
H I D D E N M A R K O V M O D E L S & G E N E
P R E D I C T I O N

Lecture Mon 7.11.

Parameter estimation for HMMs

�  So far we have assumed that we
have knowledge of the transition
probabilities and emission
probabilities

�  How to obtain these if we only
know
¡  the emitted sequence and HMM

structure (here: Fair, Loaded)?
¡  possibly the hidden state sequence

2

Parameter estimation when the state
sequence is known

�  Assume we have
¡  a set of training sequences x(1),…,x(n) where x(i) = x1

(i)…xl(i)
(i) ,

e.g.
÷ Sequences of rolls of dice: x(1) = 1,3,4,3,…, x(2) = 5,6,4,3,…
÷ Nucleotide sequences x(1) = AGTCGT… x(2) = CTGTAT…,

¡  The set of states and corresponding state sequences of HMM
÷ Which die is being used: y(1) = FFFF…, y(2) = LLFF…
÷ CpG-island / non-island: y(1) = NNNYYY…, y(2) = NNNNNN

�  The goal is to optimize HMM parameters
¡  Transition probabilities akl
¡  Emission probabilities ek(xi)

3

Parameter estimation when the state
sequence is known

�  Transition probabilities,
¡  we examine the given state sequences y(1),…,y(n)
¡  denote by Akl the number of times transition kèl was

taken among the sequences
¡  Our estimate for the transition probability is

�  Emission probabilities
¡  Examine the emitted sequences x(1),…,x(n) and the state

sequences y(1),…,y(n) together
¡  Denote by Ek(b) the number of times b was emitted

while in state k
¡  The estimate for emission probability is

�  ‘+1’ is a pseudo-count to make all estimates non-
zero 4

akl =
Akl +1
(Akl ' +1)

l '
!

ek (b) =
Ek (b)+1
(Ek (b ')+1)

b '
!

Pseudo-counts (Akl+1, Ek(b)+1)

�  Pseudo-counts are typically used to make the models
less prone to overfitting due to insufficient data

�  In HMMs, the pseudo-counts also correct a problem
arising if some state k is not visited in the training
data:

÷ Related to ‘missing mass’ problem: need to allocate some
probability to so far unseen events

�  In general, the pseudo-counts can be any positive
real numbers, however

÷  too large numbers will override the training data
÷  too small numbers will cause the parameters to overfit the training

data (leads to poorer performance on new, yet unseen data)

5

Parameter estimation when the state
sequence is unknown

�  Depending on the application, assumption of the state
sequence to be known may be valid
¡  In many cases we have are training set that contains the states

e.g. known coding regions in genes, known CpG islands, …

�  In other applications, such an assumption is not valid
¡  e.g. which die is used by the dishonest casino
¡  Data from newly sequenced organisms where no annotation

has not been done.

6

Parameter estimation when the state
sequence is not known

�  Assume we have
¡  a set of training sequences x(1),…,x(n) , and the
¡  set of states of the HMM

�  The goal is to optimize HMM parameters
¡  Transition probabilities akl
¡  Emission probabilities ek(xi)

�  Idea: choose the HMMs parameters so that the
likelihood of the training data is maximized (in a certain
sense)

�  In the following, we present a training algoritm that uses
path as a subroutine the Viterbi algorithm to find the
most probable path

7

Viterbi training

1.  Initialize the HMM parameters in some way, e.g.
setting

i.  ek(x) = 1/|X| uniformly, where X is the set of possible
symbols to emit

ii.  akl = 1/N(k) uniformly, where N(k) is the set of states that
can follow k

�  Alternatively, one can use a “best guess”
¡  e.g. in the CpG island example, compute transition

probabilities from dinucleotide frequencies

8

Viterbi training

2.  Iterate the following, until parameters do not
change:

i.  For each sequence x(i), using Viterbi algorithm, find the most
probable state sequence π*(i), given the current HMM
parameters θ=(a,e)

ii.  Count how many times each transition kèl was taken in the
optimal paths π*(1),…π*(n), denote that number by Akl

iii.  Set the new transition probabilities as

iv.  Count how many times each symbol s was emitted in each
state k, denote that number by Ek(s)

v.  Set the new emission probabilities as

9

akl =
Akl +1
(Akl +1)

l '
!

ek (b) =
Ek (b)+1
(Ek (b ')+1)

b '
!

