Lecture Thu 3.11.

MARKOV CHAINS AND HIDDEN MARKOV MODELS

Markov chain as a probabilistic finite state machine

- Markov chains can be represented as probabilistic finite state machines (or automatons)
 - There is a state corresponding to each symbol
 - When the state is entered the corresponding symbolis printed out
- Transitions between states are taken according the transition probabilities

Markov chain as a probabilistic finite state machine

- It is sometimes convenient to add special start and end states
- Chain always begins from the start state
- The transition probabilities from start to normal states can be set as uniform (here 0.25) or some prior probabilities (e.g. base frequencies)

Example: CpG Islands

- **CpG** dinucleotides are rarer than would be expected from the independent probabilities of **C** and **G**.
 - Note: the notation CpG denotes a dinucleotide along a single strand of DNA, do not confuse with C-G base pairing which goes across two strands
- Biological explanation: When **CpG** occurs, C is typically chemically modified by methylation and there is a relatively high chance of **methyl-C** mutating into **T**
- High CpG frequency may be biologically significant; e.g., may signal promoter region ("start" of a gene).
- A **CpG island** is a region where **CpG** dinucleotides are much more abundant than elsewhere.

Example: CpG island

Exon 1 Cp6 Island: 12634..12767

		ton i vpo	rorana. I			
11941	ttataagato	cccctccctc	taaatcotgt	ccttctatca	cttcatcctt	CGeteteett
12001	taaaatgaga	cagttgtcag	caggaatcet	gCGcaagaac	acaccaccct	gtttcataga
12061	agatatotoa	ggtaatgtgc	aaacaCGggt	ttttaaaCGg	agCGcatttt	tctcatttgt
12121	taatatcacc	acctaaatca	tetettgeet	aaaacaagga	gtagaaagtg	aatgaaggaa
12181	ggaacaggtg	atggtcagtg	tcctttctac	gcctcaaaat	ttaagagttt	atgtgaaaat
12241	tcataaatat	taatctcaat	ccaggttaag	caaaattttt	tgeteteete	tttagaaatt
12301	tetggttgee	aaagttccag	aaattgette	ctcattcctg	agcotttoat	tttctCGatt
12361	tctccattat	gtaa <mark>CG</mark> ggga	getggagett	tgggcCGaat	ttocaattaa	agatgatttt
12421	tacagtcaat	gagecaCGte	agggagCGat	ggcacc <mark>CG</mark> ca	gg <mark>CG</mark> gtatca	actgatgcaa
12481	gtgttcaagc	gaatotoaac	tCGttttttc	CGgtgactca	tteeCGgeee	tgettggeag
12541	CGctgcaccc	tttaacttaa	acctCGgcCG	geCGeeCGee	gggggcacag	agtgtg <mark>CG</mark> cc
*12601	gggcCGCGCG	gcaattggto	ccCGCGcCGa	cctcCGccCG	CGagCGcCGc	CGetteeett
*12661	cccCGcccCG	CGtecetece	cctCGgcccc	gCGCGtCGcc	tgtcctc <mark>CG</mark> a	gccagt <mark>CG</mark> ct
*12721	gacageCGCG	gCGcCGCGag	cttctcctct	cctcaCGacc	gaggcaggta	aaCGccCGgg
12781	gtgggaggaa	CGCGggCGgg	ggcaggggag	cCGCGgggggc	CGagtgagga	ccc <mark>CG</mark> ggcct
12841	CGggtcccag	gCGcaagggt	geeC6geC6g	gCGgggtCGg	gaccccagtg	aggaggggcc
12901	ggggggetgee	cCGCGggCGc	gtga <mark>CG</mark> gtct	CGggcetgee	CegetgCect	ggtete <mark>CG</mark> et
12961	CGggtgaggc	ggettggett	CGcttttcag	gttaggaaag	ctccctttac	tg <mark>CGCG</mark> ttgg
13021	ggggctgggg	gagetgg <mark>CG</mark> g	agcca <mark>CG</mark> tta	gggaggtCGg	tgg <mark>CGcCG</mark> gg	gtgteteage
13081	gececetgea	cccC6C6C6g	gtc <mark>C6</mark> gccca	gCGggCGatc	getgg <mark>CG</mark> eee	agggaactcc
13141	gggagggcCG	ccag <mark>C6</mark> gget	cCGcaggCGc	gggg <mark>C6</mark> ggga	gggg <mark>CG</mark> eetg	ggggcCGCGg
13201	ggetCGCGet	cccCGccCGt	tggeCGeece	tCGgaggcCG	agatCGggggc	ccagaaCGcc
13261	ccttggcaaa	gcctgg <mark>CG</mark> ct	tcCGCGatgc	ccagagggtg	cttgggggga	tggagagagg
13321	ggCGccCGcc	ggggtagttc	CGggageete	ggtgeeteee	gcCGcagetg	cagCGttcct
13381	ccCGggaggc	ggcccagccc	ttcatcctCG	cCGcctgage	ttctc <mark>CG</mark> agg	ggggctgcag
13441	ccttgCGgcc	gttgccacCG	cctggagaag	C6gcccaC6c	ggactgaC6g	gCGgggggCGg
13501	ggcct <mark>CG</mark> ggc	ctCGgCGggg	gCGgggtcCG	gggaggeeee	accetetgtt	ctccaggggc
13561	dddaaaad	gagetgeagg	tctgCGgcct	ggccccaggt	gCGatggCGg	accccagett
13621	ggccagtcac	attcctccca	gtcccctgg	agggagaaCG	ctggccatgg	gggggctccaa
13681	ggaacaacca	gcctCGgatg	aCGaccettg	ggtcacCGgt	ctccccacct	gtg <mark>C6</mark> gcagg
13741	CGccttcaCG	tttcattatt	aaacaatggg	gagaaatcca	tgtttactgt	cctttttagg
13801	aattttttgc	tettetettt	gaggtggctg	taggaaatag	atttttttt	taacct <mark>CG</mark> ca
13861	attccaccac	ggtcacatcc	atcctCGcca	tCGcagagec	acagetetee	gtttttgttt
13921	cctageetee	agattotoac	acaacacagt	gcagtttcac	tgctgtaatg	atgaggatet
13981	tcatggc <mark>CG</mark> c	gttattttct	tgttctgaga	gcatca <mark>C6</mark> gt	ttaattagca	gttccccata
14041	tgatttgaag	tgtttcc <mark>CG</mark> t	ttccttaggg	aaaactcctg	gtagaatagg	attaaggatt
14101	tttacaaata	taattatcaa	aaacatagga	acagggaatt	ggataaatat	gttaaacttc
14161	tggaaaaatc	aacaa <mark>CG</mark> ctc	ttagatttgt	agaagaaagg	aaaaaatcac	cagtggaaag
14221	gagcaatttt	acttacacaa	acacagagaa	ggtettacag	tgaaaaaaag	ctaaccagta

