
M A R K O V C H A I N S A N D H I D D E N M A R K O V
M O D E L S

Lecture Thu 3.11.

Markov chain as a probabilistic
finite state machine

�  Markov chains can be
represented as probabilistic
finite state machines (or
automatons)
¡  There is a state corresponding

to each symbol
¡  When the state is entered the

corresponding symbolis
printed out

�  Transitions between states
are taken according the
transition probabilities

Markov chain as a probabilistic
finite state machine

�  It is sometimes
convenient to add special
start and end states

�  Chain always begins
from the start state

�  The transition
probabilities from start
to normal states can be
set as uniform (here
0.25) or some prior
probabilities (e.g. base
frequencies)

3

Example: CpG Islands

�  CpG dinucleotides are rarer than would be expected from
the independent probabilities of C and G.
¡  Note: the notation CpG denotes a dinucleotide along a single strand of

DNA, do not confuse with C-G base pairing which goes across two
strands

�  Biological explanation: When CpG occurs, C is typically
chemically modified by methylation and there is a
relatively high chance of methyl-C mutating into T

�  High CpG frequency may be biologically significant; e.g.,
may signal promoter region (“start” of a gene).

�  A CpG island is a region where CpG dinucleotides are
much more abundant than elsewhere.

Example: CpG island

5

1.  Given a short genome sequence, decide if it
comes from a CpG islands or not.

2.  Given a long DNA sequence, locate all the CpG
islands in it.

Two problems

Modelling CpG islands with Markov chains

�  Problem 1:Given a short genome sequence, decide if it
comes from a CpG islands or not.

�  Markov chain modelling approach:
¡  Pick a set of known CpG islands and build a first order Markov chain

(transition table) from the sequences: “+ model”
¡  Pick a set of non- CpG island sequences and build a first order Markov

chain (transition table) from them: “- model”

�  Transition probabilities are obtained by counting
dinucleotide frequencies
¡  c+

st is the frequency of ‘st’ in the sequence
¡  a+

st denotes the transition probability sèt

∑ +

+
+ =

'
'

t
st

st
st c

ca

Modelling CpG islands with Markov chains

�  Problem 1:Given a short genome sequence, decide if it
comes from a CpG islands or not.

�  Markov chain modelling approach:
¡  Pick a set of known CpG islands and build a first order Markov chain

(transition table) from the sequences: “+ model”
¡  Pick a set of non- CpG island sequences and build a first order Markov

chain (transition table) from them: “- model”

Modelling CpG islands with Markov chains

�  Compute the probability of the new sequence x1…xL
using both models

∏
=

−
=

…=
L

i
xx ii

2
1

1122-L1-L1-LL

1
a)P(x

))P(xx|(x)x|P(x)x|P(x P(x)

Modelling CpG islands with Markov chains

�  Given the two probabilites P(x|model +) and P(x|
model -), we compute a log-odds score S(x) to reflect
the relative goodness of the models

�  If S(x) > 0 it is the more likely the sequence comes
from a CpG island than not

Modelling CpG islands with Markov chains

�  The S(x) scores for a set of
CpG-island and non CpG-
island sequences are shown
¡  Normalized by sequence length

to get an average score per
nucleotide

�  CpG islands sequences shown
in dark grey and non-CpG
sequences in light grey

�  Assigning sequences with S
(x)/L > 0 as CpG islands
would give a good but not
perfect classification

1.  Given a short genome sequence, decide if it
comes from a CpG islands or not.✔

2.  Given a long DNA sequence, locate all the CpG
islands in it.

Two problems

Locating CpG islands with Markov chains

�  Problem 2: Given a long DNA sequence, locate all the CpG
islands in it

�  The Markov chain scheme does not give any indication of
¡  Where the CpG island starts
¡  The length of the island

�  As sliding window approach is possible:
¡  Slide a window (xk,…,xk+l) over the long sequence, k=1…L
¡  Compute the S(x) score from each window
¡  GpG islands would then possibly stand out as regions with

positive S(x) scores computed from the windows

13

Locating CpG islands with Markov chains

�  Window approach not completely satisfactory:
¡  with fixed window length, we could not properly model the

variable length CpG islands
¡  e.g. islands much shorter than the window length could be

missed
¡  No direct predictions of where the island starts and ends

14

Locating CpG islands with Markov chains

�  A better approach would be to
build a single model that
incorporates both the CpG
island and the non-CpG island
models

�  We have 8 states (A+,C+,…), 4 for
both models, with all pairwise
transitions possible

�  In addition, transitions between
the two parts are possible with
small probability (edges across
the vertical line)

15

Locating CpG islands with Markov chains

�  Transition probabilities within
the ‘+’ part of the model are set
close to the original CpG island
model, ‘-’ part set close to the ‘-’
model

