
Chapter 4:
Distributed Systems:
Replication and Consistency

Fall 2011
Jussi Kangasharju

2 Kangasharju: Distributed Systems

Chapter Outline

 Replication
 Consistency models
 Distribution protocols
 Consistency protocols

3 Kangasharju: Distributed Systems

Data Replication

user C

user B

object

object

user A

4 Kangasharju: Distributed Systems

Reasons for Data Replication

  Dependability requirements
 availability

-  at least some server somewhere
-  wireless connections => a local cache

  reliability (correctness of data)
-  fault tolerance against data corruption
-  fault tolerance against faulty operations

  Performance
  response time, throughput
 scalability

-  increasing workload
-  geographic expansion

 mobile workstations => a local cache
  Price to be paid: consistency maintenance

 performance vs. required level of consistency
 (need not care updates immediately visible)

5 Kangasharju: Distributed Systems

Replication and Scalability

 Requirement: ”tight” consistency
(an operation at any copy => the same result)

 Difficulties
 atomic operations (performance, fault tolerance??)
  timing: when exactly the update is to be performed?

 Solution: consistency requirements vary
 always consistent => generally consistent
 (when does it matter? depends on application)
 => improved performance

 Data-centric / client-centric consistency models

6 Kangasharju: Distributed Systems

Data-Centric Consistency Models (1)

 The general organization of a logical data store, physically distributed and

replicated across multiple processes.

7 Kangasharju: Distributed Systems

Data-Centric Consistency Models (2)

8 Kangasharju: Distributed Systems

Strict Consistency
Any read on a data item x
returns a value corresponding to the result of
the most recent write on x.

Behavior of two processes, operating on the same data item.

a)  A strictly consistent store.
b)  A store that is not strictly consistent.

A problem: implementation requires absolute global time.
Another problem: a solution may be physically impossible.

9 Kangasharju: Distributed Systems

Sequential Consistency

A sequentially consistent data store. A data store that is not sequentially consistent.

The result of any execution is the same as if
the (read and write) operations by all processes on the data store
were executed in some sequential order and
the operations of each individual process appear in this sequence
in the order specified by its program. Note: nothing said about time!

Note: a process sees all writes and own reads

10 Kangasharju: Distributed Systems

Linearizability

The result of any execution is the same as if
the (read and write) operations by all processes on the data store
were executed in some sequential order and
the operations of each individual process appear in this sequence
in the order specified by its program.

In addition,
if TSOP1(x) < TSOP2(y) , then
operation OP1(x) should precede OP2(y) in this sequence.

Linearizability: primarily used to assist formal verification of concurrent
algorithms.

Sequential consistency: widely used, comparable to serializability of
transactions (performance??)

11 Kangasharju: Distributed Systems

Linearizability and Sequential Consistency (1)

Execution sequences

 - 720 possible execution sequences (several of which violate program order)

 - 90 valid execution sequences

Process P1 Process P2 Process P3

x = 1;

print (y, z);

y = 1;

print (x, z);

z = 1;

print (x, y);

Initial values: x = y = z = 0

All statements are assumed to be indivisible.

Three concurrently executing processes

12 Kangasharju: Distributed Systems

Linearizability and Sequential Consistency (2)

x = 1;

print (y, z);

y = 1;

print (x, z);

z = 1;

print (x, y);

Prints: 001011

 (a)

x = 1;

y = 1;

print (x,z);

print(y, z);

z = 1;

print (x, y);

Prints: 101011

 (b)

y = 1;

z = 1;

print (x, y);

print (x, z);

x = 1;

print (y, z);

Prints: 010111

 (c)

y = 1;

x = 1;

z = 1;

print (x, z);

print (y, z);

print (x, y);

Prints: 111111

 (d)

13 Kangasharju: Distributed Systems

Causal Consistency (1)

Necessary condition:

 Writes that are potentially causally related must be
seen by all processes in the same order.

 Concurrent writes may be seen in a different order on
different machines.

14 Kangasharju: Distributed Systems

Causal Consistency (2)

 This sequence is allowed with a causally-consistent store,
 but not with sequentially or strictly consistent store.

15 Kangasharju: Distributed Systems

Causal Consistency (3)

A correct
sequence
of events in a
causally-consistent
store.

A violation of a
causally-consistent
store.

