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Current Research @ CSBB

I Machine learning for biomarker discovery (JR,
collaboration with UCL/NIMR)

I Metabolite fingerprint prediction form MS/MS data
(Markus Heinonen, Huibin Shen, JR, collaboration with
ETH Zurich)

I Drug bioactivity prediction (Hongyu Su, Markus
Heinonen, JR)

I Kernels for molecular and reaction graphs (Markus Heinonen,
JR, Niko Välimaki, Veli Mäkinen)

I Metabolic reconstruction and pathway analysis
(GEOBIOINFO project, Esa Pitkänen, Yvonne Herrmann)



Biomarker discovery via sparse canonical correlations

I In biomarker discovery, one is concerned of finding a small set
of features that are predictive of the condition of interest
(here: tuberculosis)

I Supervised approaches (assume target classification known):
I Feature selection with classification learning (vast literature)
I `1-regularized learning (e.g. LASSO family)

I Here we consider an unsupervised scenario, where we have
two paired datasets: proteomics and clinical profiles, but we
lack the diagnostic labels at learning time.

I Sparse canonical correlation analysis (SCCA) is the method of
choice



Biomarker discovery via sparse canonical correlations
I The first view is represented by feature vector:

scorea(x) = wT
a φa(x)

I The second view is represented by a kernel:
scoreb(x) =

∑
i βiKb(x , xi )

I Learning aims to minimize the discrepancy between the two
views

I The weights in the first view are penalized by `1-norm
||wa||1 =

∑
j |wj | to induce sparse weight vector (feature

selection)

Wa
Wb

(Hardoon, Shawe-Taylor, 2011)



Biomarker discovery via sparse canonical correlations
I Heatmap of extracted proteomics features (right),

corresponding to non-zero coefficients.
I Correlation of the projection direction proteomics and clinical

views.
I Diagnostic labels have been inputed in postprocessing (not

used in training)

(Rousu, Agranoff, Shawe-Taylor, Fernandez-Reyes. Proc. MLSB-2011, Vienna, 2011)



Metabolite fingerprint prediction from MS/MS data

I Task: given a tandem MS spectrum of a small molecule,
predict properties (the fingerprints) of the molecule

I Motivation: First step towards de novo metabolite
identification, a major bottleneck in metabolomics

I Collaboration with ETH Zurich (N. Zamboni) and IPB Halle
(S. Neumann), in talks with Agilent (large proprietary data)
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Metabolite fingerprint prediction from MS/MS data

I Input: kernels for tandem MS/MS spectra, taking into
account peak locations, intensities, neutral losses, different
collision energies, different ways of combining the data

I Output: binary vector of fingerprint presence in the molecule

I Method: set of SVMs as the baseline, multi-task/multi-label
classifiers as the final method
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Metabolite fingerprint prediction from MS/MS data

I Some initial results
I F1 score comparisons

using different kernels in
SVM.

a Neutral loss signal helps
b Combining several

collision energies (CE)
with kernel fusion helps

c Merging spectra of
different CEs does not

d High resolution mass
accuracy does not work
well (yet!)
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(Heinonen, Shen, Zamboni, Rousu, 2011, submitted)



Multi-Task Classification via Graph Labeling

I Task: Given molecule, predict active/not active against a
given target (a virus, cancer type,. . . )

I State of the art prior to 2010: SVM with graph kernels over
the molecules, independently trained for each target

I Can we predict the activity better by learning against all
available targets at the same time?

I Multi-task and Multi-label classification are machine learning
methods developed for such scenarios

· · ·

· · · · · ·
...

...
. . .

...
...

...
. . .

...

· · · · · ·



Multi-Task Classification via Graph Labeling

Our approach

I We convert the multi-task
learning setting to a graph
labeling problem

I Output graph connecting
the tasks is learned from
an auxiliary dataset
(different microarray
datasets)

I Labeling of the graph is
learned using the MMCRF
method (Rousu et al.
2007)

Network coherence=43, Diameter=18
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(H. Su, M. Heinonen, J. Rousu. Pattern Recognition in Bioinformatics, 2010)



Multi-Task Classification via Graph Labeling

I There are several sources for learning the output graphs (13
datasets)

I Suggests an ensemble approach: train a set of graph labeling
classifiers, with differnt graph structured and vote

I It turns out that random graphs can be used as well (no
auxiliary data needed!)

(H. Su, J. Rousu. Pattern Recognition in Bioinformatics, November 2011, to appear)



Multi-Task Classification via Graph Labeling

I Scatter plot shows the F1
score (Y-axis) and
accuracy (X-axis) for
different methods

I SVM - support vector
machine for each target
individually

I MMCRF models with
different output graphs

I RP, RT - random
graphs

I Dist, Cor, Glasso -
graph extraction from
auxiliary data

I Ens-*: Ensemble
versions of the above
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Plans for 2012

I Metabolite Fingerprint Prediction: Markus Heinonen, Huibin
Shen, collaboration with ETH Zurich, IPB Halle

I Kernels for molecular data: Markus Heinonen

I Further development of graph based multi-task and ensemble
learning: Hongyu Su

I Machine learning of protein functions and interactions:
BIOLEDGE EU FP7 Project, collaboration with VTT,
Cambridge, Malaga, and three SMEs (post-doctoral researcher
to be hired)


	Drug bioactivity classification

