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Current Research @ CSBB

» Machine learning for biomarker discovery (JR,
collaboration with UCL/NIMR)

» Metabolite fingerprint prediction form MS/MS data

(Markus Heinonen, Huibin Shen, JR, collaboration with
ETH Zurich)

» Drug bioactivity prediction (Hongyu Su, Markus
Heinonen, JR)

» Kernels for molecular and reaction graphs (Markus Heinonen,
JR, Niko Valimaki, Veli Makinen)

» Metabolic reconstruction and pathway analysis
(GEOBIOINFO project, Esa Pitkanen, Yvonne Herrmann)



Biomarker discovery via sparse canonical correlations

» In biomarker discovery, one is concerned of finding a small set
of features that are predictive of the condition of interest
(here: tuberculosis)

» Supervised approaches (assume target classification known):

» Feature selection with classification learning (vast literature)
» (1-regularized learning (e.g. LASSO family)

» Here we consider an unsupervised scenario, where we have
two paired datasets: proteomics and clinical profiles, but we
lack the diagnostic labels at learning time.

» Sparse canonical correlation analysis (SCCA) is the method of
choice



Biomarker discovery via sparse canonical correlations

» The first view is represented by feature vector:
score;(x) = w. ¢a(x)

» The second view is represented by a kernel:
scorep(x) = Y, BiKp(x, x;)

> Learning aims to minimize the discrepancy between the two
views

» The weights in the first view are penalized by £1-norm
llwal[; = >_; [wj| to induce sparse weight vector (feature
selection)

Wa

(Hardoon, Shawe-Taylor, 2011)



Biomarker discovery via sparse canonical correlations

» Heatmap of extracted proteomics features (right),
corresponding to non-zero coefficients.

» Correlation of the projection direction proteomics and clinical
views.

» Diagnostic labels have been inputed in postprocessing (not
used in training)
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(Rousu, Agranoff, Shawe-Taylor, Fernandez-Reyes. Proc. MLSB-2011, Vienna, 2011)



Metabolite fingerprint prediction from MS/MS data

» Task: given a tandem MS spectrum of a small molecule,
predict properties (the fingerprints) of the molecule

» Motivation: First step towards de novo metabolite
identification, a major bottleneck in metabolomics

» Collaboration with ETH Zurich (N. Zamboni) and IPB Halle
(S. Neumann), in talks with Agilent (large proprietary data)
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Metabolite fingerprint prediction from MS/MS data

> Input: kernels for tandem MS/MS spectra, taking into
account peak locations, intensities, neutral losses, different
collision energies, different ways of combining the data

» Qutput: binary vector of fingerprint presence in the molecule

» Method: set of SVMs as the baseline, multi-task/multi-label
classifiers as the final method
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Metabolite fingerprint prediction from MS/MS data

» Some initial results

» F1 score comparisons g
using different kernels in Sl A i
a Neutral loss signal helps FES
b Combining several (a) (b)

collision energies (CE)

with kernel fusion helps
¢ Merging spectra of ) .

different CEs does not A e
d High resolution mass e )

accuracy does not work

well (yet!) S

(Heinonen, Shen, Zamboni, Rousu, 2011, submitted)



Multi-Task Classification via Graph Labeling

» Task: Given molecule, predict active/not active against a
given target (a virus, cancer type,...)

» State of the art prior to 2010: SVM with graph kernels over
the molecules, independently trained for each target

» Can we predict the activity better by learning against all
available targets at the same time?

» Multi-task and Multi-label classification are machine learning
methods developed for such scenarios

: e,
w8 & ¢
O - ©
%
S oc] %



Our approach

» We convert the multi-task
learning setting to a graph
labeling problem

» Output graph connecting
the tasks is learned from
an auxiliary dataset
(different microarray
datasets)

> Labeling of the graph is
learned using the MMCRF

method (Rousu et al.
2007)

Multi-Task Classification via Graph Labeling
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(H. Su, M. Heinonen, J. Rousu. Pattern Recognition in Bioinformatics, 2010)



Multi-Task Classification via Graph Labeling

» There are several sources for learning the output graphs (13
datasets)

» Suggests an ensemble approach: train a set of graph labeling
classifiers, with differnt graph structured and vote

» It turns out that random graphs can be used as well (no
auxiliary data needed!)
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(H. Su, J. Rousu. Pattern Recognition in Bioinformatics, November 2011, to appear)



Multi-Task Classification via Graph Labeling

» Scatter plot shows the F1
score (Y-axis) and
accuracy (X-axis) for
different methods

» SVM - support vector
machine for each target
individually

» MMCRF models with
different output graphs

» RP, RT - random
graphs

» Dist, Cor, Glasso -
graph extraction from
auxiliary data

» Ens-*: Ensemble
versions of the above
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Plans for 2012

» Metabolite Fingerprint Prediction: Markus Heinonen, Huibin
Shen, collaboration with ETH Zurich, IPB Halle

» Kernels for molecular data: Markus Heinonen

» Further development of graph based multi-task and ensemble
learning: Hongyu Su

» Machine learning of protein functions and interactions:
BIOLEDGE EU FP7 Project, collaboration with VTT,
Cambridge, Malaga, and three SMEs (post-doctoral researcher
to be hired)



	Drug bioactivity classification

