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Markov chain as a probabilistic  
finite state machine 

�  Markov chains can be 
represented as probabilistic 
finite state machines (or 
automatons) 
¡  There is a state corresponding 

to each symbol 
¡  When the state is entered the 

corresponding symbolis 
printed out 

�  Transitions between states 
are taken according the 
transition probabilities 



Markov chain as a probabilistic  
finite state machine 

�  It is sometimes 
convenient to add special 
start and end states 

�  Chain always begins 
from the start state 

�  The transition 
probabilities from start 
to normal states can be 
set as uniform (here 
0.25) or some prior 
probabilities (e.g. base 
frequencies) 
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Example: CpG Islands 

�  CpG dinucleotides are rarer than would be expected from 
the independent probabilities of C and G. 
¡  Note: the notation CpG denotes a dinucleotide along a single strand of 

DNA, do not confuse with C-G base pairing which goes across two 
strands 

�  Biological explanation: When CpG occurs, C is typically 
chemically modified by methylation and there is a 
relatively high chance of methyl-C mutating into T 

�  High CpG frequency may be biologically significant; e.g., 
may signal promoter region (“start” of a gene). 

�  A CpG island is a region where CpG dinucleotides are 
much more abundant than elsewhere. 



Example: CpG island 
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1.  Given a short genome sequence, decide if it 
comes  from a CpG islands or not. 

2.  Given a long DNA sequence, locate all the CpG    
islands in it. 

Two problems 



Modelling CpG islands with Markov chains 

�  Problem 1:Given a short genome sequence, decide if it 
comes  from a CpG islands or not. 

�  Markov chain modelling approach: 
¡  Pick a set of known CpG islands and build a first order Markov chain 

(transition table) from the sequences: “+ model” 
¡  Pick a set of non- CpG island sequences and build a first order Markov 

chain (transition table) from them: “- model” 

�  Transition probabilities are obtained by counting 
dinucleotide frequencies 
¡  c+

st  is the frequency of ‘st’  in the sequence 
¡  a+

st denotes the transition probability sèt 

 

∑ +

+
+ =

'
'

t
st

st
st c

ca



Modelling CpG islands with Markov chains 

�  Problem 1:Given a short genome sequence, decide if it 
comes  from a CpG islands or not. 

�  Markov chain modelling approach: 
¡  Pick a set of known CpG islands and build a first order Markov chain 

(transition table) from the sequences: “+ model” 
¡  Pick a set of non- CpG island sequences and build a first order Markov 

chain (transition table) from them: “- model” 

 



Modelling CpG islands with Markov chains 

�  Compute the probability of the new sequence x1…xL 
using both models 
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Modelling CpG islands with Markov chains 

�  Given the two probabilites P(x|model +) and P(x|
model -), we compute a log-odds score S(x) to reflect 
the relative goodness of the models 

�  If S(x) > 0 it is the more likely the sequence comes 
from a CpG island than not 



Modelling CpG islands with Markov chains 

�  The S(x) scores for a set of 
CpG-island and non CpG-
island sequences are shown 
¡  Normalized by sequence length 

to get an average score per 
nucleotide 

�  CpG islands sequences shown 
in dark grey and non-CpG 
sequences in light grey 

�  Assigning sequences with S
(x)/L > 0 as CpG islands 
would give a good but not 
perfect classification 



1.  Given a short genome sequence, decide if it 
comes  from a CpG islands or not.✔ 

2.  Given a long DNA sequence, locate all the CpG    
islands in it. 

Two problems 



Locating CpG islands with Markov chains 

�  Problem 2: Given a long DNA sequence, locate all the CpG    
islands in it 

�  The Markov chain scheme does not give any indication of  
¡  Where the CpG island starts 
¡  The length of the island 

�  As sliding window approach is possible: 
¡  Slide a window (xk,…,xk+l) over the long sequence, k=1…L 
¡  Compute the S(x) score from each window 
¡  GpG islands would then possibly stand out as regions with 

positive S(x) scores computed from the windows 
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Locating CpG islands with Markov chains 

�  Window approach not completely satisfactory:  
¡  with fixed window length, we could not properly model the 

variable length CpG islands 
¡  e.g. islands much shorter than the window length could be 

missed 
¡  No direct predictions of where the island starts and ends 
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Locating CpG islands with Markov chains 

�  A better approach would be to 
build a single model that 
incorporates both the CpG 
island and the non-CpG island 
models 

�  We have 8 states (A+,C+,…), 4 for 
both models, with all pairwise 
transitions possible  

�  In addition, transitions between 
the two parts are possible with 
small probability (edges across 
the vertical line) 
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Locating CpG islands with Markov chains 

�  Transition probabilities within 
the ‘+’ part of the model are set 
close to the original CpG island 
model, ‘-’ part set close to the ‘-’ 
model 

�  The probabilities of any 
transition from ‘+’ to ‘-’ state are 
set higher on average than vice 
versa 
¡  Model is more likely to spend time 

on the ‘-’ part than ‘+’ part 
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Locating CpG islands with Markov chains 

