
Chapter 7:
Distributed Systems:
Warehouse-Scale Computing

Fall 2011
Jussi Kangasharju

2

Chapter Outline

 Warehouse-scale computing overview
 Workloads and software infrastructure
 Failures and repairs

 Note: Term “Warehouse-scale computing” originates from
Google Examples typically of Google’s services

 Trend towards WSC is more general

 This chapter based on book Barroso, Hölzle: “The
Datacenter as a Computer” (see course website)

Kangasharju: Distributed Systems

3

What is Warehouse-Scale Computing (WSC)?

 Essentially: Modern Internet services

 Massive scale of…
 Software infrastructure

 Data repositories

 Hardware platform

 Program is a service
 Consists of tens of interacting programs

 Different teams, organizations, etc.

Kangasharju: Distributed Systems

4

WSC vs. Data Centers

 Both look very similar to the outside
  “Lots of computers in one building”

 Key difference:
 Data centers host services for multiple providers

 Little commonality between hardware and software

 Third-party software solutions

 WSC run by a single organization
 Homogeneous hardware and software and management

  In-house middleware

Kangasharju: Distributed Systems

5

Cost Efficiency

 Cost efficiency extremely important

 Growth driven by 3 main factors:
 Popularity increases load

 Size of problem increases (e.g., indexing of Web)

 Highly competitive market

 Need bigger and bigger systems Cost efficiency!

Kangasharju: Distributed Systems

6

Future of Distributed Computing?

 WSC is not just a collection of servers
 New and rapidly evolving workloads

 Too big to simulate New design techniques

 Fault behavior

 Energy efficiency

 New programming paradigms

 Design spectrum:
 One computer Multiple computers Data center

 WSC = Multiple data centers operating together

 Modern CDN: “Server” = WSC data center

Kangasharju: Distributed Systems

7

Architectural Overview

 Storage
 Networking
 Storage hierarchy
 Latency, bandwidth, capacity
 Power usage
 Handling failures

Kangasharju: Distributed Systems

8

General architecture

 Servers, e.g., 1-U servers

 Racks

  Interconnected racks

Kangasharju: Distributed Systems

9

Storage

 Tradeoff: NAS vs. local disks as distributed filesystem?

 NAS:
 Easier to deploy, puts responsibility on vendor

 Collection of disks:
 Must implement own filesystem abstraction (e.g., GFS)

 Lower hardware costs (desktop vs. enterprise disks)

 Reliability issues and replication?

 More network traffic due to writes

Kangasharju: Distributed Systems

10

Network

 48-port 1 Gbps Ethernet switches are “cheap”

 Good bandwidth within one rack

 Problem: Cluster-level bandwidth?
 Bigger and faster switches prohibitively expensive?

 Hierarchical network organization:
 Good bandwidth within rack

 Less bandwidth within cluster

 Programmer must keep this in mind! (transparency?)

Kangasharju: Distributed Systems

11

Storage Hierarchy

 Server:
 N processors, X cores/CPU, local cache, DRAM, disks

 Fast, but limited capacity

 Rack:
  Individual servers, combined view

 A bit slower, but more capacity

 Cluster:
 View over all racks

 Slower, but more capacity

 Tradeoff: Bandwidth, latency, capacity

Kangasharju: Distributed Systems

12

Power Usage

 No single culprit on server level
 CPU 33%

 DRAM 30%

 Disk 10%

 Network 5%

 Other 22%

 Further optimization targets on cluster/WSC level
 Cooling of data center

Kangasharju: Distributed Systems

13

Handling Failures

 At this scale, things will break often

 Application must handle them

 More details later

Kangasharju: Distributed Systems

14

Workloads and Software Infrastructure

 Different levels of abstraction

 Platform-level software
 Firmware, kernel, individual OS

 Cluster-level infrastructure software
 Distributed software for managing resources and services

  “OS for a datacenter”

 Distributed FS, RPC, MapReduce, …

 Application-level software
 Actual application, e.g., Gmail, Google Maps

Kangasharju: Distributed Systems

15

Datacenter vs. Desktop

 Differences in developing software

 Datacenter:
 Parallelism (both data and requests)

 Workload changes

 Homogeneous platform

 Hiding failures

Kangasharju: Distributed Systems

16

Basic Techniques

Technique Reliability Availability
Replication Yes Yes
Partitioning Yes Yes
Load balancing Yes
Timers Yes
Integrity checks Yes
App.-specific
Compression

