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Parameter estimation for HMMs 

�  So far we have assumed that we 
have knowledge of the transition 
probabilities and emission 
probabilities 

�  How to obtain these if we only 
know 
¡  the emitted sequence and HMM 

structure (here: Fair, Loaded)? 
¡  possibly the hidden state sequence 
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Parameter estimation when the state 
sequence is known 

�  Assume we have  
¡  a set of training sequences x(1),…,x(n) where x(i) = x1

(i)…xl(i)
(i) , 

e.g. 
÷ Sequences of  rolls of dice:  x(1) = 1,3,4,3,…, x(2) = 5,6,4,3,… 
÷ Nucleotide sequences x(1) = AGTCGT… x(2) = CTGTAT…, 

¡  The set of states and corresponding state sequences of HMM 
÷ Which die is being used:  y(1) = FFFF…, y(2) = LLFF… 
÷ CpG-island / non-island: y(1) = NNNYYY…, y(2) = NNNNNN 

�  The goal is to optimize HMM parameters  
¡  Transition probabilities akl 
¡  Emission probabilities ek(xi) 
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Parameter estimation when the state 
sequence is known 

�  Transition probabilities,  
¡  we examine the given state sequences y(1),…,y(n)  
¡  denote by Akl the number of times transition kèl was 

taken among the sequences 
¡  Our estimate for the transition probability is 

�  Emission probabilities 
¡  Examine the emitted sequences x(1),…,x(n)  and the state 

sequences y(1),…,y(n) together 
¡  Denote by Ek(b) the number of times b was emitted 

while in state k 
¡  The estimate for emission probability is  

�  ‘+1’ is a pseudo-count to make all estimates non-
zero 4 

akl =
Akl +1
(Akl ' +1)

l '
!

ek (b) =
Ek (b)+1
(Ek (b ')+1)

b '
!



Pseudo-counts (Akl+1, Ek(b)+1)  

�  Pseudo-counts are typically used to make the models 
less prone to overfitting due to insufficient data 

�  In HMMs, the pseudo-counts also correct a problem 
arising if some state k is not visited in the training 
data: 

÷ Related to ‘missing mass’ problem: need to allocate some 
probability to so far unseen events 

�  In general, the pseudo-counts can be any positive 
real numbers, however  

÷  too large numbers will override the training data 
÷  too small numbers will cause the parameters to overfit the training 

data (leads to poorer performance on new, yet unseen data) 
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Parameter estimation when the state 
sequence is unknown 

�  Depending on the application, assumption of the state 
sequence to be known may be valid 
¡  In many cases we have are training set that contains the states 

e.g. known coding regions in genes, known CpG islands, … 

�  In other applications, such an assumption is not valid 
¡  e.g. which die is used by the dishonest casino 
¡  Data from newly sequenced organisms where no annotation 

has not been done. 
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Parameter estimation when the state 
sequence is not known 

�  Assume we have  
¡  a set of training sequences x(1),…,x(n) , and the  
¡  set of states of the HMM 

�  The goal is to optimize HMM parameters  
¡  Transition probabilities akl 
¡  Emission probabilities ek(xi) 

�  Idea: choose the HMMs parameters so that  the 
likelihood of the training data is maximized (in a certain 
sense) 

�  In the following, we present a training algoritm that uses 
path as a subroutine the Viterbi algorithm to find the 
most probable path 
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Viterbi training 

1.  Initialize the HMM parameters in some way, e.g. 
setting  

i.  ek(x) = 1/|X| uniformly, where X is the set of possible 
symbols to emit 

ii.  akl = 1/N(k) uniformly, where N(k) is the set of states that 
can follow k 

�  Alternatively, one can use a “best guess”  
¡  e.g. in the CpG island example, compute transition 

probabilities from dinucleotide frequencies 
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Viterbi training 

2.  Iterate the following, until parameters do not 
change: 

i.  For each sequence x(i), using Viterbi algorithm, find the most 
probable state sequence π*(i), given the current HMM 
parameters θ=(a,e) 

ii.  Count how many times each transition kèl was taken in the 
optimal paths  π*(1),…π*(n), denote that number by Akl 

iii.  Set the new transition probabilities as 

iv.  Count how many times each symbol s was emitted in each 
state k, denote that number by Ek(s) 

v.  Set the new emission probabilities as 
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akl =
Akl +1
(Akl +1)

l '
!

ek (b) =
Ek (b)+1
(Ek (b ')+1)

b '
!



