sheet 
34 

�  Accuracy: ACC = (TP + TN) / (TP + TN + FP + FN) 

�  Precision/Positive predictive value: PPV = 
TP / (TP + FP) 

�  Recall/Sensitivity/True positive rate: TPR =  
TP / (TP + FN) 

�  Specificity/True negative rate: SPC = TN / (FP 
+ TN)  

�  False positive rate: FPR  = FP / (FP + TN) 

�  False discovery rate: FDR = FP / (FP + TP) 
�  Negative predictive value: NPV = TN/(TN + FN) 



Prediction results 
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