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Reasons for Data Replication 

  Dependability requirements 
 availability 

-  at least some server somewhere 
-  wireless connections => a local cache 

  reliability (correctness of data) 
-  fault tolerance against data corruption 
-  fault tolerance against faulty operations 

  Performance  
  response time, throughput 
 scalability 

-  increasing workload  
-  geographic expansion 

 mobile workstations => a local cache 
  Price to be paid: consistency maintenance 

 performance vs. required level of consistency            
   (need not care  updates immediately visible)  
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Replication and Scalability 

 Requirement: ”tight” consistency             
(an operation at any copy => the same result) 

 Difficulties 
 atomic operations (performance, fault tolerance??) 
  timing: when exactly the update is to be performed? 

 Solution: consistency requirements vary 
 always consistent  => generally consistent  
    (when does it matter? depends on application)  
 => improved performance 

 Data-centric / client-centric consistency models 
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Data-Centric Consistency Models (1) 

    The general organization of a logical data store, physically distributed and 

replicated across multiple processes. 
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Data-Centric Consistency Models (2) 
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Strict Consistency 
Any read on a data item x  
returns a value corresponding to the result of  
the most recent write on x. 

Behavior of two processes, operating on the same data item. 

a)  A strictly consistent store. 
b)  A store that is not strictly consistent. 

A problem: implementation requires absolute global time. 
Another problem: a solution may be physically impossible. 
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Sequential Consistency  

A sequentially consistent data store.        A data store that is not sequentially consistent. 

The result of any execution is the same as if  
the (read and write) operations by all processes on  the data store 
were executed in some sequential order and  
the operations of each individual process appear in this sequence  
in the order specified by its program. Note: nothing said about time! 

Note: a process sees all writes and own reads 
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Linearizability 

The result of any execution is the same as if  
the (read and write) operations by all processes on  the data store 
were executed in some sequential order and  
the operations of each individual process appear in this sequence  
in the order specified by its program. 

In addition,  
if  TSOP1(x) < TSOP2(y) ,  then  
operation OP1(x) should precede OP2(y)  in this sequence.  

Linearizability: primarily used to assist formal verification of concurrent  
algorithms. 

Sequential consistency: widely used, comparable to serializability of  
transactions (performance??) 
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Linearizability and Sequential Consistency (1) 

Execution sequences  

 - 720 possible execution sequences (several of which violate program order) 

 -   90 valid execution sequences 

Process P1 Process P2 Process P3 

x = 1; 

print ( y, z); 

y = 1; 

print (x, z); 

z = 1; 

print (x, y); 

Initial values: x = y = z = 0 

All statements are assumed to be indivisible. 

Three concurrently executing processes 
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Linearizability and Sequential Consistency (2) 

x = 1; 

print (y, z); 

y = 1; 

print (x, z); 

z = 1; 

print (x, y); 

Prints:  001011 

        (a) 

x = 1; 

y = 1; 

print (x,z); 

print(y, z); 

z = 1; 

print (x, y); 

Prints: 101011 

        (b) 

y = 1; 

z = 1; 

print (x, y); 

print (x, z); 

x = 1; 

print (y, z); 

Prints: 010111 

      (c) 

y = 1; 

x = 1; 

z = 1; 

print (x, z); 

print (y, z); 

print (x, y); 

Prints: 111111 

      (d) 
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Causal Consistency (1) 

Necessary condition: 

    Writes that are potentially causally related must be 
seen by all processes in the same order.   

    Concurrent writes may be seen in a different order on 
different machines. 
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Causal Consistency (2) 

    This sequence is allowed with a causally-consistent store,  
     but not with sequentially or strictly consistent store. 



15 Kangasharju: Distributed Systems 

Causal Consistency (3) 

A correct  
sequence  
of events in a  
causally-consistent  
store. 

A violation of a  
causally-consistent  
store. 
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FIFO Consistency (1) 

Necessary Condition: 

Writes done by a single process  
are seen by all other processes  
in the order in which they were issued,  
but  
writes from different processes  
may be seen in a different order by different processes. 
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FIFO Consistency (2) 

A valid sequence of events of FIFO consistency 

Guarantee: 
•   writes from a single source must arrive in order 
•   no other guarantees. 

