Elements of Bioinformatics, Autumn 2011, Exercise set 2

Return your answers to Esa Pitkänen (firstname.lastname@cs.helsinki.fi) on writing before the beginning of the review session, Mon 14.11 at 10am at the latest.

Exercises 2-4 can be solved by writing computer scripts to compute answers or by hand.

1. Fast sliding window for log-odds scores

On slides 7-11 of Lecture 2, an approach for modelling CpG islands via Markov chains is described. Consider sliding a window of length l over the sequence to be modelled and computing for each window position the log-odds score $S_j(x) = \log \frac{P(x_j, \dots, x_{j+l-1} | model+)}{P(x_j, \dots, x_{j+l-1} | model-)}$.

Derive an update formula that relieves one from computing the log-odds scores from scratch when the window position is moved from position j to j + 1. How big is the speed-up?

2. Modelling CpG islands with Markov chains

Below transition matrices of two Markov chains are given that are designed to recognize CpG islands (model +,left) and DNA outside the islands (model -,right).

+	Α	С	G	Т	-	Α	С	G	Т
Α	0.180	0.274	0.426	0.120	Α	0.300	0.205	0.285	0.210
С	0.171	0.368	0.274	0.188	С	0.322	0.298	0.078	0.302
G	0.161	0.339	0.375	0.125	G	0.248	0.246	0.298	0.208
Т	0.079	0.355	0.384	0.182	Т	0.177	0.239	0.292	0.292

Using the two Markov chains, compute the log-odds score $S_i(x) = \log \frac{P(x_i,...,x_{i+9}|model+)}{P(x_i,...,x_{i+9}|model-)}$ in a sliding window of 10 nucleotides, for the sequence given below

TCTGTTACCCAGGCCGAGCTTC

3. Viterbi training

Consider attending the occasionally dishonest casino with the two state HMM of slide 22 of Lecture 2.

Consider the following sequence of rolls: 1,2,3,6,1,5,3,2,2,6,4,6,6,6,6,6,6,1,2,3,4,4

Use the predicted state sequence to compute the matrices A and E as well as the matrices a and e of the Viterbi training algorithm

4. Viterbi decoding

Below is a Hidden Markov Model for the occasionally dishonest casino: [0.7]0.3transition probabilities aand emission probabilities e =0.70.3 1 $\mathbf{2}$ 3 56 4 $0.17 \quad 0.17 \quad 0.17 \quad 0.17$ 0.170.170.10.10.10.10.50.1

Using the above HMM, simulate the Viterbi decoding algorithm (slide 28, Lecture 2) using the sequence of rolls: 4 5 6 1 6 6 5

The answer should show the progression how the table v and ptr will fill, a few iterations revealing the principle are sufficient for the answer.

5. Baum-Welch algorithm

Explain the principle of the Baum-Welch algorithm. What are the main differences to Viterbi training?

Source: Durbin et al "Biological sequence analysis", Cambridge University Press, Chapter 3, pages 63-65; in course folder room C127, the pages 63-65 can also be found in Google books.