Two problems

- 1. Given a short genome sequence, decide if it comes from a CpG islands or not.
- 2. Given a long DNA sequence, locate all the CpG islands in it.

- Problem 1: Given a short genome sequence, decide if it comes from a CpG islands or not.
- Markov chain modelling approach:
 - Pick a set of known CpG islands and build a first order Markov chain (transition table) from the sequences: "+ model"
 - Pick a set of non- CpG island sequences and build a first order Markov chain (transition table) from them: "- model"
- Transition probabilities are obtained by counting dinucleotide frequencies
 - o c_{st}^+ is the frequency of 'st' in the sequence
 - a_{st}^+ denotes the transition probability s \rightarrow t

- Problem 1: Given a short genome sequence, decide if it comes from a CpG islands or not.
- Markov chain modelling approach:
 - Pick a set of known CpG islands and build a first order Markov chain (transition table) from the sequences: "+ model"
 - Pick a set of non- CpG island sequences and build a first order Markov chain (transition table) from them: "- model"

+	Α	С	G	Т	-	Α	С	G	Т
Α	0.180	0.274	0.426	0.120	Α	0.300	0.205	0.285	0.210
С	0.171	0.368	0.274	0.188	С	0.322	0.298	0.078	0.302
G	0.161	0.339	0.375	0.125	G	0.248	0.246	0.298	0.208
Т	0.079	0.355	0.384	0.182	Т	0.177	0.239	0.292	0.292

 Compute the probability of the new sequence x₁...x_L using both models

$$P(\mathbf{x}) = P(\mathbf{x}_{L} | \mathbf{x}_{L-1}) P(\mathbf{x}_{L-1} | \mathbf{x}_{L-2}) \dots (\mathbf{x}_{2} | \mathbf{x}_{1}) P(\mathbf{x}_{1})$$
$$= P(\mathbf{x}_{1}) \prod_{i=2}^{L} a_{x_{i-1}x_{i}}$$

+	Α	С	G	Т		-	Α	С	G	Т
Α	0.180	0.274	0.426	0.120	•	Α	0.300	0.205	0.285	0.210
С	0.171	0.368	0.274	0.188	•	С	0.322	0.298	0.078	0.302
G	0.161	0.339	0.375	0.125	•	G	0.248	0.246	0.298	0.208
Т	0.079	0.355	0.384	0.182	•	Т	0.177	0.239	0.292	0.292