 Easy to implement! 
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Less Restrictive Consistencies 
 Needs 

 FIFO too restrictive: sometimes no need to see all writes 
 example: updates within a critical section  (the variables are 

locked => replicas need not be updated  -- but the database 

does not know it) 

 Replicated data and consistency needs 
 single user: data-centric consistency needed at all?  

-  in a distributed (single-user) application: yes! 
-  but distributed single-user applications exploiting 

replicas are not very common … 
 shared data: mutual exclusion and consistency obligatory 

=> combine consistency maintenance with the     
     implementation of critical regions 
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Consistency of Shared Data (1) 

 Assumption: during a critical section the user has access to one 

replica only  

 Aspects of concern 
-  consistency maintenance timing, alternatives: 

- entry: update the active replica 
- exit: propagate modifications to other replicas 
- asynchronous: independent synchronization 

-  control of mutual exclusion:  
- automatic, independent 

-  data of concern:  
- all data, selected data 
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Consistency of Shared Data (2) 
 Weaker consistency requirements 

 Weak consistency 
 Release consistency 
 Entry consistency 

  Implementation method 
 control variable 

-  synchronization / locking 
 operation 

-  synchronize 
-  lock/unlock and synchronize 



21 Kangasharju: Distributed Systems 

Entry Consistency (1) 
  Consistency combined with “mutual exclusion”  

  Each shared data item is associated with a            

synchronization variable S 
  S has a current owner (who has exclusive access to the  associated data, which is 

guaranteed up-to-date) 
  Process P enters a critical section: Acquire(S)  

  retrieve the ownership of S 

  the associated variables are made consistent 
  Propagation of updates at the next Acquire(S) by some other process 
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R(x)a    

Entry Consistency (2) 

A valid event sequence for entry consistency. 

R(y)NIL 

  Acq(Ly) W(y)b                Rel(Ly) 

P3:  

P1: Acq(Lx) W(x)a                          Rel(Lx)     

P2: 

Rel(Lx)     

Acq(Ly) R(y)b 



23 Kangasharju: Distributed Systems 

Summary of Consistency Models (1) 

Consistency models not using synchronization operations. 

All processes see writes from each other in the order they 
were performed.  Writes from different processes may not always 
be seen in the same order by other processes. 

FIFO 

All processes see causally-related shared accesses in 
the same order. 

Causal 

All processes see all shared accesses in the same order.  
Accesses are not ordered in time Sequential 

All processes see all shared accesses in the same order.  
Accesses are furthermore ordered according    to a 
(nonunique) global timestamp 

Linearizability 

Absolute time ordering of all shared accesses matters. Strict 
Description Consistency 
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Summary of Consistency Models (2) 

Models with synchronization operations. 

Shared data associated with a synchronization variable 

are made consistent when a critical section is entered. 

Entry 

All shared data are made consistent after the exit out of the 

critical section 

Release 

Shared data can be counted on to be consistent only after a 

synchronization is done 

Weak 

Description Consistency 
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Client-Centric Models 

 Environment 
 most operations: “read” 

  “no” simultaneous updates 

 a relatively high degree of inconsistency tolerated  

    (examples: DNS, WWW pages)  

 Wanted 
 eventual consistency 

 consistency seen by one single client 
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Eventual Consistency 
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Monotonic Reads 
       If a process reads the value of of a data item x, any successive read operation 

on x by that process will always return that same value or a more recent value.  

(Example: e-mail ) 

A data store that does not  
provide monotonic reads. 

A monotonic-read consistent  
data store 

WS(xi): write set = sequence of operations on x at  node Li 



28 Kangasharju: Distributed Systems 

Monotonic Writes 

       A data store that does not 
provide monotonic-write 
consistency. 

       A monotonic-write 
consistent data store. 

A write operation by a process on a data item x is completed  
before any successive write operation on x  
by the same process.    (Example: software updates) 
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Read Your Writes 

A data store that  
does not.       

      A data store that provides 
read-your-writes 
consistency. 