Viterbi training

�  The above algorithm works in batch mode: it
assumes all training data is already available

�  The training can also work in online mode, where the
model is re-estimated when new data arrives

�  Also, the training can work just as well on a single
long sequence as on a set of short sequences

�  The casino example highlights this training mode

10

Viterbi training at the casino

�  Let us enter the occasionaly dihonest casino, with
our HMM, with initial guesses about the underlying
model:

�  We observe a sequence of rolls:
3,4,6,4,6,6,2,6,3,4,1,5,3

11

a Fair Loaded

Fair .90 .10

Loaded .10 .90

e 1 2 3 4 5 6

Fair .167 .167 .167 .167 .167 .167

Loaded .10 .10 .10 .10 .10 .50

Viterbi training at the casino

�  We observe a sequence of rolls:
3,4,6,4,6,6,2,6,3,4,1,5,3

�  With Viterbi estimation with the current model, we
get: LLLLLLLLFFFFF

�  Count transitions and emissions, add pseudo-counts

12

A+1 Fair Loaded

Fair 4+1 0+1

Loaded 1+1 7+1

E+1 1 2 3 4 5 6

Fair 1+1 0+1 2+1 1+1 1+1 0+1

Loaded 0+1 1+1 1+1 2+1 0+1 4+1

Viterbi training at the casino

�  Normalize to obtain estimated transition and
emission probabilities

�  We observe some more rolls: 5,3,4,2,1, 6,1,6,6,2,6,5

13

A+1 Fair Loaded

Fair 4+1 0+1

Loaded 1+1 7+1

E+1 1 2 3 4 5 6

Fair 1+1 0+1 2+1 1+1 1+1 0+1

Loaded 0+1 1+1 1+1 2+1 0+1 4+1

a Fair Loaded

Fair .83 .17

Loaded .18 .82

e 1 2 3 4 5 6

Fair .18 .09 .27 .18 .18 .09

Loaded .07 .14 .14 .21 .07 .36

Viterbi training at the casino

�  All rolls seen so far:
3,4,6,4,6,6,2,6,3,4,1,5,3,5,3,4,2,1, 6,1,6,6,2,6,5

�  Viterbi estimation with the new model gives:
LLLLLLLLFFFFFFFFFFLLLLLLL

�  Count transitions and emissions in all rolls seen so
far, add pseudo-counts

14

A+1 Fair Loaded

Fair 9+1 1+1

Loaded 1+1 13+1

E+1 1 2 3 4 5 6

Fair 2+1 1+1 3+1 2+1 2+1 0+1

Loaded 1+1 2+1 1+1 2+1 1+1 8+1

Viterbi training at the casino

�  Normalize to obtain estimated transition and
emission probabilities

�  Casino closes, so we do not get more rolls, but we can
continue training with the current data

15

a Fair Loaded

Fair .83 .17

Loaded .125 .875

e 1 2 3 4 5 6

Fair .187 .125 .25 .187 .187 .063

Loaded .095 .14 .095 .14 .095 .43

A+1 Fair Loaded

Fair 9+1 1+1

Loaded 1+1 13+1

E+1 1 2 3 4 5 6

Fair 2+1 1+1 3+1 2+1 2+1 0+1

Loaded 1+1 2+1 1+1 2+1 1+1 8+1

Viterbi training at the casino

�  All rolls seen so far:
3,4,6,4,6,6,2,6,3,4,1,5,3,5,3,4,2,1, 6,1,6,6,2,6,5

�  Viterbi estimation with the new model gives:
LLLLLLLLFFFFFFFFFFLLLLLLL

�  This turns out to be the same predicted sequence as
in previous step, so our model stays the same

�  In general, with a longer sequence, more interations
could be needed for convergence 16

a Fair Loaded

Fair .83 .17

Loaded .125 .875

e 1 2 3 4 5 6

Fair .187 .125 .25 .187 .187 .063

Loaded .095 .14 .095 .14 .095 .43

Viterbi training: convergence

�  If no more data arises Viterbi training algorithm
will eventually converge (and stop)

�  Each update of the parameters increase the
probability of the most probable paths,
¡  so the algorithm will never revisit a previous solution

�  There are only finite (but large) number of Viterbi
paths to consider,
¡  so we will eventually run out of solutions that we have not

considered

17

Accuracy of estimation depends on the
amount of training data

18

True 1 2 3 4 5 6

Fair .17 .17 .17 .17 .17 .17

Loaded .10 .10

.10

.10

.10

.50

True Model Fair Loaded

Fair .95 .05

Loaded .10 .90

300
rolls

1 2 3 4 5 6

Fair .19 .19 .23 .08 .23 .08

Loaded .07 .10

.10

.17

.05

.52

30000
rolls

1 2 3 4 5 6

Fair .17 .17 .17 .17 .17 .15

Loaded .10 .11

.10

.11

.10

.48

300 rolls Fair Loaded

Fair .73 .27

Loaded .29 .71

30000
rolls

Fair Loaded

Fair .93 .07

Loaded .12 .88

Other tasks and algorithms for HMMs

�  Forward algorithm:
¡  finds the probability of the sequence, given all the

paths:

�  Forward-backward algorithm: finding posterior
state probabilities given the observed sequence

�  Baum-Welch algorithm: another training
algorithm for HMMs
¡  Uses forward-backward algorithm as a subroutine

�  All are dynamic programming methods operating
along the sequence in forward and/or backward
fashion

19

P(x) = P(x,!)
!

!

P(! i = k | x)

M A R K O V M E T H O D S F O R G E N E P R E D I C T I O N

Part II
20

Gene prediction with HMMs: 1st try

�  Could the HMM
approach used at the
occasionally dishonest
casino directly mapped
to gene prediction?