Viterbi training 

�  The above algorithm works in batch mode: it 
assumes all training data is already available 

�  The training can also work in online mode, where the 
model is re-estimated when new data arrives 

�  Also, the training can work just as well on a single 
long sequence as on a set of short sequences 

�  The casino example highlights this training mode 

10 



Viterbi training at the casino 

�  Let us enter the occasionaly dihonest casino, with 
our HMM, with initial guesses about the underlying 
model: 

�  We observe a sequence of rolls: 
3,4,6,4,6,6,2,6,3,4,1,5,3   
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a Fair Loaded 

Fair .90 .10 

Loaded .10 .90 

e 1 2 3 4 5 6 

Fair .167 .167 .167 .167 .167 .167 

Loaded .10 .10 .10 .10 .10 .50 



Viterbi training at the casino 

�  We observe a sequence of rolls: 
3,4,6,4,6,6,2,6,3,4,1,5,3   

�  With Viterbi estimation with the current model, we 
get: LLLLLLLLFFFFF 

�  Count transitions and emissions, add pseudo-counts  
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A+1 Fair Loaded 

Fair 4+1 0+1 

Loaded 1+1 7+1 

E+1 1 2 3 4 5 6 

Fair 1+1 0+1 2+1 1+1 1+1 0+1 

Loaded 0+1 1+1 1+1 2+1 0+1 4+1 



Viterbi training at the casino 

�  Normalize to obtain estimated transition and 
emission probabilities 

  

�  We observe some more rolls: 5,3,4,2,1, 6,1,6,6,2,6,5 
 

13 

A+1 Fair Loaded 

Fair 4+1 0+1 

Loaded 1+1 7+1 

E+1 1 2 3 4 5 6 

Fair 1+1 0+1 2+1 1+1 1+1 0+1 

Loaded 0+1 1+1 1+1 2+1 0+1 4+1 

a Fair Loaded 

Fair .83 .17 

Loaded .18 .82 

e 1 2 3 4 5 6 

Fair .18 .09 .27 .18 .18 .09 

Loaded .07 .14 .14 .21 .07 .36 



Viterbi training at the casino 

�  All rolls seen so far: 
3,4,6,4,6,6,2,6,3,4,1,5,3,5,3,4,2,1, 6,1,6,6,2,6,5 

�  Viterbi estimation with the new model gives: 
LLLLLLLLFFFFFFFFFFLLLLLLL 

�  Count transitions and emissions in all rolls seen so 
far, add pseudo-counts 
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A+1 Fair Loaded 

Fair 9+1 1+1 

Loaded 1+1 13+1 

E+1 1 2 3 4 5 6 

Fair 2+1 1+1 3+1 2+1 2+1 0+1 

Loaded 1+1 2+1 1+1 2+1 1+1 8+1 



Viterbi training at the casino 

�  Normalize to obtain estimated transition and 
emission probabilities 

  

�  Casino closes, so we do not get more rolls, but we can 
continue training with the current data 
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a Fair Loaded 

Fair .83 .17 

Loaded .125 .875 

e 1 2 3 4 5 6 

Fair .187 .125 .25 .187 .187 .063 

Loaded .095 .14 .095 .14 .095 .43 

A+1 Fair Loaded 

Fair 9+1 1+1 

Loaded 1+1 13+1 

E+1 1 2 3 4 5 6 

Fair 2+1 1+1 3+1 2+1 2+1 0+1 

Loaded 1+1 2+1 1+1 2+1 1+1 8+1 



Viterbi training at the casino 

�  All rolls seen so far: 
3,4,6,4,6,6,2,6,3,4,1,5,3,5,3,4,2,1, 6,1,6,6,2,6,5 

�  Viterbi estimation with the new model gives: 
LLLLLLLLFFFFFFFFFFLLLLLLL 

�  This turns out to be the same predicted sequence as 
in previous step, so our model stays the same 