16 Kangasharju: Distributed Systems

FIFO Consistency (1)

Necessary Condition:

Writes done by a single process
are seen by all other processes
in the order in which they were issued,
but
writes from different processes
may be seen in a different order by different processes.

17 Kangasharju: Distributed Systems

FIFO Consistency (2)

A valid sequence of events of FIFO consistency

Guarantee:
•  writes from a single source must arrive in order
•  no other guarantees.

 Easy to implement!

18 Kangasharju: Distributed Systems

Less Restrictive Consistencies
 Needs

 FIFO too restrictive: sometimes no need to see all writes
 example: updates within a critical section (the variables are

locked => replicas need not be updated -- but the database

does not know it)

 Replicated data and consistency needs
 single user: data-centric consistency needed at all?

-  in a distributed (single-user) application: yes!
-  but distributed single-user applications exploiting

replicas are not very common …
 shared data: mutual exclusion and consistency obligatory

=> combine consistency maintenance with the
 implementation of critical regions

19 Kangasharju: Distributed Systems

Consistency of Shared Data (1)

 Assumption: during a critical section the user has access to one

replica only

 Aspects of concern
-  consistency maintenance timing, alternatives:

- entry: update the active replica
- exit: propagate modifications to other replicas
- asynchronous: independent synchronization

-  control of mutual exclusion:
- automatic, independent

-  data of concern:
- all data, selected data

20 Kangasharju: Distributed Systems

Consistency of Shared Data (2)
 Weaker consistency requirements

 Weak consistency
 Release consistency
 Entry consistency

  Implementation method
 control variable

-  synchronization / locking
 operation

-  synchronize
-  lock/unlock and synchronize

21 Kangasharju: Distributed Systems

Entry Consistency (1)
  Consistency combined with “mutual exclusion”

  Each shared data item is associated with a

synchronization variable S
  S has a current owner (who has exclusive access to the associated data, which is

guaranteed up-to-date)
  Process P enters a critical section: Acquire(S)

  retrieve the ownership of S

  the associated variables are made consistent
  Propagation of updates at the next Acquire(S) by some other process

22 Kangasharju: Distributed Systems

R(x)a

Entry Consistency (2)

A valid event sequence for entry consistency.

R(y)NIL

 Acq(Ly) W(y)b Rel(Ly)

P3:

P1: Acq(Lx) W(x)a Rel(Lx)

P2:

Rel(Lx)

Acq(Ly) R(y)b

23 Kangasharju: Distributed Systems

Summary of Consistency Models (1)

Consistency models not using synchronization operations.

All processes see writes from each other in the order they
were performed. Writes from different processes may not always
be seen in the same order by other processes.

FIFO

All processes see causally-related shared accesses in
the same order.

Causal

All processes see all shared accesses in the same order.
Accesses are not ordered in time Sequential

All processes see all shared accesses in the same order.
Accesses are furthermore ordered according to a
(nonunique) global timestamp

Linearizability

Absolute time ordering of all shared accesses matters. Strict
Description Consistency

24 Kangasharju: Distributed Systems

Summary of Consistency Models (2)

Models with synchronization operations.

Shared data associated with a synchronization variable

are made consistent when a critical section is entered.

Entry

All shared data are made consistent after the exit out of the

critical section

Release

Shared data can be counted on to be consistent only after a

synchronization is done

Weak

Description Consistency

25 Kangasharju: Distributed Systems

Client-Centric Models

 Environment
 most operations: “read”

  “no” simultaneous updates

 a relatively high degree of inconsistency tolerated

 (examples: DNS, WWW pages)

 Wanted
 eventual consistency

 consistency seen by one single client

26 Kangasharju: Distributed Systems

Eventual Consistency

27 Kangasharju: Distributed Systems

Monotonic Reads
 If a process reads the value of of a data item x, any successive read operation

on x by that process will always return that same value or a more recent value.

(Example: e-mail)

A data store that does not
provide monotonic reads.

A monotonic-read consistent
data store

WS(xi): write set = sequence of operations on x at node Li

28 Kangasharju: Distributed Systems

Monotonic Writes

 A data store that does not
provide monotonic-write
consistency.

 A monotonic-write
consistent data store.

A write operation by a process on a data item x is completed
before any successive write operation on x
by the same process. (Example: software updates)

29 Kangasharju: Distributed Systems

Read Your Writes

A data store that
does not.

 A data store that provides
read-your-writes
consistency.

