
Chapter 2:
Distributed Systems:
Interprocess communication

Fall 2011
Jussi Kangasharju

2 Kangasharju: Distributed Systems

Chapter Outline

 Overview of interprocess communication
 Remote invocations (RPC etc.)
 Persistence and synchronicity

3 Kangasharju: Distributed Systems

Middleware Protocols

An adapted reference model for networked communication.

General purpose services
- Naming, “browsing”
- Security
- Atomicity
- Higher-level
communication

- RPC, RMI
- Message passing
- Reliable multicast

4 Kangasharju: Distributed Systems

Remote Procedure Calls

 Basic idea:
  “passive” routines

 Available for remote clients

 Executed by a local worker process, invoked by local infrastructure

 See examples in book

5 Kangasharju: Distributed Systems

RPC goals
 Achieve access transparent procedure call
 Cannot fully imitate

 naming, failures, performance

 global variables, context dependent variables, pointers

 Call-by-reference vs. call-by-value

 Call semantics
 Maybe, at-least-once, at-most-once

 Exception delivery

 Can be enhanced with other properties
 Asynchronous RPC

 Multicast, broadcast

 Location transparency, migration transparency, …

 Concurrent processing

6 Kangasharju: Distributed Systems

RPC: a Schematic View

FNCT(a,b)

c:={comp}

return c.

Thread P

…

Y=FNCT(X,Y)

…

X, Y, Z

System A System B

RPC
package

RPC
package

a:=X; b:=Y;

Y

Y=FNCT(X,Y)

7 Kangasharju: Distributed Systems

Implementation of RPC

 RPC components:
 RPC Service (two stubs)

-  interpretation of the service interface

-  packing of parameters for transportation

 Transportation service: node to node

-  responsible for message passing

-  part of the operating system

 Name service: look up, binding
 name of procedure, interface definition

8 Kangasharju: Distributed Systems

Passing Value Parameters

Steps involved in doing remote computation through RPC

9 Kangasharju: Distributed Systems

Writing a Client and a Server

The steps in writing a client and a server in DCE RPC.

10 Kangasharju: Distributed Systems

Binding a Client to a Server

Client-to-server binding in DCE.

11 Kangasharju: Distributed Systems

Implementation of RPC

 Server: who will execute the procedure?
 One server process

  infinite loop, waiting in “receive”

 call arrives : the process starts to execute

 one call at a time, no mutual exclusion problems

 A process is created to execute the procedure
 parallelism possible

 overhead

 mutual exclusion problems to be solved

 One process, a set of thread skeletons:
 one thread allocated for each call

12 Kangasharju: Distributed Systems

Design Issues

 Language independent interface definition
 Exception handling
 Delivery guarantees

 RPC / RMI semantics

 maybe

 at-least-once

 at-most-once

  (un-achievable: exactly-once)

 Transparency (algorithmic vs. behavioral)

13 Kangasharju: Distributed Systems

RPC: Types of failures

  Client unable to locate server

  Request message lost

  retransmit a fixed number of times

  Server crashes after receiving a request or reply message lost

(cannot be told apart!)

  Client resubmits request, server chooses:

-  Re-execute procedure: service should be idempotent

-  Filter duplicates: server should hold on to results until

acknowledged

  Client crashes after sending a request

  Orphan detection: reincarnations, expirations

  Reporting failures breaks transparency

14 Kangasharju: Distributed Systems

Fault tolerance measures

at-most-
once

retransmit
reply

yes yes

at-least-
once

re-execute no yes

maybe N/A N/A no

invocation
semantics

Re-execute/
retransmit

Duplicate
filtering

Retransmit
request

15 Kangasharju: Distributed Systems

Reliable Client-Server Communication

1.  Point-to-Point Communication (“reliable”)

•  masked: omission, value

•  not masked: crash, (timing)

2.  RPC semantics

•  the client unable to locate the server

•  the message is lost (request / reply)

•  the server crashes (before / during / after service)

•  the client crashes

16 Kangasharju: Distributed Systems

Server Crashes (1)

A server in client-server communication
a)  Normal case
b)  Crash after execution
c)  Crash before execution

17 Kangasharju: Distributed Systems

Server Crashes (2)

 Different combinations of client and server strategies in the presence
of server crashes (client’s continuation after server’s recovery: reissue
the request?)

 M: send the completion message
 P: print the text
 C: crash

Client Server

Strategy M -> P Strategy P -> M

Reissue strategy MPC MC(P) C(MP) PMC PC(M) C(PM)

Always DUP OK OK DUP DUP OK

Never OK ZERO ZERO OK OK ZERO

Only when ACKed DUP OK ZERO DUP OK ZERO

Only when not ACKed OK ZERO OK OK DUP OK

18 Kangasharju: Distributed Systems

Client Crashes

 Orphan: an active computation looking for a non-existing parent

 Solutions
 extermination: the client stub records all calls,

after crash recovery all orphans are killed

  reincarnation: time is divided into epochs, client reboot =>

broadcast “new epoch” => servers kill orphans

 gentle incarnation: “new epoch” => only “real orphans” are killed

 expiration: a “time-to-live” for each RPC (+ possibility to request for

a further time slice)

 New problems: grandorphans, reserved locks, entries in remote
queues, ….

19 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

 General organization of a communication system in which hosts are connected through a network

20 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

 Persistent communication
  a submitted message is stored in the system until delivered

to the receiver

  (the receiver may start later, the sender may stop earlier)

 Transient communication
  a message is stored only as long as the sending and

receiving applications are executing

  (the sender and the receiver must be executing in parallel)

21 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

Persistent communication of letters back in the days of the Pony Express.

22 Kangasharju: Distributed Systems

Persistence and Synchronicity in
Communication

 Asynchronous communication
  the sender continues immediately after submission

 Synchronous communication
  the sender is blocked until

-  the message is stored at the receiving host (receipt-

based synchrony)

-  the message is delivered to the receiver (delivery based)

-  the response has arrived (response based)

23 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

a)  Persistent asynchronous communication

b)  Persistent synchronous communication

24 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

c)  Transient asynchronous communication
d)  Receipt-based transient synchronous communication

25 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

e)  Delivery-based transient synchronous communication at message delivery
f)  Response-based transient synchronous communication

26

Chapter Summary

 Overview of interprocess communication
 Remote invocations (RPC etc.)
 Persistence and synchronicity

Kangasharju: Distributed Systems

