
Chapter 1:
Distributed Systems:
What is a distributed system?

Fall 2011
Jussi Kangasharju

Course Goals and Content
 Distributed systems and their:

 Basic concepts

 Main issues, problems, and solutions

 Structured and functionality

 Content:
 Distributed systems

-  Architectures, goal, challenges

-  Where our solutions are applicable

 Synchronization: Time, coordination, decision making

 Replicas and consistency

 Fault tolerance

 Large-scale distributed systems in real world

2 October 4, 11 Kangasharju: Distributed Systems

Course Material
 Tanenbaum, van Steen: Distributed Systems, Principles

and Paradigms; Pearson Prentice Hall 2007
 2002 edition also ok

 Coulouris, Dollimore, Kindberg: Distributed Systems,

Concepts and Design; Addison-Wesley 2005

 Additional material will be given on website

 Lecture slides on course website
 NOT sufficient by themselves

 Help to see what parts in book are most relevant

 On some topics, slides cover more material than is in the

book

3 October 4, 11 Kangasharju: Distributed Systems

Course Exams
 Normal way (recommended)

 Exercises, home exercises, course exam

 Grading:
 Exam 42 points

 Exercises 12 points (N exercises, scaled to 0—12)

 Home exercises 12 points (4 exercises)

 Grading based on 60 point maximum

 Need 30 points to pass with minimum 16 points in exam

 50 points will give a 5

 Possible to take as separate exam

4 October 4, 11 Kangasharju: Distributed Systems

Exercises
 Weekly exercises:

 Smaller assignments

 Home exercises
 1 study diary, 3 design exercises

 Due dates will be announced later

 Study diary individual work

 Design exercises can be done in groups of up to 3

5 October 4, 11 Kangasharju: Distributed Systems

People
 Jussi Kangasharju

 Lectures:

-  Period I: Mon 10-12 in D122 and Thu 10-12 in C222

-  Period II: Mon 10-12 and Thu 10-12 in D122

-  12 lectures, exact dates will be given later on website

 Exercise group: Fri 12-14 in C222

 Office hour: Mon 13-14 or ask for appointment by email

 Mikko Pervilä
 Exercise groups: Thu 16-18 in C222

 Home exercises

 Office hour: During exercises or ask appointment by email

6 October 4, 11 Kangasharju: Distributed Systems

Zero Tolerance Policy for Plagiarism
 Every suspected case of plagiarism in exercises or exam

will be immediately reported to head of department and
head of studies

  If confirmed, immediate failure of whole course

7 October 4, 11 Kangasharju: Distributed Systems

Questions?

8 October 4, 11 Kangasharju: Distributed Systems

Chapter Outline
 Defining distributed system
 Examples of distributed systems
 Why distribution?

 Goals and challenges of distributed systems

 Where is the borderline between a computer and a
distributed system?

 Examples of distributed architectures

9 October 4, 11 Kangasharju: Distributed Systems

Definition of a Distributed System

 A distributed system is

 a collection of independent computers
 that appears to its users

as a single coherent system.

... or ...
as a single system.

October 4, 11 10 Kangasharju: Distributed Systems

Where Does the Definition Leave Us?
 Which of the following are distributed systems?

11 October 4, 11 Kangasharju: Distributed Systems

Multi-core processor

Multi-processor computer

One data center

Computing cluster

Network of
data centers

Local Area Network

Corporate intranet

Internet

Web

Parallel systems

Examples of Distributed Systems

•  one single “system”
•  one or several autonomous subsystems
•  a collection of processors => parallel processing
 => increased performance, reliability, fault

 tolerance
•  partitioned or replicated data
 => increased performance, reliability, fault tolerance

Distributed application

October 4, 11 12 Kangasharju: Distributed Systems

Why Distribution?