 

�  In general, with a longer sequence, more interations 
could be needed for convergence 16 

a Fair Loaded 

Fair .83 .17 

Loaded .125 .875 

e 1 2 3 4 5 6 

Fair .187 .125 .25 .187 .187 .063 

Loaded .095 .14 .095 .14 .095 .43 



Viterbi training: convergence 

�  If no more data arises Viterbi training algorithm 
will eventually converge (and stop) 

�  Each update of the parameters increase the 
probability of the most probable paths,  
¡  so the algorithm will never revisit a previous solution 

�  There are only finite (but large) number of Viterbi 
paths to consider,  
¡  so we will eventually run out of solutions that we have not 

considered 
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Accuracy of estimation depends on the 
amount of training data 
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True 1 2 3 4 5 6 

Fair .17 .17 .17 .17 .17 .17 

Loaded .10 .10 
 

.10 
 

.10 
 

.10 
 

.50 
 

True Model Fair Loaded 

Fair .95 .05 

Loaded .10 .90 

300 
rolls 

1 2 3 4 5 6 

Fair .19 .19 .23 .08 .23 .08 

Loaded .07 .10 
 

.10 
 

.17 
 

.05 
 

.52 
 

30000 
rolls 

1 2 3 4 5 6 

Fair .17 .17 .17 .17 .17 .15 

Loaded .10 .11 
 

.10 
 

.11 
 

.10 
 

.48 
 

300 rolls Fair Loaded 

Fair .73 .27 

Loaded .29 .71 

30000  
rolls 

Fair Loaded 

Fair .93 .07 

Loaded .12 .88 



Other tasks and algorithms for HMMs 

�  Forward algorithm: 
¡   finds the probability of the sequence, given all the 

paths:  

�  Forward-backward algorithm: finding posterior 
state probabilities given the observed sequence 

�  Baum-Welch algorithm: another training 
algorithm for HMMs 
¡  Uses forward-backward algorithm as a subroutine 

�  All are dynamic programming methods operating 
along the sequence in forward and/or backward 
fashion 
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P(x) = P(x,! )
!

!

P(! i = k | x)



M A R K O V  M E T H O D S  F O R  G E N E  P R E D I C T I O N 
 

Part II 
20 



Gene prediction with HMMs: 1st try 

�  Could the HMM 
approach used at the 
occasionally dishonest 
casino directly mapped 
to gene prediction? 

�  Recognition of coding 
regions could be 
formulated as 
structurally equivalent 
HMM 
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coding 

 
 

non-
coding 

{A: 0.2, 
 C: 0.3, 
 G: 0.3, 
 T: 0.2} 

{A: 0.25, 
 C: 0.25, 
 G: 0.25, 
 T: 0.25} 



Gene prediction with HMMs: 1st try 

�  Two states: one for coding 
region, one for non-coding 
region 

�  Both states emit 
nucleotides according to 
their own distributions  

�  What can/cannot this 
HMM learn from the 
sequence data? 
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coding 

 
 

non-
coding 



Gene prediction with HMMs: 1st try 

�  The HMM can learn  
¡  via the transition probabilities, 

statistics of the lengths of the 
respective regions 

¡  via the emission probabilities, 
the nucleotide distributions 

�  It cannot learn 
¡  Higher order statistics 

(dinucleotides, codons) within 
a region 

�  Not enough to recognize 
coding regions well  
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coding 

 
 

non-
coding 



Gene prediction with HMMs: 1st try 

�  The HMM can learn  
¡  via the transition probabilities, 

statistics of the lengths of the 
respective regions 

¡  via the emission probabilities, 
the nucleotide distributions 

�  It cannot learn 
¡  Higher order statistics 

(dinucleotides, codons) within 
a region 

�  Not enough to recognize 
coding regions well  
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coding 

 
 

non-
coding 



Gene prediction with HMMs: 2nd try 

�  What about borrowing the 
CpG model? 