�  Transition probabilities within 
the ‘+’ part of the model are set 
close to the original CpG island 
model, ‘-’ part set close to the ‘-’ 
model 

�  The probabilities of any 
transition from ‘+’ to ‘-’ state are 
set higher on average than vice 
versa 
¡  Model is more likely to spend time 

on the ‘-’ part than ‘+’ part 
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Towards Hidden Markov Models 

�  The model outputs nucleotide A 
both when in A- and A+ states 

�  Thus by looking at the generated 
symbol sequence alone, we 
cannot directly tell if ‘+’ model 
or the ‘-’ minus model was used 
to generate or emit any given 
symbol 
¡  The state is said to be hidden 
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State:              A+ , C+ , G+ , T+ , A- , C-, G- , T-   
Emitted character:    A     C    G    T    A    C    G    T 



Hidden Markov Model 

�  A Hidden Markov Model is composed of the 
following components 
¡  Set of (hidden) states, capable of emitting symbols 

according to a probability distribution  
¡  Set of transitions between the states, with transition 

probabilities 

�  Two kinds of sequences: 
¡  State sequence (hidden) Π = (π1 ,…, πL) called the path 
¡  Symbol sequence (observed):  (x1 ,….,xL)  
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Hidden Markov Models 

�  The probability of a state only depends on the 
previous state (Markov assumption) 
¡  akl = P (π i = l | π i-1 = k ) 

�  The probability of emitting  a symbol only depends 
on the current state k 
¡  ek(b) = P (x i = b | π i = k ) 
¡  In particular, emitting a symbol does not depend on the 

previously emitted symbol x i-1  
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Hidden Markov Models 

�  The probability that the sequence x is generated 
given the path Π is 

�  Above we denote : π0 = begin  and πL+1 = end 
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Example: occasionally dishonest casino 

�  Casino uses a fair die most 
of the time, but switches to 
the loaded die once in a 
while 

�  Can we detect which of the 
dice is in use at any given 
time, just by observing the 
sequence of rolls? 



Sequential view 
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Loaded 

Fair 

1 4 3 6 6 4 
Observed sequence of die rolls:"

F L L L F F 

Hidden path: the sequence of which die being used:"



Decoding: finding the most probable path 

�  How can we make good 
guesses when the casino 
has switched to the loaded 
die? 

�  Decoding: Finding the 
most probable state 
sequence (path π) to have 
generated the observed 
rolls 

�  The set of possible paths 
(Π) is exponential sized, so 
need efficient algorithms 
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CpG island example 

�  Consider an observed 
sequence CGCG 

�  Many different state 
sequences can generate it, 
e.g. 
¡  (C+,G+,C+,G+)  
¡  (C-,G-,C-,G-)  
¡  (C+,G-,C+,G-)  

�  However, they do so with 
very different probabilities. 

�  Which is the most probable 
path? 

! * = argmax
!!"

P(x,! )



Viterbi algorithm 

�  Assume we know the probability vk(i) of the most 
probable path (π0π1…πi) ending at state k for the 
prefix x1,…,xi 

�  Then the most probable path ending in state l for the 
extended prefix x1,…,xi,xi+1 is found by finding a state 
k that maximizes the combined probability of 
¡  Taking the best path to k (π0π1…k), probability vk(i) 
¡  Making a transition from k to l, probability akl  

�  Combine with the probability of Emitting xi+1 in state 
l to get the probability of the path  
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! * = argmax
!!"

P(x,! )
vl (i+1) = el (xi+1)maxk vk (i)akl



Viterbi at the casino 

�  Vloaded(5) is the maximum 
of two probabilities: the 
most probable sequences 
such that either 
¡  4’th throw used a loaded 

die and it is continued to 
be used for 5th throw, or 

¡  The die was switched from 
fair to loaded after 4th 
throw 

�  Simple recurrence gives 
the result: 
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vloaded (5) = eloaded (6)max(vloaded (4)aloaded,loaded,vfair (4)afair,loaded )



Viterbi algorithm 

�  Dynamic programming sweep over the sequences 
�  To recover the best state sequence fast a traceback 

pointer ptrk(i) is stored for each (i,k) 



Viterbi at the casino 



Viterbi at the casino 
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Viterbi at the casino 

�  Viterbi estimates remarkably well the correct die 



Viterbi on the CpG island 

�  Table v for the sequence CGCG 
�  The most probable path stays on the ‘+’ side 

(unsurprisingly) 



Complexity and Implementation 

�  The time-complexity of the Viterbi algorithm is O(L |
Q|2, where L is the length of the sequence, and Q is 
the set of states 

�  Space complexity is O(LQ), i.e. the size of the tables 
to be filled 

�  Important implementation issue: to avoid numerical 
underflow when multiplying small probabilities, it is 
better to use log-probabilities instead: 

 
�  Capital V,E,A denote the logarithms of the original 

quantities  
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Vl (i+1) = El (xi+1)+maxk (Vk (i)+ Akl )