The effect of a write operation by a process on data item x will 
always be seen by a successive read operation on x by the same 
process.   (Example: edit www-page) 
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Writes Follow Reads 

Process P: a write operation (on x)  takes place on the same or a more 
recent value (of x)  that was read. (Example: bulletin board) 

A data store that does not 
provide writes-follow-reads 
consistency 

A writes-follow-reads 
consistent data store 
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Distribution Protocols 

 Replica placement 
 Update propagation 
 Epidemic protocols 
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Replica Placement (1) 

    The logical organization of different kinds of copies of a data 

store into three concentric rings. 
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Replica Placement (2) 

permanent replicas 

server-initiated replicas 

client-initiated replicas clients 
servers 

mirror 
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Permanent Replicas 

 Example: a WWW site 
 The initial set of replicas:  
    constitute a distributed data store 
 Organization 

 A replicated server  
    (within one LAN; transparent for the clients) 
 Mirror sites (geographically spread across the Internet;  
    clients choose an appropriate one) 
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Server-Initiated Replicas (1) 

 Created at the initiative of the data store  
    (e.g., for temporary needs) 
 Need: to enhance performance 
 Called as push caches 
 Example: www hosting services 

 a collection of servers 

 provide access to www files belonging to third parties 

  replicate files “close to demanding clients” 
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Server-Initiated Replicas (2) 

  Issues:  
  improve response time  

  reduce server load; reduce data communication load 

⇒  bring files to servers placed in the proximity of clients 
 Where and when should replicas be created/deleted? 
 For example: 

 determine two threshold values for each (server, file):          rep > del 
 #[req(S,F)] > rep   =>   create a new replica 

 #[req(S,F)] < del   =>   delete the file (replica)  

 otherwise: the replica is allowed to be migrated 

 Consistency: responsibility of the data store 
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Client-Initiated Replicas 

 Called as client caches      
(local storage, temporary need of a copy) 

 Managing left entirely to the client 
 Placement 

  typically: the client machine 

 a machine shared by several clients  

 Consistency: responsibility of client 

 More on replication in the Web in Chapter 6 
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Update Propagation:   
State vs. Operations 

 Update route: client => copy => {other copies} 
 Responsibility: push or pull? 
  Issues:  

 consistency of copies 
 cost: traffic, maintenance of state data 

 What information is propagated? 
 notification of an update (invalidation protocols) 

  transfer of data (useful if high read-to-write ratio) 

 propagate the update operation (active replication) 
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Pull versus Push (1) 

 Push 
 a server sends updates to other replica servers 
  typically used between permanent and server-initiated replicas 

 Pull 
 client asks for update / validation confirmation 
  typically used by client caches  

-  client to server: {data X, timestamp ti, OK?} 
-  server to client: OK or {data X, timestamp ti+k} 
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Pull versus Push Protocols (2) 

     A comparison between push-based and pull-based protocols in the case of 

multiple client, single server systems. 

Issue Push-based Pull-based 

State of server List of client replicas and caches None 

Messages sent Update (and possibly fetch update later) Poll and update 

Response time at 

client 
Immediate (or fetch-update time) Fetch-update time 
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Pull vs. Push: Environmental Factors 
 Read-to-update ratio 

-  high => push (one transfer – many reads) 
-  low  => pull   (when needed – check) 

 Cost-QoS ratio  
-  factors:  

- update rate, number of replicas => maintenance 
workload 

- need of consistency (guaranteed vs. probably_ok)   
-  examples 

-  (popular) web pages  
- arriving flights at the airport 

 Failure prone data communication 
-  lost push messages => unsuspected use of stale data 
-  pull: failure of validation => known risk of usage 
-  high reqs => combine push (data) and pull 
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Leases 

  Combined push and pull 

  A “server promise”: push updates for a certain time 

  A lease expires  

    => the client  

-  polls the server for new updates or  
-  requests a new lease 

  Different types of leases 

 age based: {time to last modification} 

  renewal-frequency based: long-lasting leases to active users 

 state-space overhead: increasing utilization of  a server => lower 

expiration times for new leases 
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Propagation Methods 
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Gossiping (1) 

P starts a gossip round (with a fixed k) 
1.  P selects randomly {Q1,..,Qk}   
2.  P sends the update to {Qi} 
3.  P becomes “removed” 

