Influence Attribution in Social Networks

Panagiotis Papapetrou Aalto University, Finland

P. Papapetrou, Aris Gionis, and Heikki Mannila, "A Shapley value Approach for Influence Attribution" *ECML-PKDD 2011*

Influential individuals

- People always intrigued by characterizing influential ideas, books, scientists, politicians, etc.
- Main question: who is influential?
- Examples
 - Who initiates the most influential "tweets"?
 - Who are the most influential scientists?
 - Which actors influence a movie rating the most?

Our setting

- Individuals accomplish tasks in a collaborative manner.
- Influence attribution: each individual is assigned a score based on his/her performance.

- Individual => author.
- Task => publication.
- Impact score:
 - CC: Citation count of the publication.
 - PR: PageRank score of the publication.

- Two researchers A and B.
- Question: who is more influential?

• One common collaborator: Y.

P: number of papers

C: number of citations per paper

• One common collaborator: Y.

P: 5 C: 4

P: 8

C: 8

B

P: number of papers

C: number of citations per paper

• Three additional collaborators for A and B.

P: 5 C: 4 X1

P: 5 C: 3

P: 5 C: 3

P: 5 C: 4

P: 8 C: 8

X4 P: 3 C: 0

X5 P: 3 C: 0

X6 P: 6 C: 1

• Three additional collaborators for A and B.

P: 5 C: 3

P: 5 C: 3

C: 4

P: 8 C: 8

X4 P: 3 C: 0

X6 P: 6

Researcher	Papers	Citations	H-index
Α	20	70	4
В	20	70	8

• Three additional collaborators for A and B.

H-Index: a scientist's H-index is h, if h of his/her publications have at least h citations and the rest of his/her publications have at most h citations each.

Researcher	Papers	Citations	H-index
Α	20	70	4
В	20	70	8

• Three additional collaborators for A and B.

P: 5 C: 4

P: 8 C: 8

В

P: 3 C: 0

X6 P: 6

Researcher	Papers	Citations	H-index
Α	20	70	4
В	20	70	8

• Three additional collaborators for A and B.

- But is B indeed that influential?
- Or is B just being favored due to the fame of Y?

Drop Y out of the picture.

- The performance of A remains quite high.
- The performance of B is weakened a lot.

Drop Y out of the picture.

P: 5

C: 4

C: 3

Res	earcher	Papers	Citations	H-index
	Α	15	50	4
	В	12	6	1

Our Approach

- For each individual compute:
 - what difference does an individual make to the coalition if dropped from it.
- Individuals who form many strong coalitions are favored against those who form weaker coalitions.

Shapley Value

- Set of individuals V, set of tasks T, and task impact scores I.
- ullet Gain function $v(\mathcal{S})$
 - gain achieved by the cooperation of the individuals in S.
- Shapley value: the sum of all marginal gains contributed by each individual to a coalition.

$$\phi_i(v) = \sum_{\mathcal{S} \subseteq \mathcal{V}} \frac{|\mathcal{S}|!(|\mathcal{V}| - |\mathcal{S}| - 1)!}{|\mathcal{V}|!} (v(\mathcal{S} \cup \{V_i\}) - v(\mathcal{S})).$$

Our Approach

- Not all coalitions may be available or defined.
- We compute the marginal gains by averaging only over coalitions for which impact scores are available.
- For the author-publication case: iterate over all papers.
- We approximate the rest.

• We choose to take into account all cases for which

$$S \cup \{V_i\}$$
 is available.

We choose to take into account all cases for which

$$S \cup \{V_i\}$$
 is available.

• Then compute the gain of S.

• What if for some set S we have no complete information about the coalitions?

• What if for some set S we have no complete information about the coalitions?

Monotonicity requirement

- Monotonicity of the gain function
 - Bigger coalitions should have higher impacts.
 - Not always the case: e.g., author-publications.
- We impose it using a heuristic.

Experiments: setup

- Datasets:
 - ISI Web of Science.
 - Internet Movie Database (IMDB).
- ISI Web of Science:
 - Publication years 2003 and 2009.
 - 1212 authors.

Experiments: setup

- Internet Movie Database:
 - 2000 male actors and 4560 movies.
 - Movie genre type: comedy or action.
 - For each actor we considered only the movies where his credit position was among the top 3.

Naïve PR vs. Shapley PR

Naïve PR vs. Shapley PR

Naive-PR

Examples

Shapley-PR Naïve-PR

Shaprey Fr	t walve Fit
1	183
2	225
3	35
4	215
5	192
6	272
7	94
8	141
9	208
10	114

Examples

P. Papapetrou, Aris Gionis, and Heikki Mannila, "A Shapley value Approach for Influence Attribution" *ECML-PKDD 2011*

Experimental Evaluation

• Top-10 actors given by the Shapley method.

Actor Name	Shapley	y Naïve	Actor Name	Naïve	Shapley
Robert De Niro	1	3	Peter Sellers	1	14
Al Pacino	2	8	Jack Nicholson	2	11
Brad Pitt	3	15	Robert De Niro	3	1
Bruce Willis	4	7	Adam Sandler	4	59
Arnold Schwarzenegger	5	24	Daniel Day-Lewis	5	36
Will Smith	6	13	Chris Farley	6	20
Eddie Murphy	7	10	Bruce Willis	7	4
Robin Williams	8	9	Al Pacino	8	2
Morgan Freeman	9	17	Robin Williams	9	8
Ben Stiller	10	29	Eddie Murphy	10	7

Present and Future

• Two main topics:

Sequence Analysis

Social networks

Present

Two main topics:

Sequence Analysis

Social networks

- Influence attribution

ECML-PKDD 2011: P. Papapetrou, A. Gionis, and H. Mannila, "A Shapley value Approach for Influence Attribution"

Present

Two main topics:

Sequence Analysis

Social networks

- time series

ACM TODS 2011: P. Papapetrou, V. Athitsos, M. Potamias, G. Kollios, and D. Gunopulos, "Embedding-based subsequence matching of large time series databases"

PVLDB 2011: A. Kotsifakos, P. Papapetrou, J. Hollmen, and D. Gunopulos, "A Ssubsequence Matching with Gaps-Error-Tolerances Framework: a query-by-humming application"

Present

• Two main topics:

Sequence Analysis

Social networks

- time series
- event sequences

ECML-PKDD 2011: J. Lijffijt, P. Papapetrou, K. Puolamäki, and H. Mannila, "Analyzing Word Frequencies in Large Text Corpora using Interarrival Times and Bootstrapping"

IJDMB 2011: P. Papapetrou, G.Benson, and G. Kollios, "Mining Polyregions in DNA"

ECML-PKDD 2011: O. Kostakis, P. Papapetrou, and J. Hollmen, "ARTEMIS: Assessing the Similarity of Event-Interval Sequences"

Hence, our method is correct!

Shapley-PR Naïve-PR		
1	183	
2	225	
3	35	
4	215	
5	192	
6	272	
7	94	
8	141	
9	208	
10	114	

Future

Two main topics:

Sequence Analysis

- burstiness in large texts
- other domains: DNA?
- still interested in intervals
- still interested in music

Social networks

Future

Two main topics:

Sequence Analysis

- burstiness in large texts
- other domains: DNA?
- still interested in intervals
- still interested in music

Social networks

- influence attribution
- topic evolution