Sharing of information and services

Possibility to add components improves
availability

reliability, fault tolerance
performance

Leads to scalability

And a large set of gotchas…

October 4, 11 13 Kangasharju: Distributed Systems

Goals and challenges for
distributed systems

Goals
 Making resources accessible
 Distribution transparency
 Openness
 Scalability
 Security
 System design requirements

October 4, 11 15 Kangasharju: Distributed Systems

Challenges for Making Resources Accessible
 Naming
 Access control
 Security
 Availability
 Performance
 Mutual exclusion of users, fairness
 Consistency in some cases

16 October 4, 11 Kangasharju: Distributed Systems

Challenges for Transparency
 The fundamental idea: a collection of independent,

autonomous actors

 Transparency:
Concealment of distribution

=> user’s point of view: a single unified system

17 October 4, 11 Kangasharju: Distributed Systems

Transparencies

Transparency Description

Access Hide differences in data representation and how a resource is accessed

Location Hide where a resource is located (*)

Migration
Hide that a resource may move to another location (*)

(the resource does not notice)

Relocation
Hide that a resource may be moved to another location (*)

while in use (the others don’t notice)

Replication Hide that a resource is replicated

Concurrency Hide that a resource may be shared by several competitive users

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or on disk

(*) Note the various meanings of ”location”: network address (several layers) ; geographical address

October 4, 11 18 Kangasharju: Distributed Systems

Challenges for Transparencies
  replications and migration cause need for ensuring

consistency and distributed decision-making
  failure modes
 concurrency
 heterogeneity

19 October 4, 11 Kangasharju: Distributed Systems

Omission and arbitrary failures

Class of failure	
 Affects	
 Description	

Fail-stop	
 Process	
 Process halts and remains halted. Other processes may	

detect this state.	

Crash	
 Process	
 Process halts and remains halted. Other processes may	

not be able to detect this state.	

Omission	
 Channel	
 A message inserted in an outgoing message buffer never	

arrives at the other end’s incoming message buffer.	

Send-omission	
 Process	
 A process completes 	
send,	
 but the message is not put	

in its outgoing message buffer.	

Receive-	

omission	

Process	
 A message is put in a process’s incoming message	

buffer, but that process does not receive it.	

Arbitrary	

(Byzantine)	

Process or	

channel	

Process/channel exhibits arbitrary behaviour: it may	

send/transmit arbitrary messages at arbitrary times,	

commit omissions; a process may stop or take an	

incorrect step.	

October 4, 11 20 Kangasharju: Distributed Systems

Timing failures

Class of Failure	
 Affects	
 Description	

Clock	
 Process	
 Process’s local clock exceeds the bounds on its	

rate of drift from real time.	

Performance	
 Process	
 Process exceeds the bounds on the interval	

between two steps.	

Performance	
 Channel	
 A message’s transmission takes longer than the	

stated bound.	

October 4, 11 21 Kangasharju: Distributed Systems

Failure Handling
 More components => increased fault rate
  Increased possibilities

 more redundancy => more possibilities for fault tolerance

 no centralized control => no fatal failure

  Issues
 Detecting failures

 Masking failures

 Recovery from failures

 Tolerating failures

 Redundancy

 New: partial failures

22 October 4, 11 Kangasharju: Distributed Systems

Concurrency
 Concurrency:

 Several simultaneous users => integrity of data

-  mutual exclusion

-  synchronization

-  ext: transaction processing in data bases

 Replicated data: consistency of information?

 Partitioned data: how to determine the state of the system?

 Order of messages?

 There is no global clock!

23 October 4, 11 Kangasharju: Distributed Systems

Consistency Maintenance
 Update ...
 Replication ...
 Cache consistency
 Failure ...
 Clock ...
 User interface

24 October 4, 11 Kangasharju: Distributed Systems

Heterogeneity
 Heterogeneity of

 networks

 computer hardware

 operating systems

 programming languages

  implementations of different developers

 Portability, interoperability
 Mobile code, adaptability (applets, agents)
 Middleware (CORBA etc)
 Degree of transparency? Latency? Location-based

services?

25 October 4, 11 Kangasharju: Distributed Systems

Challenges for Openness
 Openness facilitates

  interoperability, portability, extensibility, adaptivity

 Activities addresses
 extensions: new components

  re-implementations (by independent providers)

 Supported by
 public interfaces

 standardized communication protocols

26 October 4, 11 Kangasharju: Distributed Systems

Challenges for Scalability
Scalability:
 The system will remain effective when there is a

significant increase in:
 number of resources

 number of users

 The architecture and the implementation must allow it
 The algorithms must be efficient under the circumstances

to be expected
 Example: the Internet

27 October 4, 11 Kangasharju: Distributed Systems

Challenges: Scalability (cont.)
 Controlling the cost of physical resources
 Controlling performance loss
 Preventing software resources running out
 Avoiding performance bottlenecks
 Mechanisms (implement functions) & Policies (how to use

the mechanisms)
 Scaling solutions

 asynchronous communication, decreased messaging

 caching (all sorts of hierarchical memories: data is closer to

the user no wait / assumes rather stable data!)