Qi receives a gossip update 
      If Qi was susceptible, it starts  
      a gossip round  
      else Qi ignores the update  

The textbook variant (for an infective P) 
P: do until removed 

{select a random Qi ;  send the update to Qi ; 
  if Qi  was infected then remove P with probability 1/k } 
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Gossiping (2) 

 Coverage: depends on k (fanout)  
 a large fanout: good coverage, big overhead 

 a small fanout: the gossip (epidemic) dies out too soon 

 n: number of nodes, m: parameter (fixed value) 

    k = log(n)+m =>  

    P{every node receives} = e ** (- e **(-k)) 

    (esim:   k=2  =>  P=0.87;    k=5  =>  P=0.99) 

 Merits 
 scalability, decentralized operation  
  reliability, robustness, fault tolerance 
 no feedback  implosion, no need for routing tables 
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Epidemic Protocols: Removing Data  

The problem  
1.  server P deletes data D  =>  all information on D is destroyed  

        [server Q has not yet deleted D] 

2.  communication P Q => P receives D (as new data) 
A solution: deletion is a special update (death certificate) 

  allows normal update communication  

  a new problem: cleaning up of death certificates 

  solution: time-to-live for the certificate 

-  after TTL elapsed: a normal server deletes the certificate 
-  some special servers maintain the historical certificates 

forever (for what purpose?) 



47 Kangasharju: Distributed Systems 

Consistency Protocols 

 Consistency protocol: implementation of a consistency model 
 The most widely applied models 

 sequential consistency 

 weak consistency with synchronization variables 

 atomic transactions 

 The main approaches 
 primary-based protocols (remote write, local write) 

  replicated-write protocols (active replication, quorum based) 

  (cache-coherence protocols) 
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Remote-Write Protocols (1) 

     Primary-based remote-write protocol with a fixed server to which all read and 
write operations are forwarded.    
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Remote-Write Protocols (2) 

The principle of primary-backup protocol. 

Sequential consistency 
Read Your Writes  
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Local-Write Protocols (1) 

     Primary-based local-write protocol in which a single copy is migrated 

between processes. 

Mobile workstations! 
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Local-Write Protocols (2) 

    Primary-backup protocol in which the primary migrates to the process 

wanting to perform an update. 

Example: Mobile PC <=  primary  
server for items to be needed  
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Quorum-Based Protocols 

  Consistency-guaranteeing update of replicas:  

     an update is carried out as a transaction 

  Problems 

  Performance? 

  Sensitivity for availability (all or nothing) ? 

  Solution:  

  a subgroup of available replicas is allowed to update data 

  Problem in a partitioned network:  

  the groups cannot communicate => 

    each group must decide independently whether it is allowed    

    to carry out operations. 

  A quorum is a group which is large enough for the operation. 
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Quorum-Based Voting (Gifford) 

Three voting-case examples: 

a)  A correct choice of read and write set 

b)  A choice that may lead to write-write conflicts 

c)  A correct choice, known as ROWA (read one, 

write all) 

The constraints: 
1.  NR + NW > N 

2.  NW > N/2 
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Quorum-Based Voting 

Read  
  Collect a read quorum 

  Read from any up-to-date replica (the newest timestamp)  

Write 
  Collect a write quorum  

  If there are insufficient up-to-date replicas, replace non-current 

replicas with current replicas (WHY?) 

  Update all replicas belonging to the write quorum. 

Notice: each replica may have a different number of votes assigned to it. 
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Quorum Methods Applied 

  Possibilities for various levels of “reliability” 

  Guaranteed up-to-date: collect a full quorum 

  Limited guarantee: insufficient quora allowed for reads 

  Best effort 

-  read without a quorum  

-  write without a quorum - if consistency checks available  

  Transactions involving replicated data  
  Collect a quorum of locks  

  Problem: a voting processes meets another ongoing voting 

-  alternative decisions:  

-  problem: a case of distributed decision making                 

(figure out a solution) 

abort wait continue without a vote 
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Chapter Summary 
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 Consistency models 
 Distribution protocols 
 Consistency protocols 
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