The effect of a write operation by a process on data item x will
always be seen by a successive read operation on x by the same
process. (Example: edit www-page)

30 Kangasharju: Distributed Systems

Writes Follow Reads

Process P: a write operation (on x) takes place on the same or a more
recent value (of x) that was read. (Example: bulletin board)

A data store that does not
provide writes-follow-reads
consistency

A writes-follow-reads
consistent data store

31 Kangasharju: Distributed Systems

Distribution Protocols

 Replica placement
 Update propagation
 Epidemic protocols

32 Kangasharju: Distributed Systems

Replica Placement (1)

 The logical organization of different kinds of copies of a data

store into three concentric rings.

33 Kangasharju: Distributed Systems

Replica Placement (2)

permanent replicas

server-initiated replicas

client-initiated replicas clients
servers

mirror

34 Kangasharju: Distributed Systems

Permanent Replicas

 Example: a WWW site
 The initial set of replicas:
 constitute a distributed data store
 Organization

 A replicated server
 (within one LAN; transparent for the clients)
 Mirror sites (geographically spread across the Internet;
 clients choose an appropriate one)

35 Kangasharju: Distributed Systems

Server-Initiated Replicas (1)

 Created at the initiative of the data store
 (e.g., for temporary needs)
 Need: to enhance performance
 Called as push caches
 Example: www hosting services

 a collection of servers

 provide access to www files belonging to third parties

  replicate files “close to demanding clients”

36 Kangasharju: Distributed Systems

Server-Initiated Replicas (2)

  Issues:
  improve response time

  reduce server load; reduce data communication load

⇒  bring files to servers placed in the proximity of clients
 Where and when should replicas be created/deleted?
 For example:

 determine two threshold values for each (server, file): rep > del
 #[req(S,F)] > rep => create a new replica

 #[req(S,F)] < del => delete the file (replica)

 otherwise: the replica is allowed to be migrated

 Consistency: responsibility of the data store

37 Kangasharju: Distributed Systems

Client-Initiated Replicas

 Called as client caches
(local storage, temporary need of a copy)

 Managing left entirely to the client
 Placement

  typically: the client machine

 a machine shared by several clients

 Consistency: responsibility of client

 More on replication in the Web in Chapter 6

38 Kangasharju: Distributed Systems

Update Propagation:
State vs. Operations

 Update route: client => copy => {other copies}
 Responsibility: push or pull?
  Issues:

 consistency of copies
 cost: traffic, maintenance of state data

 What information is propagated?
 notification of an update (invalidation protocols)

  transfer of data (useful if high read-to-write ratio)

 propagate the update operation (active replication)

39 Kangasharju: Distributed Systems

Pull versus Push (1)

 Push
 a server sends updates to other replica servers
  typically used between permanent and server-initiated replicas

 Pull
 client asks for update / validation confirmation
  typically used by client caches

-  client to server: {data X, timestamp ti, OK?}
-  server to client: OK or {data X, timestamp ti+k}

40 Kangasharju: Distributed Systems

Pull versus Push Protocols (2)

 A comparison between push-based and pull-based protocols in the case of

multiple client, single server systems.

Issue Push-based Pull-based

State of server List of client replicas and caches None

Messages sent Update (and possibly fetch update later) Poll and update

Response time at

client
Immediate (or fetch-update time) Fetch-update time

41 Kangasharju: Distributed Systems

Pull vs. Push: Environmental Factors
 Read-to-update ratio

-  high => push (one transfer – many reads)
-  low => pull (when needed – check)

 Cost-QoS ratio
-  factors:

- update rate, number of replicas => maintenance
workload

- need of consistency (guaranteed vs. probably_ok)
-  examples

-  (popular) web pages
- arriving flights at the airport

 Failure prone data communication
-  lost push messages => unsuspected use of stale data
-  pull: failure of validation => known risk of usage
-  high reqs => combine push (data) and pull

42 Kangasharju: Distributed Systems

Leases

  Combined push and pull

  A “server promise”: push updates for a certain time

  A lease expires

 => the client

-  polls the server for new updates or
-  requests a new lease

  Different types of leases

 age based: {time to last modification}

  renewal-frequency based: long-lasting leases to active users

 state-space overhead: increasing utilization of a server => lower

expiration times for new leases

43 Kangasharju: Distributed Systems

Propagation Methods

44 Kangasharju: Distributed Systems

Gossiping (1)