 distribution i.e. partitioning of tasks or information (domains)

(e.g., DNS)

28 October 4, 11 Kangasharju: Distributed Systems

Challenges for Security
 Mostly similar to normal challenges in wide-area networks

 Sometimes easier (closed, dedicated systems)

 Solution techniques
 cryptography

 authentication

 access control techniques

 Policies
 access control models

  information flow models

 Leads to: secure channels, secure processes, controlled
access, controlled flows

29 October 4, 11 Kangasharju: Distributed Systems

Environment challenges
 A distributed system:

 HW / SW components in different nodes

 components communicate (using messages)

 components coordinate actions (using messages)

 Distances between nodes vary
  in time: from msecs to weeks

  in space: from mm’s to Mm’s

  in dependability

 Autonomous independent actors (=> even independent
failures!)

No global clock
Global state information not possible

30 October 4, 11 Kangasharju: Distributed Systems

Challenges: Design Requirements
 Performance issues

  responsiveness

  throughput

  load sharing, load balancing

  issue: algorithm vs. behavior

 Quality of service
 correctness (in nondeterministic environments)

  reliability, availability, fault tolerance

 security

 performance

 adaptability

31 October 4, 11 Kangasharju: Distributed Systems

Where is the borderline between a
computer and distributed system?

Hardware Concepts
 Characteristics which affect the behavior of software

systems
 The platform

  the individual nodes (”computer”, ”processor”)

 communication between two nodes

 organization of the system (network of nodes)

  ... and its characteristics
 capacity of nodes

 capacity (throughput, delay) of communication links

  reliability of communication (and of the nodes)

  Which ways to distribute an application are feasible

33 October 4, 11 Kangasharju: Distributed Systems

Basic Organizations of a Node

Different basic organizations and memories in distributed computer
systems

October 4, 11 34 Kangasharju: Distributed Systems

Multiprocessors (1)

A bus-based multiprocessor.

Essential characteristics for software design
•  fast and reliable communication (shared memory)
 => cooperation at ”instruction level” possible
•  bottleneck: memory (especially the ”hot spots”)

October 4, 11 35 Kangasharju: Distributed Systems

General Multicomputer Systems
 Hardware: Possibly very heterogeneous
 Loosely connected systems

 nodes: autonomous

 communication: slow and vulnerable

 => cooperation at ”service level”

 Application architectures
 multiprocessor systems: parallel computation

 multicomputer systems: distributed systems

  (how are parallel, concurrent, and distributed systems

different?)

36 October 4, 11 Kangasharju: Distributed Systems

Software Concepts

System Description Main Goal

DOS

Tightly-coupled operating system for

multiprocessors and homogeneous

multicomputers

Hide and manage

hardware resources

NOS
Loosely-coupled operating system for

heterogeneous multicomputers (LAN and WAN)

Offer local services to

remote clients

Middle-

ware

Additional layer atop of NOS implementing

general-purpose services

Provide distribution

transparency

DOS: Distributed OS; NOS: Network OS

October 4, 11 37 Kangasharju: Distributed Systems

History of distributed systems
 RPC by Birel &Nelson -84
 network operating systems, distributed operating systems,

distributed computing environments in mid-1990;
middleware referred to relational databases

 Distributed operating systems – ”single computer”
 Distributed process management

-  process lifecycle, inter-process communication, RPC,

messaging

 Distributed resource management

-  resource reservation and locking, deadlock detection

 Distributed services

-  distributed file systems, distributed memory, hierarchical

global naming

38 October 4, 11 Kangasharju: Distributed Systems

History of distributed systems
  late 1990’s distribution middleware well-known

 generic, with distributed services

 supports standard transport protocols and provides standard API

 available for multiple hardware, protocol stacks, operating

systems

 e.g., DCE, COM, CORBA

 present middlewares for
 multimedia, realtime computing, telecom

 ecommerce, adaptive / ubiquitous systems

39 October 4, 11 Kangasharju: Distributed Systems

Misconceptions tackled
 The network is reliable
 The network is secure
 The network is homogeneous
 The topology does not change
 Latency is zero
 Bandwith is infinite
 Transport cost is zero
 There is one administrator
 There is inherent, shared knowledge

40 October 4, 11 Kangasharju: Distributed Systems

Multicomputer Operating Systems (1)

General structure of a multicomputer operating system

October 4, 11 41 Kangasharju: Distributed Systems

Multicomputer Operating Systems (2)

Alternatives for blocking and buffering in message passing.