�  Recognition of coding
regions could be
formulated as
structurally equivalent
HMM

21

coding

non-
coding

{A: 0.2,
 C: 0.3,
 G: 0.3,
 T: 0.2}

{A: 0.25,
 C: 0.25,
 G: 0.25,
 T: 0.25}

Gene prediction with HMMs: 1st try

�  Two states: one for coding
region, one for non-coding
region

�  Both states emit
nucleotides according to
their own distributions

�  What can/cannot this
HMM learn from the
sequence data?

22

coding

non-
coding

Gene prediction with HMMs: 1st try

�  The HMM can learn
¡  via the transition probabilities,

statistics of the lengths of the
respective regions

¡  via the emission probabilities,
the nucleotide distributions

�  It cannot learn
¡  Higher order statistics

(dinucleotides, codons) within
a region

�  Not enough to recognize
coding regions well

23

coding

non-
coding

Gene prediction with HMMs: 1st try

�  The HMM can learn
¡  via the transition probabilities,

statistics of the lengths of the
respective regions

¡  via the emission probabilities,
the nucleotide distributions

�  It cannot learn
¡  Higher order statistics

(dinucleotides, codons) within
a region

�  Not enough to recognize
coding regions well

24

coding

non-
coding

Gene prediction with HMMs: 2nd try

�  What about borrowing the
CpG model?

�  4 states for coding regions, 4
states for non-coding regions

�  Can learn
¡  Length statistics via the

transition probabilities
¡  Statistics of dinucleotides,

�  Codons represented by
chains of two transitions
¡  Cannot represent the start and

stop codons explicitly

25

Gene prediction with HMMs: 2nd try

�  Log-odds scores of a 4-state Markov chain normalized by
the length: S(x)/L

�  Comparison model is one that assumes all nucleotides
occurring independently

�  Distributions from coding regions (black line) and non-
coding regions (grey area) are shown

26

�  Coding regions score slightly
higher on average

�  However, the two distributions
overlap completely

�  Cannot predict genes with this
model

Modelling codon usage

�  Try to model codons explictly
�  Transform the nucleotide sequences into a

sequences of codons
¡  Unique letter assigned to each of the 43 = 64 different

codons (AAA->s1,AAC,->s2,…TTT->s64)
¡  Yields sequences that are 1/3 of the length of the original

sequences

�  We get a single 64-state first-order Markov chain
�  Can represent distributions of codon usage

¡  Known to be different in coding regions and non-coding
regions

27

Modelling codon usage

�  Log-odds scores (normalized by sequence length)
between the coding (black line) and non-coding regions
(grey histogram) are shown

�  The Markov chain is able to score coding regions higher
than the non-coding regions

�  Separation is not perfect, so the model would make many
prediction errors

28

Modelling start and stop codons explictly

�  The previous model
treats start and stop
codons just as the amino
acid coding codons

�  However, start and stop
codons are distinct
signals about the exact
property that we are
trying to learn here

29

Modelling start and stop codons explictly

�  The previous model
treats start and stop
codons just as the amino
acid coding codons

�  However, start and stop
codons are distinct
signals about the exact
property that we are
trying to learn here

30

�  The start codon is easily
represented by a 3-state
HMM-component

Modelling start and stop codons explictly

�  The stop codons
(TAA, TAG, TGA) can be
modeled as a 7-state HMM

31

Non-coding

Start
codon

Stop
codon

Coding

Overall architecture

�  Overall architecture used
in many prokaryotic gene
finders consists of separate
submodels for
¡  Coding region (e.g. 61-state)
¡  Non-coding region (at its

simplest, just one state
modelling the base
dsitribution)

¡  Start codon
¡  Stop codon

ATG TGA

coding segment
complete mRNA

ATG GT AG GT AG
start codon stop codon donor site donor site acceptor

site
acceptor

site

exon exon exon intron intron

TGA

Eukaryotic Gene Structure

Intergenic

Start
codon

Stop
codon

Exon

Donor Acceptor

Intron

q0

Eukaryotic Gene Prediction

�  Due to intro-exon
structure, the overall
structure of the HMMs is
also more complex

�  Separate states for
introns and exons

�  Donor and acceptor
states model the
transition between
introns and exons
explictly

Donor site submodel

�  Donor site is modelled by
a HMM with two states
exactly recognizing the
‘GT’ dinucleotide

�  In addition, context
before and after is
modelled

�  Right, a sequence logo
representing donor site
nucleotide frequencies is
shown

35

Acceptor site submodel

�  Acceptor site is modelled
by a HMM with two
states exactly recognizing
the ‘AG’ dinucleotide

�  In addition, context
before and after is
modelled

�  Right, a sequence logo
representing acceptor
site nucleotide
frequencies is shown

36

Variants and extensions

�  Many variants and generalizations of HMMs are in
use in real world gene finders:
¡  Higher-order HMMs whose emission probabilities also depend

on previously emitted symbols
¡  HMMs that emit more complex features, e.g. motifs
¡  HMMs that allow variable length contexts (i.e. mixing HMMs

with different order)
¡  HMMs that allow modelling the duration of staying in a state

more explicitly

37