�  4 states for coding regions, 4 
states for non-coding regions 

�  Can learn 
¡  Length statistics via the 

transition probabilities 
¡  Statistics of dinucleotides, 

�  Codons represented by 
chains of two transitions 
¡  Cannot represent the start and 

stop codons explicitly 
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Gene prediction with HMMs: 2nd try 

�  Log-odds scores of a 4-state Markov chain normalized by 
the length: S(x)/L 

�  Comparison model is one that assumes all nucleotides 
occurring independently 

�  Distributions from coding regions (black line) and non-
coding regions (grey area) are shown 
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�  Coding regions score slightly 
higher on average 

�  However, the two distributions 
overlap completely 

�  Cannot predict genes with this 
model 



Modelling codon usage 

�  Try  to model codons explictly 
�  Transform the nucleotide sequences into a 

sequences of codons 
¡  Unique letter assigned to each of the 43 = 64 different 

codons (AAA->s1,AAC,->s2,…TTT->s64) 
¡  Yields sequences that are 1/3 of the length of the original 

sequences 

�  We get a single 64-state first-order Markov chain 
�  Can represent distributions of codon usage  

¡  Known to be different in coding regions and non-coding 
regions 
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Modelling codon usage 

�  Log-odds scores (normalized by sequence length) 
between the coding (black line) and non-coding regions 
(grey histogram) are shown 

�  The Markov chain is able to score coding regions higher 
than the non-coding regions 

�  Separation is not perfect, so the model would make many 
prediction errors 
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Modelling start and stop codons explictly 

�  The previous model 
treats start and stop 
codons just as the amino 
acid coding codons 

�  However, start and stop 
codons are distinct 
signals about the exact 
property that we are 
trying to learn here 
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Modelling start and stop codons explictly 

�  The previous model 
treats start and stop 
codons just as the amino 
acid coding codons 

�  However, start and stop 
codons are distinct 
signals about the exact 
property that we are 
trying to learn here 
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�  The start codon is easily 
represented by a 3-state 
HMM-component 



Modelling start and stop codons explictly 

�  The stop codons 
(TAA, TAG, TGA) can be 
modeled as a 7-state HMM 
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Non-coding 

Start 
codon 

Stop 
codon 

Coding 

Overall architecture 

�  Overall architecture used 
in many prokaryotic gene 
finders consists of separate 
submodels for 
¡  Coding region (e.g. 61-state) 
¡  Non-coding region (at its 

simplest, just one state 
modelling the base 
dsitribution) 

¡  Start codon 
¡  Stop codon 



ATG TGA 

coding segment 
complete mRNA 

ATG GT AG GT AG . . . . . . . . . 
start codon stop codon donor site donor site acceptor 

site 
acceptor 

site 

exon exon exon intron intron 

TGA 

Eukaryotic Gene Structure  



Intergenic 

Start 
codon 

Stop 
codon 

Exon 

Donor Acceptor 

Intron 

q0 

Eukaryotic Gene Prediction 

�  Due to intro-exon 
structure, the overall 
structure of the HMMs is 
also more complex 

�  Separate states for 
introns and exons 

�  Donor and acceptor 
states model the 
transition between 
introns and exons 
explictly 



Donor site submodel 

�  Donor site is modelled by 
a HMM with two states 
exactly recognizing the 
‘GT’ dinucleotide 

�  In addition, context 
before and after is 
modelled 

�  Right, a sequence logo 
representing donor site 
nucleotide frequencies is 
shown  
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Acceptor site submodel 

�  Acceptor site is modelled 
by a HMM with two 
states exactly recognizing 
the ‘AG’ dinucleotide 

�  In addition, context 
before and after is 
modelled 

�  Right, a sequence logo 
representing acceptor 
site nucleotide 
frequencies is shown  
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Variants and extensions 

�  Many variants and generalizations of HMMs are in 
use in real world gene finders: 
¡  Higher-order HMMs whose emission probabilities also depend 

on previously emitted symbols 
¡  HMMs that emit more complex features, e.g. motifs 
¡  HMMs that allow variable length contexts (i.e. mixing HMMs 

with different order) 
¡  HMMs that allow modelling the duration of staying in a state 

more explicitly 
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