�  The probabilities of any
transition from ‘+’ to ‘-’ state are
set higher on average than vice
versa
¡  Model is more likely to spend time

on the ‘-’ part than ‘+’ part

16

Locating CpG islands with Markov chains

�  Transition probabilities within
the ‘+’ part of the model are set
close to the original CpG island
model, ‘-’ part set close to the ‘-’
model

�  The probabilities of any
transition from ‘+’ to ‘-’ state are
set higher on average than vice
versa
¡  Model is more likely to spend time

on the ‘-’ part than ‘+’ part

17

Towards Hidden Markov Models

�  The model outputs nucleotide A
both when in A- and A+ states

�  Thus by looking at the generated
symbol sequence alone, we
cannot directly tell if ‘+’ model
or the ‘-’ minus model was used
to generate or emit any given
symbol
¡  The state is said to be hidden

18

State: A+ , C+ , G+ , T+ , A- , C-, G- , T-
Emitted character: A C G T A C G T

Hidden Markov Model

�  A Hidden Markov Model is composed of the
following components
¡  Set of (hidden) states, capable of emitting symbols

according to a probability distribution
¡  Set of transitions between the states, with transition

probabilities

�  Two kinds of sequences:
¡  State sequence (hidden) Π = (π1 ,…, πL) called the path
¡  Symbol sequence (observed): (x1 ,….,xL)

19

Hidden Markov Models

�  The probability of a state only depends on the
previous state (Markov assumption)
¡  akl = P (π i = l | π i-1 = k)

�  The probability of emitting a symbol only depends
on the current state k
¡  ek(b) = P (x i = b | π i = k)
¡  In particular, emitting a symbol does not depend on the

previously emitted symbol x i-1

20

Hidden Markov Models

�  The probability that the sequence x is generated
given the path Π is

�  Above we denote : π0 = begin and πL+1 = end

21

P(x,!) = a!0 ,!1
 e! i (xi)a! i ,! i+1

i=1

L

!

Example: occasionally dishonest casino

�  Casino uses a fair die most
of the time, but switches to
the loaded die once in a
while

�  Can we detect which of the
dice is in use at any given
time, just by observing the
sequence of rolls?

Sequential view

23

Loaded

Fair

1 4 3 6 6 4
Observed sequence of die rolls:"

F L L L F F

Hidden path: the sequence of which die being used:"

Decoding: finding the most probable path

�  How can we make good
guesses when the casino
has switched to the loaded
die?

�  Decoding: Finding the
most probable state
sequence (path π) to have
generated the observed
rolls

�  The set of possible paths
(Π) is exponential sized, so
need efficient algorithms
	

! * = argmax
!!"

P(x,!)

P(x,!) = a!0 ,!1
 e! i (xi)a! i ,! i+1

i=1

L

!

CpG island example

�  Consider an observed
sequence CGCG

�  Many different state
sequences can generate it,
e.g.
¡  (C+,G+,C+,G+)
¡  (C-,G-,C-,G-)
¡  (C+,G-,C+,G-)

�  However, they do so with
very different probabilities.

�  Which is the most probable
path?

! * = argmax
!!"

P(x,!)

Viterbi algorithm

�  Assume we know the probability vk(i) of the most
probable path (π0π1…πi) ending at state k for the
prefix x1,…,xi

�  Then the most probable path ending in state l for the
extended prefix x1,…,xi,xi+1 is found by finding a state
k that maximizes the combined probability of
¡  Taking the best path to k (π0π1…k), probability vk(i)
¡  Making a transition from k to l, probability akl

�  Combine with the probability of Emitting xi+1 in state
l to get the probability of the path

26

! * = argmax
!!"

P(x,!)
vl (i+1) = el (xi+1)maxk vk (i)akl

Viterbi at the casino

�  Vloaded(5) is the maximum
of two probabilities: the
most probable sequences
such that either
¡  4’th throw used a loaded

die and it is continued to
be used for 5th throw, or

¡  The die was switched from
fair to loaded after 4th
throw

�  Simple recurrence gives
the result:

27

vloaded (5) = eloaded (6)max(vloaded (4)aloaded,loaded,vfair (4)afair,loaded)

Viterbi algorithm

�  Dynamic programming sweep over the sequences
�  To recover the best state sequence fast a traceback

pointer ptrk(i) is stored for each (i,k)

Viterbi at the casino

Viterbi at the casino

30

Viterbi at the casino

�  Viterbi estimates remarkably well the correct die

Viterbi on the CpG island

�  Table v for the sequence CGCG
�  The most probable path stays on the ‘+’ side

(unsurprisingly)

Complexity and Implementation

�  The time-complexity of the Viterbi algorithm is O(L |
Q|2, where L is the length of the sequence, and Q is
the set of states

�  Space complexity is O(LQ), i.e. the size of the tables
to be filled

�  Important implementation issue: to avoid numerical
underflow when multiplying small probabilities, it is
better to use log-probabilities instead:

�  Capital V,E,A denote the logarithms of the original

quantities

33

Vl (i+1) = El (xi+1)+maxk (Vk (i)+ Akl)