Yes

Eventual consistency Yes Yes

Kangasharju: Distributed Systems

17

Cluster-Level Infrastructure Software

 Resource management
 Mapping of tasks to resources

 Hardware abstraction and basic services
 Distributed storage, message passing, …

 Deployment and maintenance
 Software distribution, configuration, …

 Programming frameworks
 Hide some of the above from programmer

 Examples: MapReduce, BigTable, Dynamo

Kangasharju: Distributed Systems

18

MapReduce

 Google’s framework for processing large data sets on
clusters

 Name from map and reduce (functional programming)
 Not really much in common with real “map” and “reduce”

 One master, multiple (levels) of slaves
 Map:

 Master partitions input, distributed to slaves

 Slaves may do the same

 Reduce:
 Slave sends its result to its master

 Eventually root-master will get result

Kangasharju: Distributed Systems

19

Application-Level Software

 What is the application?
 First was search, then many other have appeared

 Datacenter must support general-purpose computing
 Too expensive to tailor datacenters for applications

 Changing workloads Faster to adapt software

 Two application examples:
 Search

 Similar scientific articles (see book for description)

Kangasharju: Distributed Systems

20

Search

  Inverted index
 Set of documents matching a keyword

 Size of index similar to original data
 Consider query “new york restaurant”

 Must search each of three terms

 Find documents matching every term

 Sorting (PageRank + other criteria) Result

 Latency must be low (user waiting)
 Throughput must be high (many users)
 Read-only index Easily parallelizable

Kangasharju: Distributed Systems

21

Monitoring Infrastructure

 Service-level dashboards
 Real-time monitoring of few key indicators (latency, t-put)

 Can extend to some more indicators

 Performance debugging tools
 Dashboards only show problem, but no answer to “why”

 No need for real-time (compare CPU profilers)

 Blackbox monitoring vs. instrumentation approach

 Platform-level monitoring
 Everything above is needed, but not sufficient

 Need a higher-level view (see book for details)

Kangasharju: Distributed Systems

22

Buy vs. Build?

 Buy:
 Typical solution

 Build:
 Google’s (and others’) approach

 Original reason: No third-party solutions available

 More software development and maintenance work

  Improved flexibility

  In-house software can take “shortcuts”

-  Not implement every feature

Kangasharju: Distributed Systems

23

Failures

 Traditional software not good with failures

 Result: Make hardware more reliable

 WSC is different because of scale
 30 year MTBF = 10,000 hours MTBF

 WSC with 10,000 servers = 1 failure per day

 Software must handle failures
 Application or middleware

 Middleware makes applications simpler

Kangasharju: Distributed Systems

24

Positive Side Effect

 Failures are a fact of life

 Can buy cheaper hardware

 Upgrades are simpler
 Upgrade, kill, reboot

 Same for hardware upgrades

  “Failure is an option”
 Can allow servers to fail, makes life simpler

Kangasharju: Distributed Systems

25

Caveats

 Cannot ignore reliability completely

 Hardware must be able to detect errors and failures
 No need to recover, but can include

 Not detecting hardware errors is risky
 See book for example

 Every piece of software would need to handle everything

Kangasharju: Distributed Systems

26

Categorizing Faults

 Corrupted
 Data lost or corrupted

 Can data be regenerated or not?

 Unreachable
 Service unreachable by users

 User network reliability?

 Degraded
 Service available, but degraded

 What can be still done?

 Masked
 Fault occurs, but is masked

Kangasharju: Distributed Systems

27

Sources of Faults

 Hardware not the common culprit (~10%)

 Software and configurations are bigger problems
 Exact numbers depend on study

 Hardware problem = single computer
 Software/configuration problem = many computers

simultaneously

Kangasharju: Distributed Systems

28

Causes of Crashes

 Anecdotal evidence points to software
 Hardware: Memory or disk

 DRAM errors happen, but can be helped with ECC
 Some errors still persist

 Real crash rate higher than studies predict
 Again points to software

 Predicting problems in WSC not useful
 Need to handle failures anyway

 Could be useful in other systems

Kangasharju: Distributed Systems

29

Repairs

 When something breaks, it must be repaired

 Two important characteristics of WSC

 No need to repair immediately
 Optimize time of repair technician

 Collect lot of health data from large number of servers
 Use machine learning to optimize actions

Kangasharju: Distributed Systems

30

Summary: Key Challenges

 Rapidly changing workloads

 Building balanced systems from imbalanced components

 Energy use

 Amdahl’s Law

Kangasharju: Distributed Systems

31

Chapter Summary

 Warehouse-scale computing overview

 Workloads and software infrastructure

 Failures and repairs

Kangasharju: Distributed Systems