- Given the two probabilites P(x|model +) and P(x| model -), we compute a log-odds score S(x) to reflect the relative goodness of the models
- If S(x) > 0 it is the more likely the sequence comes from a CpG island than not

$$S(x) = \log\left(\frac{P(x \mid \text{model } +)}{P(x \mid \text{model } -)}\right) = \log\left(\frac{P(B)\prod_{i=1}^{L} a_{x_{i-1}x_{i}}^{+}}{P(B)\prod_{i=1}^{L} a_{x_{i-1}x_{i}}^{-}}\right) = \sum_{i=1}^{L} \log\left(\frac{a_{x_{i-1}x_{i}}^{+}}{a_{x_{i-1}x_{i}}^{-}}\right)$$

- The S(x) scores for a set of CpG-island and non CpGisland sequences are shown
 - Normalized by sequence length to get an average score per nucleotide
- CpG islands sequences shown in dark grey and non-CpG sequences in light grey
- Assigning sequences with S (x)/L > 0 as CpG islands would give a good but not perfect classification

Two problems

- 1. Given a short genome sequence, decide if it comes from a CpG islands or not.✓
- 2. Given a long DNA sequence, locate all the CpG islands in it.

- Problem 2: Given a long DNA sequence, locate all the CpG islands in it
- The Markov chain scheme does not give any indication of
 - Where the CpG island starts
 - The length of the island
- As sliding window approach is possible:
 - Slide a window $(x_k, ..., x_{k+1})$ over the long sequence, k=1...L
 - Compute the S(x) score from each window
 - GpG islands would then possibly stand out as regions with positive S(x) scores computed from the windows

- Window approach not completely satisfactory:
 - with fixed window length, we could not properly model the variable length CpG islands
 - e.g. islands much shorter than the window length could be missed
 - No direct predictions of where the island starts and ends

- A better approach would be to build a single model that incorporates both the CpG island and the non-CpG island models
- We have 8 states (A₊,C₊,...), 4 for both models, with all pairwise transitions possible
- In addition, transitions between the two parts are possible with small probability (edges across the vertical line)

- Transition probabilities within the '+' part of the model are set close to the original CpG island model, '-' part set close to the '-' model
- The probabilities of any transition from '+' to '-' state are set higher on average than vice versa
 - Model is more likely to spend time on the '-' part than '+' part

- Transition probabilities within the '+' part of the model are set close to the original CpG island model, '-' part set close to the '-' model
- The probabilities of any transition from '+' to '-' state are set higher on average than vice versa
 - Model is more likely to spend time on the '-' part than '+' part

Towards Hidden Markov Models

- The model outputs nucleotide A both when in A₋ and A₊ states
- Thus by looking at the generated symbol sequence alone, we cannot directly tell if '+' model or the '-' minus model was used to generate or *emit* any given symbol
 - The state is said to be hidden

State: A₊, C₊, G₊, T₊, A₋, C₋, G₋, T₋ *Emitted character:* A C G T A C G T

Hidden Markov Model

• A Hidden Markov Model is composed of the following components

- Set of (hidden) states, capable of emitting symbols according to a probability distribution
- Set of transitions between the states, with transition probabilities

• Two kinds of sequences:

• State sequence (hidden) $\Pi = (\pi_1, ..., \pi_L)$ called the *path*

• Symbol sequence (observed): $(x_1, ..., x_L)$

Hidden Markov Models

• The probability of a state only depends on the previous state (Markov assumption)

• $a_{kl} = P(\pi_i = l \mid \pi_{i-1} = k)$

• The probability of emitting a symbol only depends on the current state *k*

• $e_k(b) = P(x_i = b | \pi_i = k)$

• In particular, emitting a symbol does not depend on the previously emitted symbol x _{i-1}

Hidden Markov Models

 The probability that the sequence x is generated given the path Π is

$$P(x,\pi) = a_{\pi_0,\pi_1} \prod_{i=1}^{L} e_{\pi_i}(x_i) a_{\pi_i,\pi_{i+1}}$$

• Above we denote : π_0 = begin and π_{L+1} = end

Example: occasionally dishonest casino

- Casino uses a fair die most of the time, but switches to the loaded die once in a while
- Can we detect which of the dice is in use at any given time, just by observing the sequence of rolls?