P starts a gossip round (with a fixed k)
1.  P selects randomly {Q1,..,Qk}
2.  P sends the update to {Qi}
3.  P becomes “removed”

Qi receives a gossip update
 If Qi was susceptible, it starts
 a gossip round
 else Qi ignores the update

The textbook variant (for an infective P)
P: do until removed

{select a random Qi ; send the update to Qi ;
 if Qi was infected then remove P with probability 1/k }

45 Kangasharju: Distributed Systems

Gossiping (2)

 Coverage: depends on k (fanout)
 a large fanout: good coverage, big overhead

 a small fanout: the gossip (epidemic) dies out too soon

 n: number of nodes, m: parameter (fixed value)

 k = log(n)+m =>

 P{every node receives} = e ** (- e **(-k))

 (esim: k=2 => P=0.87; k=5 => P=0.99)

 Merits
 scalability, decentralized operation
  reliability, robustness, fault tolerance
 no feedback implosion, no need for routing tables

46 Kangasharju: Distributed Systems

Epidemic Protocols: Removing Data

The problem
1.  server P deletes data D => all information on D is destroyed

 [server Q has not yet deleted D]

2.  communication P Q => P receives D (as new data)
A solution: deletion is a special update (death certificate)

  allows normal update communication

  a new problem: cleaning up of death certificates

  solution: time-to-live for the certificate

-  after TTL elapsed: a normal server deletes the certificate
-  some special servers maintain the historical certificates

forever (for what purpose?)

47 Kangasharju: Distributed Systems

Consistency Protocols

 Consistency protocol: implementation of a consistency model
 The most widely applied models

 sequential consistency

 weak consistency with synchronization variables

 atomic transactions

 The main approaches
 primary-based protocols (remote write, local write)

  replicated-write protocols (active replication, quorum based)

  (cache-coherence protocols)

48 Kangasharju: Distributed Systems

Remote-Write Protocols (1)

 Primary-based remote-write protocol with a fixed server to which all read and
write operations are forwarded.

49 Kangasharju: Distributed Systems

Remote-Write Protocols (2)

The principle of primary-backup protocol.

Sequential consistency
Read Your Writes

50 Kangasharju: Distributed Systems

Local-Write Protocols (1)

 Primary-based local-write protocol in which a single copy is migrated

between processes.

Mobile workstations!

51 Kangasharju: Distributed Systems

Local-Write Protocols (2)

 Primary-backup protocol in which the primary migrates to the process

wanting to perform an update.

Example: Mobile PC <= primary
server for items to be needed

52 Kangasharju: Distributed Systems

Quorum-Based Protocols

  Consistency-guaranteeing update of replicas:

 an update is carried out as a transaction

  Problems

  Performance?

  Sensitivity for availability (all or nothing) ?

  Solution:

  a subgroup of available replicas is allowed to update data

  Problem in a partitioned network:

  the groups cannot communicate =>

 each group must decide independently whether it is allowed

 to carry out operations.

  A quorum is a group which is large enough for the operation.

53 Kangasharju: Distributed Systems

Quorum-Based Voting (Gifford)

Three voting-case examples:

a)  A correct choice of read and write set

b)  A choice that may lead to write-write conflicts

c)  A correct choice, known as ROWA (read one,

write all)

The constraints:
1.  NR + NW > N

2.  NW > N/2

54 Kangasharju: Distributed Systems

Quorum-Based Voting

Read
  Collect a read quorum

  Read from any up-to-date replica (the newest timestamp)

Write
  Collect a write quorum

  If there are insufficient up-to-date replicas, replace non-current

replicas with current replicas (WHY?)

  Update all replicas belonging to the write quorum.

Notice: each replica may have a different number of votes assigned to it.

55 Kangasharju: Distributed Systems

Quorum Methods Applied

  Possibilities for various levels of “reliability”

  Guaranteed up-to-date: collect a full quorum

  Limited guarantee: insufficient quora allowed for reads

  Best effort

-  read without a quorum

-  write without a quorum - if consistency checks available

  Transactions involving replicated data
  Collect a quorum of locks

  Problem: a voting processes meets another ongoing voting

-  alternative decisions:

-  problem: a case of distributed decision making

(figure out a solution)

abort wait continue without a vote

56

Chapter Summary

 Replication
 Consistency models
 Distribution protocols
 Consistency protocols

Kangasharju: Distributed Systems