October 4, 11 42 Kangasharju: Distributed Systems

Distributed Shared Memory Systems (1)

a)  Pages of address space

distributed among four

machines

b)  Situation after CPU 1

references page 10

c)  Situation if page 10 is

read only and replication

is used

October 4, 11 43 Kangasharju: Distributed Systems

Distributed Shared Memory Systems (2)

False sharing of a page between two independent processes.

October 4, 11 44 Kangasharju: Distributed Systems

Network Operating System (1)

General structure of a network operating system.

October 4, 11 45 Kangasharju: Distributed Systems

Network Operating System (2)

Two clients and a server in a network operating system.

October 4, 11 46 Kangasharju: Distributed Systems

Network Operating System (3)

Different clients may mount the servers in different places.

October 4, 11 47 Kangasharju: Distributed Systems

Software Layers
 Platform: computer & operating system & ..
 Middleware:

 mask heterogeneity of lower levels

  (at least: provide a homogeneous “platform”)

 mask separation of platform components

-  implement communication

-  implement sharing of resources

 Applications: e-mail, www-browsers, …

48 October 4, 11 Kangasharju: Distributed Systems

Positioning Middleware

General structure of a distributed system as middleware.

October 4, 11 49 Kangasharju: Distributed Systems

Middleware
 Operations offered by middleware

 RMI, group communication, notification, replication, … (Sun

RPC, CORBA, Java RMI, Microsoft DCOM, ...)

 Services offered by middleware
 naming, security, transactions, persistent storage, …

 Limitations
  ignorance of special application-level requirements

End-to-end argument:
 Communication of application-level peers at both ends is

required for reliability

50 October 4, 11 Kangasharju: Distributed Systems

Middleware and Openness

 In an open middleware-based distributed system, the protocols used by

each middleware layer should be the same, as well as the interfaces

they offer to applications.

October 4, 11 51 Kangasharju: Distributed Systems

Comparison between Systems

Item
Distributed OS

Network OS
Middleware-based

OS Multiproc. Multicomp.

Degree of transparency Very High High Low High

Same OS on all nodes Yes Yes No No

Number of copies of OS 1 N N N

Basis for communication Shared memory Messages Files Model specific

Resource management Global, central Global, distributed Per node Per node

Scalability No Moderately Yes Varies

Openness Closed Closed Open Open

October 4, 11 52 Kangasharju: Distributed Systems

More examples on distributed
software architectures

Architectural Models
 Architectural models provide a high-level view of the

distribution of functionality between system components
and the interaction relationships between them

 Architectural models define
 components (logical components deployed at physical

nodes)

 communication

 Criteria
 performance

  reliability

 scalability, ..

54 October 4, 11 Kangasharju: Distributed Systems

Client-Server Architectures
 General interaction between a client and a server.

Processing Level

 The general organization of an Internet search engine into three different layers

October 4, 11 56 Kangasharju: Distributed Systems

Multitiered Architectures (1)

Alternative client-server organizations.

October 4, 11 57 Kangasharju: Distributed Systems

Multitiered Architectures (2)

Client - server: generalizations

node 1 node 2
request

reply

node 3

node 4

A client: node 1
 server: node 2

A B

B client: node 2
 server: node 3

the concept is related
to communication
not to nodes

October 4, 11 58 Kangasharju: Distributed Systems

Multitiered Architectures (3)

An example of a server acting as a client.

October 4, 11 59 Kangasharju: Distributed Systems

Modern Architectures

An example of horizontal distribution of a Web service.

October 4, 11 60 Kangasharju: Distributed Systems

Chapter Summary
  Introduction into distributed systems
 Challenges and goals of distributing
 Examples of distributed systems

61 October 4, 11 Kangasharju: Distributed Systems