Decoding: finding the most probable path

- How can we make good guesses when the casino has switched to the loaded die?
- Decoding: Finding the most probable state sequence (path π) to have generated the observed rolls
- The set of possible paths

 (Π) is exponential sized, so
 need efficient algorithms

CpG island example

- Consider an observed sequence CGCG
- Many different state sequences can generate it, e.g.
 - (C+,G+,C+,G+)
 - o (C-,G-,C-,G-)
 - o (C+,G-,C+,G-)
- However, they do so with very different probabilities.
- Which is the most probable path?

$$\pi^* = \underset{\pi \in \Pi}{\operatorname{arg\,max}} P(x, \pi)$$

Viterbi algorithm

- Assume we know the probability $v_k(i)$ of the most probable path $(\pi_0 \pi_1 ... \pi_i)$ ending at state k for the prefix $x_1, ..., x_i$
- Then the most probable path ending in state l for the extended prefix x₁,...,x_i,x_{i+1} is found by finding a state k that maximizes the combined probability of
 - Taking the best path to k ($\pi_0 \pi_1...k$), probability $v_k(i)$
 - Making a transition from k to l, probability a_{kl}
- Combine with the probability of Emitting x_{i+1} in state l to get the probability of the path

$$v_l(i+1) = e_l(x_{i+1}) \max_k v_k(i)a_{kl}$$

$$\pi^* = \underset{\pi \in \Pi}{\operatorname{arg\,max}} \operatorname{P}(x, \pi)$$

- V_{loaded}(5) is the maximum of two probabilities: the most probable sequences such that either
 - 4'th throw used a loaded die and it is continued to be used for 5th throw, or
 - The die was switched from fair to loaded after 4th throw
- Simple recurrence gives the result: $v_{loaded}(5) = e_{loaded}(6) \max(v_{loaded}(4)a_{loaded,loaded}, v_{fair}(4)a_{fair,loaded})$

- Dynamic programming sweep over the sequences
- To recover the best state sequence fast a traceback pointer ptr_k(i) is stored for each (i,k)

Initialisation (i = 0): $v_0(0) = 1$, $v_k(0) = 0$ for k > 0. Recursion (i = 1...L): $v_l(i) = e_l(x_i) \max_k (v_k(i-1)a_{kl})$; $ptr_i(l) = argmax_k (v_k(i-1)a_{kl})$. Termination: $P(x, \pi^*) = \max_k (v_k(L)a_{k0})$; $\pi_L^* = argmax_k (v_k(L)a_{k0})$. Traceback (i = L...1): $\pi_{i-1}^* = ptr_i(\pi_i^*)$.

Initialisation (i = 0): $v_0(0) = 1$, $v_k(0) = 0$ for k > 0. Recursion (i = 1...L): $v_l(i) = e_l(x_i) \max_k (v_k(i-1)a_{kl})$; $ptr_i(l) = \arg\max_k (v_k(i-1)a_{kl})$. Termination: $P(x, \pi^*) = \max_k (v_k(L)a_{k0})$; $\pi_L^* = \arg\max_k (v_k(L)a_{k0})$. Traceback (i = L...1): $\pi_{i-1}^* = ptr_i(\pi_i^*)$.

v							
	0	1	2	3	4	5	6
Start	1	0	0	0	0	0	0
Fair	0	8.3333E-02	1.3194E-02	2.0891E-03	3.3078E-04	5.2373E-05	8.2924E-06
Loaded	0	5.0000E-02	4.5000E-03	2.0250E-03	9.1125E-04	8.2013E-05	3.6906E-05
Die		4	2	6	6	3	6
Log -odds FAIR vs LOA	DED	0.73696559	1.5519337	0.04497371	-1.4619863	-0.6470182	-2.1539782

• Viterbi estimates remarkably well the correct die

Rolls	315116246446644245321131631164152133625144543631656626566666
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	6511664531326512456366646316366631623264552352666666625151631
Die	LLLLLFFFFFFFFFFFFFFFLLLLLLLLLLLLFFFFLLLL
Viterbi	LLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Viterbi on the CpG island

- Table v for the sequence CGCG
- The most probable path stays on the '+' side (unsurprisingly)

v		С	G	С	G
В	1	0	0	0	0
A+	0	0	0	0	0
C+	0	0.13	0	0.012	0
G+	0	0	0.034	0	0.0032
T+	0	0	0	0	0
A-	0	0	0	0	0
C-	0	0.13	0	0.0026	0
G-	0	0	0.010	0	0.00021
T-	0	0	0	0	0

Complexity and Implementation

- The time-complexity of the Viterbi algorithm is O(L | Q|², where L is the length of the sequence, and Q is the set of states
- Space complexity is O(LQ), i.e. the size of the tables to be filled
- Important implementation issue: to avoid numerical underflow when multiplying small probabilities, it is better to use log-probabilities instead:

 $V_{l}(i+1) = E_{l}(x_{i+1}) + \max_{k}(V_{k}(i) + A_{kl})$

 Capital V,E,A denote the logarithms of the original quantities